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Current learning theory provides a comprehensive description of how humans and

other animals learn, and places behavioral flexibility and automaticity at heart of

adaptive behaviors. However, the computations supporting the interactions between

goal-directed and habitual decision-making systems are still poorly understood. Previous

functional magnetic resonance imaging (fMRI) results suggest that the brain hosts

complementary computations that may differentially support goal-directed and habitual

processes in the form of a dynamical interplay rather than a serial recruitment of

strategies. To better elucidate the computations underlying flexible behavior, we develop

a dual-system computational model that can predict both performance (i.e., participants’

choices) and modulations in reaction times during learning of a stimulus–response

association task. The habitual system is modeled with a simple Q-Learning algorithm

(QL). For the goal-directed system, we propose a new Bayesian Working Memory

(BWM) model that searches for information in the history of previous trials in order to

minimize Shannon entropy. We propose a model for QL and BWM coordination such

that the expensive memory manipulation is under control of, among others, the level of

convergence of the habitual learning. We test the ability of QL or BWM alone to explain

human behavior, and compare them with the performance of model combinations,

to highlight the need for such combinations to explain behavior. Two of the tested

combinationmodels are derived from the literature, and the latter being our new proposal.

In conclusion, all subjects were better explained by model combinations, and the majority

of them are explained by our new coordination proposal.

Keywords: behavior, action selection, decision-making, working-memory, reinforcement learning, reaction times,

multi-objective optimization
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1. Introduction

Learning the consequence of actions and consolidating
habitual responses are key cognitive functions because they
embody behavioral flexibility and automaticity. Acquisition
and consolidation of instrumental behavior are known to

engage distinct decision-making processes. Acquisition relies
on flexible goal-directed actions selected according to the

expected outcomes as well as current goals and motivational
state (Rescorla, 1991; Dickinson and Balleine, 1994; Staddon

and Cerutti, 2003). Consolidation is characterized by the
gradual formation of stimulus-driven habitual responses
(Dickinson, 1985; Dickinson and Balleine, 1993). At the neural
level, converging evidence from human neuroimaging and
animal studies confirms a dual-system hypothesis underlying
instrumental behaviors. Goal-directed actions are thought to
be primarily controlled by the associative frontostriatal circuit
including the lateral and medial prefrontal cortices and the
caudate nucleus. Habitual motor responses are thought to recruit
neural pathways, linking sensorimotor and premotor areas with
the putamen (for reviews see Yin et al., 2006, 2008; Balleine
et al., 2007; Graybiel, 2008; Packard, 2009; Ashby et al., 2010;
Balleine and O’Doherty, 2010). Computational formulations of
goal-directed and habitual processes model them as distinct and
complementary reinforcement learning (RL) “strategies” (Doya,
1999; Daw et al., 2005; Redish et al., 2008; Dollé et al., 2010;
Keramati et al., 2011; Collins and Frank, 2012; Khamassi and
Humphries, 2012; Botvinick and Weinstein, 2014). The goal-
directed system is thought to learn a model of the environment
including action-outcome (A-O) contingencies and transition
probabilities, and can, therefore, be formalized using “model-
based” RL algorithms. Instead, the habit system is thought to
learn stimulus–responses relations by reinforcing successful
behaviors through reward-prediction error signals without
creating internal models of the environment, using “model-free”
RL algorithms. Accordingly, goal-directed behaviors resulting
from model-based RL strategies appear flexible (i.e., can adapt
to changing A-O contingencies) but cognitively expensive (i.e.,
require inference of action outcomes and are potentially slow);
habitual behaviors modeled using model-free RL strategies,
however, are more stable (i.e., they are not sensitive to rapid
changes in A-O contingencies) and are more rapid (i.e., the
action with the highest value is chosen). In other words, a
cognitive agent can use a complex internal structure of the
world to make an accurate decision given a certain cost and
decision-making time, or he can exploit a degraded and valued
representation of the world that makes it quicker to decide but
slower to adapt.

Neuroimaging evidence has accumulated over recent years,
thereby supporting the existence of two complementary forms
of learning signals each associated with different RL strategies.
Neural correlates of state prediction-error signals (putative
hallmark of “model-based” processes) have been found in the
intraparietal sulcus and lateral PFC, in addition to reward
prediction errors (putative hallmark of “model-free” processes)
in the ventral striatum (Gläscher et al., 2010). In particular,
the dorsal striatum has been shown to host complementary

computations that may differentially support goal-directed and
habitual processes (Brovelli et al., 2011): the activity of the
anterior caudate nucleus correlated with the amount of working
memory and cognitive control demands, whereas the putamen
tracked how likely the conditioning stimuli lead to correct
response. The dynamic interplay between goal-directed and
habitual processes, rather than their serial recruitment, has been
shown during learning to parallel portion of reaction times
variance during learning (Brovelli et al., 2011). Driven by these
insights, this work is focused on capturing, with computational
tools, the specific behavioral results of this instrumental learning
task (i.e., choices and reaction times). As suggested by the
neuroimaging results, we build and compare models with the
hypothesis that a dual-strategy system is required for this
particular task.

In addition, another study has challenged the notion of non-
overlapping neural substrates by showing that the ventral striatal
BOLD signal of reward prediction errors, classical manifestation
of model-free learning strategy, reflected also model-based
predictions in proportions matching those that best explained
choice behavior (Daw et al., 2011). More recently, BOLD signals
in the inferior lateral prefrontal and frontopolar cortex have been
found to be correlated with the reliability of the predictions of
the model-based and model-free systems, respectively, therefore
suggesting an arbitration mechanism allocating control over
behavior based on reliability signals (Lee et al., 2014). Overall,
neuroimaging studies suggest complex interactions between
model-free and model-based systems, whose interplay and
relation with choice accuracy and speed (i.e., reaction times) are
partly elucidated.

Arbitration mechanisms have been formalized using different
approaches. Daw et al. (2005) were the first to suggest
how unified behavior emerges from the interaction between
the goal-directed and habitual systems, and proposed an
arbitration process based on the uncertainty in the model’s
estimates, such that the final choice is controlled by the
system whose estimate of action values is the most accurate.
Another study (Keramati et al., 2011) suggested that arbitration
may rely on a speed/accuracy trade-off between the two
systems and a nearly optimal balance between reaction-time
and accuracy. By pulling the properties of each strategies to
the extremes (perfect but slow model-based vs. potentially
inaccurate and fast model-free), a trade-off between speed and
accuracy can account for behavioral observations in rodents
during instrumental learning. Such model correctly predicts
differences in sensitivity to devaluation between moderate and
extensive training. More recently, capacity-limited working
memory processes have also been incorporated into the
arbitration mechanisms and it has been shown to capture
behavioral variance that could not be captured in a pure RL
framework (Collins and Frank, 2012). These computational
models have provided significant insight into the possible
computations mediating arbitration. However, none provided a
comprehensive account modeling both behavioral performance
(i.e., choices) and speed-accuracy tradeoffs (i.e., reactions times)
during the acquisition and stabilization of an instrumental
task.
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In this study, we address this issue by building on previous
accounts of model-free and model-based learning. First, we
propose a new model of Bayesian Working Memory (BWM) to
account for goal-directed computations in sensorimotor learning
tasks where subjects need to learn the sequence of previous
choices and outcomes to deliberate about future choices (Brovelli
et al., 2011; Enomoto and Matsumoto, 2011; Collins and Frank,
2012; Khamassi et al., 2015). This relatively high-level abstraction
of the working memory processes is based on the Bayesian
mathematical formalism. A recent study has already explored
this level of formalism to predict the limited capacity of working
memory (Morey, 2011). The tool of Shannon entropy is borrowed
from Information theory. It has been shown to be fruitful to
explain temporal variability in perceptual process (Norwich,
2003). Within the domain of this work, i.e., human decision-
making, measures of entropy have been used to explain variations
of activity in the prefrontal cortex (Koechlin and Hyafil, 2007). In
this study, the entropy is heavily used as a measure of uncertainty
computed upon probabilities of actions. In addition, we explore
the idea of the entropy as a self-monitoring variable thatmeasures
the information gained from retrieving memory items. The
habitual process is modeled using a Q-Learning algorithm (QL)
(Watkins and Dayan, 1992).

Second, while most models of strategy selection tend to
opposemodels and choose concurrently goal-directed or habitual
decisions according to uncertainty criteria, we propose an
arbitration process which assumes that relevant information
retained in working memory is selectively accessed during
learning. Within this view, QL and BWM are combined such that
memory manipulation is limited by, among other, the “strength”
of habitual learning.

Once again, the entropy of action probabilities from both
systems is used in order to dynamically control the working
memory retrieval process. In order to compare with previous
approaches, the proposed model is compared with previously
proposed arbitration mechanisms. From Keramati et al. (2011),
we adapted the speed-accuracy trade off, resulting in a pure
selection mechanism (i.e., each strategy is selected concurrently).
From Collins and Frank (2012), we derived a mixture model that
weights each strategy in order to compute final probabilities of
action.

Third, contrary to previous accounts modeling exclusively
choice accuracy, we fitted model’s parameters to both choice
accuracy and reaction times using the NSGA-2 multi-objective
evolutionary algorithm (Mouret and Doncieux, 2010). In
particular, while the usefulness of dual-system learning models
with a large number of parameters over single-system models is
often difficult to prove statistically when fitting only choices using
standard criteria such as BIC, fitting both choices and reaction
times clearly stress the need for a dual-system learningmodel.We
describe step-by-step the new multi-objective model comparison
method to make it usable in different experiments and contexts.

We were, therefore, able to provide optimal estimates of the
interplay between model-free and model-based strategies that
leads to new interpretations of the dual-learning problematic.
We show that the arbitration mechanism we propose is best
suited to explain both choices and reaction times of the

experimental results of Brovelli et al. (2011). We also predict
the amount of information used to decide at trial step and
these predictions show differences between each architecture of
strategy selection.

2. Models

2.1. Arbitrary Visuomotor Learning Task
Arbitrary visuomotor learning is defined as the ability to learn
arbitrary and causal relations linking visual inputs to actions
and outcomes (Wise and Murray, 2000). Previous fMRI studies
have shown that both the processing of outcomes (Brovelli
et al., 2008) and selection of action (Brovelli et al., 2011) during
arbitrary visuomotor learning conform to neural computations
predicted by instrumental learning theory. We, therefore,
assume that arbitrary visuomotor learning tasks represents a
canonical instance of instrumental learning and can be used to
study the acquisition and early consolidation of instrumental
behaviors, during which both the goal-directed and habitual
systems are thought to coordinate. Once consolidated, arbitrary
visuomotor mappings may form the basis of highly-acquainted
instrumental behaviors, such as habits. Here, we tested the
proposed computational model on behavioral data acquired from
an arbitrary visuomotor learning task that required participants
to learn by trial-and-error the correct association between three-
colored circle and five-finger movements (Brovelli et al., 2008,
2011).

At each trial, a colored circle was presented to which the
participant had to respond within 1.5 s. After a variable delay
ranging from 4 to 12 s, a feedback image was presented to inform
whether the selected motor response was correct or incorrect.
The order of visual stimuli was randomized and subjects were
specifically informed about the independence between stimuli,
i.e., the correct response for one stimulus did not predict the
correct response for other stimuli. Each participant performed
four learning blocks each lasting 42 trials. To solve the task,
subjects had to memorize previous response to avoid repeated
errors, and once the correct associations were found, only these
associations are worth memorizing.

To ensure highly reproducible performances across sessions
and subjects, the correct stimulus–response associations were
not set a priori. Instead, they were assigned as subject proceed
in the task. The first presentation of each stimulus was always
followed by an incorrect outcome, irrespective of subject’s choice.
On the second presentation of stimulus S1, any new untried
finger movement was considered as a correct response. For the
second stimulus S3, the response was defined as correct only
when the subject had performed three incorrect movements.
For stimulus S4, the subject had to try four different finger
movements before the correct response is found. In other words,
the correct response was the second finger movement (different
from the first tried response) for stimulus S1, the fourth finger
movement for stimulus S3, and the fifth for stimulus S4. This task
designs assured a minimum number of incorrect trials during
acquisition (1 for S1, 3 for S3, and 4 for S4; the stimuli number
is a direct reminder of the number of errors required) and fixed
representative steps during learning. In particular, it produces
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highly reproducible behavioral performances across sessions and
subjects as it can be observed from the small standard deviations
evaluated from the probability of correct responses (PCR) for
each stimulus (Figure 1A).

Reaction times (RT) were measured as the interval between
the presentation of the stimulus and the button press. In order
to visualize the evolution of mean reaction times (RTs) during
the experiment, a reordering process was applied that provides
a mean value over representative steps as in Brovelli et al.
(2011) (see Section 5). The first five representative steps form
the acquisition phase in which a subject does the required
errors, whereas the next 10 representative trials constitute
the consolidation phase. Mean RTs at the first representative
step were averaged over the first incorrect response for each
stimulus. Mean RTs at the second representative step were
averaged over the correct response for stimulus S1 and second
incorrect responses for stimuli S3 and S4. Each following steps
(3–5) is an average over either the first correct responses or
required incorrect responses. From Step 6 to 15, mean RTs

A

B

FIGURE 1 | Behavioral results. (A) The three curves (one for each stimulus)

representing the probability of correct response vs. the number of stimulus

presentation (not according to the actual appearance during the learning

session) computed on the sequence of outcomes (1 for correct and 0 for

incorrect). The small standard error values provide evidence for

quasi-stereotyped learning behaviors. (B) The mean reaction times of all

subjects is computed after a reordering of individual reaction times according

to representative steps (Brovelli et al., 2011). Rows of marks indicates the

position of reaction times before the subject is given the right answer (crosses)

and after (circles).

were an average from the second presentation of the stimulus
after the correct associations were given at the end of the
session. RTs, therefore, were averaged over correct and incorrect
responses since incorrect feedbacks occur after true association
was given. As shown in Figure 1B, the evolution of RTs shows
a characteristic pattern: RTs are short at the beginning of
acquisition; they lengthen as errors accumulate when the decision
process from Step 2 to 4 slows down since subjects must engage
into cognitive processes to remember precious errors. Then, they
decrease again when the correct responses are learned.

2.2. Computational Models
To disentangle possible computational mechanisms underlying
the subjects behavioral adaptation properties during the task,
we simulated a series of different possible computational models
and compared the ability of these models to fit individual
subjects behavior on a trial-by-trial basis. All models are built
on the assumption that subjects’ behaviors rely on either
reinforcement learning (RL) mechanisms, working memory
(WM) mechanisms, or a contribution of both. In the latter
case, we tested different models with different computational
principles for the coordination of RL and WM.

In order to approximate the behavior, we use the discrete-time
stochastic control of Markov Decision processes. We define the
set of states s ∈ {Blue,Red,Green} for all possible color stimuli,
the set of actions a ∈ {Thumb, Index,Middle,Ring, Little} for all
the possible motor responses, and the set of possible outcomes
r ∈ {0, 1}. At each time step, the agent observes a given state
st and computes the probability of action p(at|st) from which
an action is sampled. Then, the generative model is updated
according to the outcome rt .

2.2.1. Habitual Strategy
We choose to model habitual behavior with a Q-Learning
(Watkins and Dayan, 1992), one of the standard “model-free”
RL algorithms. This algorithm is called “model-free” (Daw et al.,
2005; Samejima and Doya, 2007) in the sense that it learns
cached values associated to reactively selecting different actions
in different states of the world without trying to acquire an
internal model of the world which would have enabled to infer
the consequences of performing a given action in a given state.

The aim of the algorithm is to compute the quality of
each state-action couple, known as the optimal Q-function, by
evaluating a temporal-difference error δt (Sutton and Barto,
1998). Given a current state st , action at , and reward rt , the TD
error is equal to the difference between observed and predicted
rewards and can be used to update the Q-value function of the
couple (st, at) as in the following equation:

Q(st, at)← Q(st, at)+α
(

rt+γ max
a

Q(st+ 1, a)−Q(st, at)
)

(1)

Parameters α and γ are the learning rate and the discount
factor, respectively. α controls the speed of convergence of
the algorithm, whereas the discount factor γ determines the
importance of future rewards.
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Eventually, a probabilistic choice is made through a soft-max
activation function:

p(a|st) =
expβQ(st, a)

∑

a expβQ(st, a)
(2)

This equation converts Q-values into action probabilities, and an
inverse temperature parameter β controls the trade-off between
exploitation and exploration. To summarize, two properties are
inherent to this strategy: slow learning and fast decisions. Fast
in the sense that making a decision only requires to compare
a set of values associated to competing actions in a given state,
without searching in working-memory or inferring long-term
consequences of actions. This slow learning property directly
affects the accuracy of the action choice.

2.2.2. Deliberative Strategy
We propose a Bayesian Working Memory (BWM) model for
the goal-directed system. To summarize the main features of the
BWMmodel: it stores a limited number of explicit descriptions of
past trials. At the beginning of each block, the BWM is initialized
as an empty list and each element is added in a chronological
order. An element ti in memory contains the information
about one previous trial under the form of three probability
mass functions: p(s|ti) is the probability of having observed a
certain state, p(a|s, ti) is the probability of having performed a
certain action given a state, and p(r|a, s, ti) is the probability of
having observed an outcome given a state and an action. The
probability of having observed a transition is not represented
since the transition between stimuli is randomized. A parameter
N controls the maximum number of elements maintained and
the oldest elements are removed when the number of elements is
larger than this capacity N. One memory item is added after each
trial with the following rules:

p(s|t1) =
{

1 if s is last state
0 otherwise

}

(3)

p(a|s, t1) =
{

1 if a is last action
0 otherwise

}

(4)

p(r = 1|a, s, t1) =
{

1 if rt > 0
0 otherwise

}

(5)

After each trial, the memory list is updated by convolving a
uniform distribution U to each items p(s|ti), p(a|s, ti), p(r|a, s, ti)
to account for memory decay:

p(..|.., ti) = (1− ǫ) p(..|.., ti)+ ǫU (6)

The older a particular item has been stored in memory, the flatter
becomes its probability mass functions, i.e., the higher the loss
of information about this item. The noise quantity ǫ controls the
degradation of the working memory contents.

At the decision step of each trial, the probability of action
p(a|s, t0→i) is computed iteratively using Bayes rule. The term
t0→i represents the number of memory items processed and can

change from trial to trial. To compute the probability of action,
the first step is to compute a joint probability mass function:

p(s, a, r|t0→i) = p(s, a, r|t0→i-1) + p(s|ti)p(a|s, ti)p(r|a, s, ti)
(7)

We make the hypothesis of independence between successive
memory items, allowing them to be summed. The process of
decision relative to the rules of the task starts with:

p(a, r|st, t0→i) =
p(s, a, r|t0→i)

p(st)
(8)

A state st is presented to the agent with certainty. Therefore,
p(st) = 1 which allows to compute p(a, r|s, t0→i). Using Bayes
rule, this probability is then reduced to:

p(a|r, st, t0→i) =
p(a, r|st, t0→i)

∑

a p(a, r|st, t1→i)
(9)

In this task, there are only two possible outcomes r ∈ {0, 1},
and according to the rules of the task, only one action leads to a
positive reward and actions associated with negative reward must
be avoided. In the beginning of the task, only negative rewards
r = 0 have been received and untried fingers must be favored. On
the contrary, when the only possible action leading to a positive
reward has been received, the probability for this action in next
trials must be maximal. This reasoning is summarized in the next
equation:

Q(st, a) =
p(a|r = 1, st, t0→i)

p(a|r = 0, st, t0→i)
(10)

Contrary to the model-free system, we do not use a Soft-Max
equation for computing p(a|t0→i) but a simple normalization
process is used, which allows to avoid an additional temperature
parameter.

The index 0 → i represents the number of elements used
for computing p(s, a, r) (if t0, no memory items are processed
and the action is sampled from a uniform distribution). In
this decision process, only a subset of the available information
can be pertinent for the action choice. Stimuli are independent
and not all elements should be processed. If the right action
was performed on the previous trial, then the decision can rely
only on the first element in the working memory (encoding the
previous trial) and elements about wrong actions do not need to
be used. On the contrary, all memory elements about a certain
stimulus need to be processed when the agent is still searching
for the correct answer. We resolved this issue by measuring the
Shannon information entropy on action probabilities:

H = −
∑

a

(

p(a|t0→i)× log2 p(a|t0→i)
)

(11)

Thus, action selection is made when the level of entropy H is
lower than a given threshold θ . To understand the suitability of
entropy in this task, we can consider p(a|r = 1, st) and p(a|r =
0, st), which are two possible memory items of, respectively,
positive and negative rewards that occurred when an action j
has been performed on a previous trial. They are symmetrical
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since p(a = j|r = 1, st) = p(a = j|r = 0, st) (i.e., in two
parallel worlds, the agent recalls that action j is positive/negative
with the same probability). However, division in Equation (10)
is not commutative and one can observe that Q(st, a = j)r=1 >

Q(st, a = j)r=0.
When normalizing Q-values, p(a)r=0 is close to a uniform

probability distribution minus one action—retrieving such an
information from memory, thus, does not reduce much the
entropy—while p(a)r=1 is close to a Dirac function—which,
thus, drastically reduce entropy when retrieved from memory.
As trivial as it sounds, the gain of information is crucial
because H

(

p(a)r=1
)

≪ H
(

p(a)r=0
)

. An illustration of the gain of
information depending on the memory items processed is given
in Figure 2. In this figure, the entropy H is plotted against the
number of inferences when a particular set of memory items is
processed. This property of our model is specific to the task since
only one action leads to a positive reward for a given stimulus.
More precisely, this rule of entropy minimization triggering
decision is in mirror of the rules of the task. However, note
that this does not prevent our model from generalizing to more
statistical reward schedules. Of course, the parameter θ needs to
be carefully estimated—it will be optimized for each subject—
since it can force a decision to be made without certainty. In
some cases, no information gain can occur after the evaluation

FIGURE 2 | Theoretical example of the evolution of the entropy during

the decision process of the bayesian working memory model. The

agent is observing the current stimulus st. In the bottom row, the set of

memory items represents past trials in the chronological order. The first item

(i.e., the previous trial) represents a different stimulus. Thus, no information is

gained, the probability of action is uniform and the entropy H[p(a|st )] is equal

to the maximum entropy log2|A|. The second item is a negative recall (r = 0).

Processing this item modifies the probability of action by suppressing the

second action (see red box) and entropy decreases by only a small amount.

The fourth trial is a positive recall (r = 1). The entropy is largely decreased by

suppressing all the possible remaining actions(see green box). The threshold θ

is crossed and the agent considers that he has enough information to stop

searching in memory and to make a decision.

of elements from the working memory, and decision is made as a
consequence of absence of further items.

2.2.3. Simulated Reaction Times
In the introduction of the instrumental learning task, we
emphasized the importance of the evolution of reaction times
and their potential relation with the hypothesis of dual-learning
strategies. When designing the Bayesian Working Memory
model, we naturally drew a parallel between the observed
reaction times (supposed to reflect the subjects cognitive load)
and the number of memory items processed that dynamically
change from trial to trial depending on the gain of information.

In fact, the concept of evidence accumulation has already been
explored in various race models and can account for a large
variety of temporal observations (Reddi and Carpenter, 2000;
Carpenter et al., 2009). Another pertinent work is the tentative of
Norwich to unify laws of perception that predicts reaction time
in a stimulus detection task (Norwich, 2003). He proposed that
“as adaptation proceed, entropy (potential information) falls, and
information is gained.” From this statement, a general descriptive
model of reaction times (RT) for stimulus detection is derived.
Very simply, the minimum quantity of information necessary
to react can be quantified as a difference in entropy △H =
H(I, t0) − H(I, tr) with I the stimulus intensity and tr − t0 the
reaction time. To reduce entropy, the sensory receptors must be
sampled n times in order to gain information and this sampling
rate determines tr .

Following these ideas, we propose that the simulated reaction
times sRT on the model are dependent of the logarithm of the
number of processed items i plus the entropy computed from the
final probability of action:

sRT(trial) = (log2(i+ 1))σ +H(p(a|st)) (12)

σ is a free parameter controlling the proportion of the logarithm
to the entropy in sRT. In the case of habitual strategy, log2(i +
1) is null and vRT is equal to the entropy computed over the
probability of actions. In fact,H(p(a|st)) will slowly decrease with
the progress of habituation. We postulate that this variable can
account for the overall habituation toward the structure of the
task.

2.2.4. Models of Strategy Coordination
So far, we have described a classical Q-Learning algorithm as
habitual system and a new model of Bayesian Working Memory
as goal-directed system. The two above-listed single-system
models were meant to test the hypothesis that neither a Q-
Learning nor a WM strategy alone can fully explain human
behavioral adaptation performance in this task. In the following
parts, potential models for strategy coordination are discussed.
The summary of their relationship is presented in Figure 3 along
with a sketch of the BWM process.

2.2.5. VPI-based Selection
The first interaction model is a process of selection directly
adapted from Keramati et al. (2011). In this study, the effect
of outcome-sensitivity depending on the duration of training is
explained with a trade-off between speed and accuracy. The Value
of Perfect Information (i.e., VPI-based selection) is proportional
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FIGURE 3 | Relationship between models. The goal-directed and

habitual strategy are respectively the Bayesian Working Memory (BWM) and

the Q-Learning algorithm (QL). Between BWM and QL, the different models

for the strategies interaction are respectively VPI-based selection,

Entropy-based coordination or Weight-based mixture. In the right box, the

decision process of BWM is decomposed into three stages. The purpose of

the cycle is to reduce iteratively the entropy H computed over action

probabilities.

to the measure of uncertainty computed over the Q-values (see
Mathematical Methods) in the habitual system, which decreases
with training: with more uncertainty in the habitual system’s
action value distribution, the more information can be gained
through searches in working-memory. For each Q(st, a), the VPI
is evaluated and compared with an exponential moving average
reward rate R̄(st+1) ← (1 − σr)R̄(st) + σrrt . This variable
specifies a cost for a high-level cognition: if reward rate is high
and too much time is given to the goal-directed system, then
the agent gains less rewards than if a fast decision is made.
However, if uncertainty in the habitual system is too high, then
it is still worthwhile losing time using the goal-directed system
in order to make an appropriate decision. Finally, the following
rules determine which among the two systems should make the
decision on the next action to be performed by the agent. If
VPI(Q(st, a)) > R̄(st), then the best strategy for the agent is to use
the BWM, which provides accurate Q-values. If VPI(Q(st, a)) <

R̄(st), then the number of positive rewards obtained for a given
unit of time will increase if a fast decision is made from the QL
with low uncertainty.

2.2.6. Weight-based Mixture
The second interaction model that we tested is the weight-based
mixture model derived from Collins and Frank (2012). In this
study, the interaction is specifically between a working memory
model and QL. Despite the differences between their working
memory model and BWM—i.e., their model do not use an
adaptive number of search steps performed in working-memory,
but rather used a fixed number of state, which is a parameter
optimized for each subject—we integrated their main concepts:
the decision results from a weighted sum of the output of each
system, where the weights depends on the posterior likelihood of
the systems:

p(a|st) = (1− w(t, st))p(a|st)QL + w(t, st)p(a|st)BWM (13)

The process of w(t, st) evaluation, which determines the relative
reliability of BWM over QL, is detailed in the supplementary

section. Similar to VPI-based selection, here systems are
separated and provide action probability distributions
independently.

2.2.7. Entropy-based Coordination
In addition to these two models adapted from previous studies,
we propose a third interaction model called entropy-based
coordination, which explores the perspective of close interaction
between strategies. The first point is to differentiate between
the two measures of entropy associated with each individual
strategy. HQL is the entropy of information calculated upon the
probability of action from the Q-Learning. This value decreases
after each trial as the learning process progressively increases
the difference between the value of the best action and other
action values. It provides an information about the progression
in the learning task. In contrast, HBWM is evaluated within the
working memory decision process. At the beginning of each trial,
HBWM is equal to the maximum value of information entropy
Hmax = log2(|Action|). As elements in working memory are
processed,HBWM will decrease toward lower values (as illustrated
in Figure 2). To summarize, HQL evolves between trials, whereas
HBWM evolves within a trial.

The second point is the interplay between the strategies.
Within workingmemory, we propose to replace the deterministic
choice between deciding and retrieving memory items (threshold
θ) with a binary probabilistic choice. Instead of comparing
HBWM with θ , one sub-action from the set {deciding, retrieving}
is sampled with the probabilities p(deciding|t0→i,H

BWM,HQL)
and p(retrieving|t0→i,H

BWM,HQL) = 1 − p(deciding
|t0→i,H

BWM,HQL). To sample one of the two possible
sub-actions {deciding, retrieving} after each memory item
process, these probabilities are computed with the following
logistic equation:

p(Deciding|t0→i,H
BWM,HQL)

= 1

1+ λ1(n− i) exp−λ2(2Hmax−HBWM
0→i −HQL)

(14)
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with n ≤ N, the number of elements stored in working memory
at a given trial, i the number of items processed, and λi, the
decision gain. If the information about past trials is contained
in working memory (i.e., n increases), it must be processed until
HBWM is low enough. Therefore, the increase of n favors the
sub-action retrieving over the sub-action deciding. The variable
n is indispensable in a goal-directed process since we want
the agent to exploit as much available information as possible
in order to choose the most accurate action. Nevertheless, the
difference n − i behaves as a dynamical cost inside a trial that
increases p(deciding) as memory items are processed. Indeed,
decisionmust be made within a given time range. The probability
p(deciding) is computed every time amemory item is recalled and
enables to choose between searching for more information with
probability 1 − p(Deciding) or engaging the decision process to
sample the action. If the decision process is engaged, Q-values
from each strategy (QL and BWM) are simply summed as in the
following equation:

Q(st, a) = Q(st, a)
BWM
0→i + Q(st, a)

QL (15)

At last, action probabilities are computed within a softmax
function (see Equation 2) with an inverse temperature βfinal

different from the temperature β used to normalize Q-values
from the Q-Learning system. Except for the usual trade-off
between exploitation and exploration, the softmax equation is
important because of the translational symmetry that we can take
advantage of. In fact, the final Q-values are always the sum of
both systems. In the beginning of the task, the working memory
can have extracted a lot of information inside the Q-values.
And within the softmax function, the probabilities of actions are
not disturbed by adding uniform Q-values from an ignorant Q-
Learning. To understand this aspect, and in general the model, it
is meaningful to illustrate three phases of the instrumental task.

1. In the first trial, working memory is an empty list, QL and
BWM provide uniform Q-values and HQL = HBWM = Hmax.
Therefore, p(deciding) = 1 and the decision is necessarily
made. In fact, the agent starts the task without any clues.

2. In the acquisition phase, HQL is close to Hmax since Q-
Learning is a slow-learning algorithm. After a few trials with
negative outcomes, the number n of memory items increases
in the BWM system. By combining those factors, p(deciding)
is low at the onset of a trial and the process of retrieving in the
BWM will be favored against a stimulus-based response from
the QL system.

3. The consolidation phase starts when correct actions have
been found. In such a case, HQL is still gradually decreasing
while HBWM decreases within a few retrieval. Indeed,
memory items start representing correct trials and the
asymmetry of Q(st, a)

BWM between correct actions and
incorrect actions is directly influencing p(deciding) (the
entropy falls down instantly only when remembering correct
actions). Nevertheless, memory items about correct trials are
not the only influence on fast memory processing. The process
of engramming action values within Q-Learning algorithm
decreases HQL toward zero. Consequently, p(Decision) is

higher at the onset of a trial and decision is made more and
more quickly during late trials of the task.

To summarize, the Entropy-based coordination balances the
mechanism of BWM based on the uncertainty of the goal-
directed and habitual strategies.

2.3. Methods for Model Comparisons
So far, we have presented five models (Q-Learning: QL
only, Bayesian working memory: BWM only, Entropy-based
coordination of QL and BWM , VPI-based selection between
QL and BWM and Weight-based mixture of QL and BWM)
that can choose actions and predict sRT following Equation (12).
The best generative model is defined by his capacity to replicate
subjects’ trial-by-trial of action choices and reaction times. Since
we have two objectives to fulfill through optimization of model
parameters, this problem of model fitting is transposed into a
multi-objective optimization framework that we choose to solve
using the SFERES tool (Mouret and Doncieux, 2010). Using
the standard evolutionary algorithm NSGA-2, an individual is
defined as a vector of parameters θmodel for one model. Table 1
summarizes each model’s free parameters The evolutionary
algorithm consists in starting with a group of individuals with
randomly initialized parameters constituting the first generation,
and then iteratively selecting the best individuals generation
after generation, in order to convergence on a set of parameter
sets which best fit subjects’ choices and reaction times. The
NSGA-2 algorithm also includes in its fitness function a measure
of diversity within the population, which has been shown to
enable better convergence on the optimum for models with large
number of free parameters (Mouret and Doncieux, 2010).

At each generation, the best individuals are selected
by generating the corresponding parameterized model and

TABLE 1 | Parameters from single-learning strategies are also present in

dual-learning strategies excepts for θ , which disappears in entropy-based

coordination and α which disappears in VPI-based selection.

Model Symbol Range Description

Q-L only α 0 < α < 1 Learning rate

β 0 < β < 100 Softmax temperature

BWM only N 1 < N < 10 Memory size

θ 0 < θ < log|A| Fixed entropy threshold

ǫ 0 < ǫ < 0.1 Memory items decay

VPI-based

selection

η 0.00001 < η < 0.001 Covariance initialization

σr 0 < σr < 1 Reward rate update

Weight-based

mixture

w0 0 < w0 < 1 Initial weight

Entropy-based

coordination

λ1, λ2 0.00001 < λi < 1000 Sigmoide parameters

βfinal 0 < βfinal < 100 Softmax temperature

σ 0 < σ < 20 Simulated RT
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evaluating its capacity to maximize three fitness functions.
Briefly, the first fitness function is the maximum likelihood that
the model chooses the same action as the subjects (Daw et al.,
2011). The second fitness function is a negative least-square error
between mean RTs and sRTs averaged over representative steps
as shown in Figure 1B. The third fitness function is a measure
of diversity (i.e., distance) between the current parameter set and
other parameter sets found in the population. A population of
parameters is optimized independently for each subject and each
model. After optimization, the evolutionary algorithm proposes
a set of solutions A (i.e., parameters) that needs to maximize
objective functions fi :A→ R, i = 1, ..., n (in our case, n = 2).We
note f = (f1, ..., fn) the vector of objective functions. Given two
solutions a, b ∈ A, the solution a dominates b if fi(a) ≥ fi(b), i =
1, ..., n and there exists i such that fi(a) > fi(b). In other words,
we keep only the solutions that are strictly better for, at least,
one objective and this set of solutions constitutes the Pareto front
(Deb et al., 2000). Thus, multiple solutions can exist and some
compromises must be realized. To determine the best model
for each subject, the first step is to combine the pareto front of
the different putative models. The population of best individuals
from each model and subject is mixed to select a new population
of best individuals for each subject. We refer to aggregation as the
process of combining the numerical coordinates {x1, x2}pareto of
a solution into a single one to construct a relation of preferences
between solutions. Here the aim to verify the quality of sets of
solutions by selecting only one solution. A large set of aggregation
functions exists in the corresponding literature (Emrouznejad
and Marra, 2014) but the aim of the work is not to compare nor
study them. The aggregation functions deal with the compromise
of losing a quality of fit in one dimension while gaining on the
other. We tested three classical aggregation functions (namely
Chebyshev, OWA, and Distance aggregation functions) and they
generate probabilities of correct responses that were equivalent.
In fact, most of the sets of solutions selected by aggregation
functions overlap. We chose to focus on the results of one that
we termed as Chebyshev aggregation function. Themathematical
details of this function is provided in the mathematical methods
section at the end of the paper.

We performed two versions of this optimization process:
one on choice only (deactivating the second fitness function
on reaction times) and one on both choice and reactions times
(keeping all fitness functions active).

3. Results

3.1. Fitting Results for Action Choices Only
In a first part, we consider the fitting results for action
choices only. The optimization process is made for each subject
and each model, and returns, amongst others solutions, the
solution θmax

model
, which maximizes the likelihood function L̂ =

∑

P(choice|model, θmodel).
In this first straightforward approach, we assign to each

subject the best model by comparing raw likelihoods. The goal
is to see whether we can reproduce with our data Collins and
Frank’s observation (Collins and Frank, 2012) that the BIC
criterion over penalizes the complexity of dual-system models,

whereas the latter’s raw likelihoods are better than single-systems’
ones. We will next show model comparisons including a penalty
term for the number of free parameters with the BIC criterion.
We found that the entropy-based coordination model is the best
model for eight subjects, whereas the Weight-based mixture best
captures six subjects (Figure 4A).

To verify the ability of each winning model to replicate the
behavioral results, we then tested each optimally parameterized
model: each differently parameterized model is making its own
choices different from those of the subject (as if each model
was freely performing the task like the subjects did). Similar
to Figure 1, we computed the probability of correct responses
(PCR) for each stimulus averaged over all fourteen specifically
parameterized models. The performance of the models is shown
in Figure 4Bwith the corresponding human performances in the
background.

While the probability of correct responses is mostly
indistinguishable for S1 and S3 (respectively, the blue and
red curves), we observed a large difference for S4 (the green
curve). To compare subjects and simulated learning curves, we
performed a Pearson χ2 test for each stimulus and each trial upon
percentages of correct responses. We found nine significantly
different trials between subjects and models performances. As
it can be observed in Figure 4B, six discordant trials are for S4:
trials 5, 6, 7, 8, 10, and 12. The largest difference is observed for
the fifth presentation of S4 (Pearson χ2 test, 1 df, t = 15.52, P
< 0.001). The simulated models are making more repetive errors
than the subjects when searching for the correct answer and thus
do not reach the average performances of the subjects during the
consolidation phase.

Usually, the process of model selection is made by including
a penalty term for model complexity (Daw, 2011; Khamassi
et al., 2015). The most widely used is the Bayesian Information
Criterion (Schwarz, 1978) which is an asymptotic approximation
of a Bayesian posterior probability. The penaly term is computed
according to the number of free parameters of each model.
In our study, the simplest model is the Q-Learning (three
free parameters) and the most complex model is the Entropy-
based coordination (seven free parameters); see Table 1. When
applying the BIC criterion, we find that the results change
drastically, now favoring simpler models. The Q-Learning is
assigned to nine subjects and the Bayesian Working Memory to
four subjects. Only the Entropy-based coordination model for
subject three survives the penalization process (Figure 4C) Thus,
as in a previous study testing the relative contribution of RL
and working memory in human subjects performances (Collins
and Frank, 2012), the use of a penalty term for complexity
favors single-learning systems over dual-learning systems. The
results from testing the set of best models selected with BIC
is shown in Figure 4D. From the statistical test, we found that
trial 5 is significantly different (Pearson χ2 test, 1 df, t = 8.44,
p < 0.01).

In the next analysis phase, we will see that fitting models
on both choices and reaction times (which is one of the main
novelties of this work) drastically reduce the ability of single-
system models to fit subjects’ behavioral data compared with
dual-systems.
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A B

C D

FIGURE 4 | Choice only optimization results and the probability of

correct responses generated from the set of best models selected

with a maximum likelihood criterion (A,B) and a Bayesian

Information Criterion (C,D). (A) Without correction of the likelihood

function, the set of best models is composed of eight Entropy-based

coordinations and six weight-based mixtures. The bar of the best model

is circled with a black line for each subject. (C) Applying the BIC, nine

Q-Learning models, four Bayesian Working Memory models and one

entropy-based coordination model are selected as best models. During

free simulation of the latter optimized models, we can observe that the

quality of the fit is slightly reduced for the raw likelihood (B) compared to

the BIC (D).

A B

FIGURE 5 | Set of best solutions for each model for subject 7

obtained with the multi-objective parameter optimization on

choices and reaction times. One point represents one parametrization

for one model and one subject evaluated on the fit to RT and the fit to

choices. (A) At the end of the optimization process, the pareto front for

one subject is constructed by conserving only solutions, regardless of the

model, that can not be improved in one dimension without being

worsened in the other. The best solutions are located in the top-right

corner of each subfigure. (B) The top right corner of pareto fronts is

enlarged to show the relative position of each model. The black triangle

is the position of the selected solution which is the best compromise

between the quality of fit to choice and the quality of fit to RT (see

Section 5). For this subject, the best solution is given by the

Entropy-based coordination model since it increases largely the quality of

fit to RT compared to other models. This model selection process is

made for each subjects.
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3.2. The Pareto Fronts of the Fit on Choices and
Reaction Times
We next performed a new parameter optimization for each
model, this time with the multi-objective of fitting both choices
and reaction times. The Pareto fronts of all models for one subject
(Subject #7) is shown in Figure 5. Each point on the Pareto front
represents one parametrization for one model and one subject,
which “dominates” (in the Pareto sense) all suboptimal parameter
sets and which is itself not dominated by any other parameter
set. The solutions for the same model are in the same color
and connected through one line. Maximizing the fit on both
choices and reaction times can graphically be interpreted as the
population of solutions that forms the Pareto fronts to move
toward the optimal solution located in the upper right corner of
the Figure 5A.

From the size and positions of the Pareto fronts, we can
already observe a diversity of solutions. For instance, the Q-
Learning model shows a very bad quality of fit to the reaction
times compared to other models. In Figure 5B, a zoom is made
to the corner of the Pareto fronts. Starting from the best fit to
choice in the x-axis, the three dual-learning systems are mostly
equivalent. As one climb the Pareto fronts, one progressively
looses the quality of fit to choice while improving the quality
of fit to RT. At some point, a dissociation between models
is observed since the entropy-based coordination is climbing
higher than the two other models. For this subject, the entropy-
based coordination gives a better fit to RT compared to other
models. Therefore, selecting a solution within the Pareto front
brings the question of the acceptable amount of fit to choice we
can lose to obtain a better fit of RT.

In order to perform tests, we select one solution for each
subjects from this population of solutions containing several
models. In the example given in Figure 5A, the pool of
possible solutions only contains parameterizations of dual-
learning systems (Entropy-based coordination, Weight-based
mixture, and VPI-based selection) and excludes single-learning
systems (Q-Learning and Bayesian Working Memory). In
other words, the front of single learning strategies is fully
dominated by dual-learning strategies, and the selection of
dominating fronts is only composed of solutions from dual-
learning strategies.

The process of selecting the best solution within a Pareto
front is a complex issue in the field of multiple-criteria
decision-making (Zitzler and Thiele, 1999). We follow previous
proposals to solve this issue by using the Chebyshev aggregation
function, the latter being the process of combining the numerical
coordinates {x1, x2}pareto of a solution into a single one to
construct a relation of preferences between solutions (Wierzbicki,
1986). In Figure 5, the position of the solution selected with the
Chebyshev aggregation function for subject 7 is illustrated with a
black triangle.

This aggregation process gave a set of best models for
all subjects composed of nine Entropy-based coordinations,
three weight-based mixtures, and two VPI-based selections.
While different from the first set of models is selected in the
action choices, the supremacy of dual-learning systems is clearly
established.

To verify the robustness of our methods, we perform a leave-
one-out method in order to validate that each subject is assigned
the best model. One bloc out of four is systematically removed
from the training set. The optimization is made upon choices
and reaction times for all subjects with only three blocs. The
same aggregation function is applied in order to compare the best
model. Results are shown in Table 2. The second to fifth columns
are the results with one bloc left outside of the optimization. The
last column are the original results. Bold cells indicate discordand
results. Only three subjects (1, 7, and 9) give, in a majority of
test, a different result. For six subjects out of 14, the results
are the same (3, 4, 10, 11, 13, and 14). In addition, the best
model is the same in three test for three subjects (2, 5, and
6). Overall, the percentage of errors is 30% (17/56). Besides,
the most striking observation is the supremacy of dual-strategy
models that appears in all cases. The leave-one-out test asserts the
hypothesis that a combination of strategy is required to explain
the results.

3.3. Comparing the Fit of Dual- and Single-
Learning Systems to Choices and Reaction
Times
In the following part, each parameterized model is tested with
the same stimulus order than the related subject. In order to
appreciate the quality of fit of the set of best models and to
disentangle the contribution of each strategy, the Tchebytchev
aggregation function is also applied to each individual strategy
to select a set of solutions for the Q-Learning and a set of
solutions for the Bayesian Working Memory. Concretely, we
simulate an average behavior over choices and reactions times
for the set of best Q-Learning parameterizations, the set of best
BayesianWorkingMemory parameterizations, and the set of best
models.

TABLE 2 | Results from leave-one-out validation.

Subject -Bloc 1 -Bloc 2 -Bloc 3 -Bloc 4 All blocs

1 E-Coord W-Mix E-Coord E-Coord W-Mix

2 VPI-select E-Coord E-Coord E-Coord E-Coord

3 E-Coord E-Coord E-Coord E-Coord E-Coord

4 E-Coord E-Coord E-Coord E-Coord E-Coord

5 W-Mix E-Coord E-Coord E-Coord E-Coord

6 E-Coord E-Coord E-Coord W-Mix E-Coord

7 E-Coord VPI-select VPI-select W-Mix W-Mix

8 W-Mix VPI-select VPI-select E-Coord VPI-select

9 VPI-select VPI-select VPI-select VPI-select W-Mix

10 VPI-select VPI-select VPI-select VPI-select VPI-select

11 E-Coord E-Coord E-Coord E-Coord E-Coord

12 E-Coord W-Mix E-Coord W-Mix E-Coord

13 E-Coord E-Coord E-Coord E-Coord E-Coord

14 E-Coord E-Coord E-Coord E-Coord E-Coord

Each bloc is removed systematically for optimization. Discordant models compared

with optimization with all blocs are shown in bold. (Q-L, Q-Learning; BWM, Bayesian

Working Memory; VPI-select, VPI-based selection; W-Mix, Weight-based mixture; E-

Coord, Entropy-based coordination).
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The behavioral learning curves from the simulation of
fourteen parameterized models are shown in Figure 6 for single
strategies (Figure 6A for QL and Figure 6B for BWM) and
for the best models (Figure 6C). Each generated behavior is
superposed with the human learning curves in dashed lines. For
each test, the probability of correct responses (PCR) is computed
over the sequence of binary outcomes for each stimulus as in
Figures 1B, 4.

For the set of best models and like the best models previously
selected with BIC on choices, only the fifth trial of S4 showed
a significant difference in the probability of correct responses
between the simulated and subjects’ responses (Pearson χ2 test,
T = 5.57, p < 0.05). In none of the other 44 cases, significant
difference between models and subjects was found (Pearson χ2

test, T < 2.16, p > 0.14). Concerning the set of best Q-Learning
models, 18 trials over 36 were significantly different (Pearson χ2

test, T > 4.04, p < 0.05). Most of these discordant trials were
found in the beginning of the task (Figure 6A). For the set of best
Bayesian Working Memory models, 22 trials were significantly
different from subjects’ choices (Pearson χ2 test, T > 3.87, p <

0.05) as shown in Figure 6B.
Concerning S1, only the BWM models and the best models

manage to reproduce subjects’ performances at the first correct
response at the second trial. On average, the performance of

the QL model was lower (PCRQ−L
blue, second trial

= 98.6%). At
the second trial, the penalty upon the probability of the action
chosen in the first trial is not large enough in these modes to
prevent from being selected in the second trial. This is because
the Q-Learning model is a slow learning algorithm. In the
following trials, the performance of Q-Learning models falls to
about 60% and then slowly increases back. For the Bayesian
Working Memory models, the performance falls to 80% and
remains constant for the following trials until the end of the
block, unlike subjects’ performances that continue to gradually
increase until the end. Except for a slightly drop of performances
at the first trial, the set of best models provides performances

that are not statistically different from the subjects for
stimulus S1.

For the remaining stimuli, the subjects’ average performances
are captured by the set of best models. The models’ probabilities
of correct response at the fifth trial for S3 are lower than that of
the subjects. Since at this trial only one possible action remains
(the four others having previously been associated to errors),
this means that the dual-learning models are making slightly
more repetitive errors than the subjects. For the Q-Learning
model, the performances for S3 and S4 are below subjects’
performances except for the last trials. Such an observation
illustrates the slow convergence property of the habitual strategy.
As stated above, this also contrasts with the goal-directed
strategy whose performances for all stimuli converge to a steady
probability of correct responses that does not evolve along
trials.

The second behavioral measurement from the experiment
is the reaction time (RT). Reaction time results are shown
in Figure 7 extracted from the same generated behavior than
Figure 6 (i.e., the same set of parameters for each model). In
this figure, we applied two consecutive processes: rescaling and
reordering in order to compare and appreciate the evolution of
mean reaction times between model simulations and subjects’
data. Rescaling is necessary since we compare a distribution
of reaction times in seconds with a distribution of simulated
reaction times in arbitrary units. We choose to standardize each
distribution according to the respective median and interquartile
range. The process of ordering is the same than in Figure 1B

and applied to the simulated reaction times (sRTs) generated
by the model. Once again, subjects and simulated behaviors are
displayed on top of each other in Figure 7 (gray dashed line for
RTs and black full line for sRTs).

For the generated behavior of the Q-Learning, we observe
that the sRTs are only decreasing. In fact, the sRTs of Q-L are
computed as the entropy of the final probability of actions (see
Section 5). In other words, the habitual strategy is becoming

A B C

FIGURE 6 | The probability of correct responses (PCR) from the

habitual strategy (Q-Learning), the goal-directed strategy (Bayesian

Working Memory) and the best models according to the performed

multi-objective optimization. Each model is tested with the same block of

stimuli than the corresponding subjects and the modeling results are

superposed with subjects behavioral results (dashed lines). The blue, red and

green curves (one per stimulus) represents the probability of correct

response vs. the number of stimulus presentations computed on the

sequence of outcomes (1 for correct and 0 for incorrect). (A) is the habitual

strategy only. (B) is the goal-directed strategy only. (C) is the set of best

models when mixing Pareto fronts as shown in Figure 5. In this case, the set

of best models is composed of nine entropy-based coordinations, three

weight-based mixtures and two VPI-based selections, i.e., only dual-learning

strategies.
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A B C

FIGURE 7 | Reaction times from the habitual strategy (Q-Learning),

the goal-directed strategy (Bayesian Working Memory) and the set

of best models according to the performed multi-objective

optimization. The distribution of RTs from a model or a subject are

standardized according to the respective median and interquartile range.

To represents the evolution of mean reaction times, the average is

computed according to representative steps. The acquisition phase

ranges from step 1 to 5 and represents the required mistakes for each

stimulus and the first correct response. The consolidation phase starts at

step 6 and starts after the correct response is given to the subject (or

model). For each figure, the black line is the simulated reaction times and

the gray lines is the human reaction times. (A) is the habitual strategy.

The inserted figure shows the full curve. (B) is the goal-directed strategy.

(C) is the set of best models when mixing Pareto fronts as shown in

Figure 5. This behavior is extracted from the same simulation than the

one shown in Figure 6.

faster in responding along learning, which differs from subjects’
behaviors. This result recalls the previous observation that the
QL algorithm’s “fit to RT” as illustrated with the Pareto fronts
of subject 7 (Figure 5) was not the best capture on reaction
times behavior. The Bayesian Working Memory model provides
a richer behavior since we observe an increase in reaction times
from representative steps one to five followed by a decrease
to an almost constant but slightly fluctuating value in the
following steps. Despite the fact that this up-and-down evolution
is also present in subjects’ RTs, we can observe a discordance
between the two distributions. With a Mann–WhitneyU-test, we
found seven significatively different representative steps (Mann–
Whitney U-test, p < 0.05). At last, the evolution of subjects’ RTs
is replicated in a better way by the set of best models with six
significantly different representative steps (Mann–Whitney U-
test, p < 0.05). During the consolidation phase, sRTs gradually
decrease due to the contribution of the Q-Learning model, more
similar to the evolution of subjects’ RTs (Figure 7C) Nevertheless,
the large difference is still observed for the fifth step.

The quality of the fit to RT on a subject-by-subject basis can be
apprehended in Figure 8. For each subject, the evolution of mean
RTs over representative steps is plotted against the simulated
mean RTs. In others words, the global mean RTs shown in
Figure 7 can be separated into individual’s mean RTs as shown
in Figure 8. Looking at the evolution of RTs for each subjects,
we can observe the unstable and noisy measurements that
constitute RTs, resulting in somewhat substantial inter-individual
differences. Yet, the sRTs generated by the set of best models are
not standardized variables that match only the average RTs over
all subjects since optimization has been performed separately for
each subject. It, thus, manages to follow the global evolution of
individual RTs. The figure also shows that despite inter-individual
differences, some of the main tendencies of the model—i.e.,
increase in RT during the first trial; progressive decrease during
late trials—are observed in the majority of subjects.

3.4. Relative Contribution in a Dual Learning
Systems
Since the set of best models is only composed of dual-learning
systems, it allows us to explore the simulated relative contribution
of the goal-directed and habitual strategies, which best accounts
for each subject’s behavior in this task. The results are shown
in Figure 9 averaged over subjects with the same best models.
For the weight-based mixture, the relative contribution is
embodied into the weight w(t, st) that evolves through trials.
Moreover, the VPI-based selection with the speed-accuracy
trade-off is straightforward. However, the nature of the entropy-
based coordination makes contribution from each strategy more
complex to evaluate. Therefore, we rely on the technique of
“lesioning” one part of a cognitive system to observe the resulting
activity that we measure through entropy. At each time step
of behavior simulation, the entropy H is evaluated from the
probability of action with both BWM andQL, and the probability
of action without the contribution of Q-values from either BWM
and QL. This lesion study is shown in Figures 9A–C for each
model of dual-learning strategies.

The most striking observation is that only H(entropy-based
coordination) is lower than H(entropy-based coordination with
BWM only) and H(entropy-based coordination with Q-L only).
In other words, the quantity of information contained in
the probability of action when combining strategies is greater
than one strategy alone. This is different from weight-based
mixture and VPI-based selection for which H(dual-strategy) is
bounded between the entropy of the lesioned models. Therefore,
the entropy-based coordination is the only model to display
emerging gain of information when combining the habitual and
the goal-directed strategy. We also observed that the weight-
based mixture shows a clear preference for the habitual strategy
with a small weight that only decreases (i.e., thus favoring Q-
L, Figure 9D). The weight decreases monotonically, meaning
that the contribution of BWM decreases through time, whereas
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FIGURE 8 | Fit on individual subjects’ reaction times displayed over

representative steps. In each sub-figure, the black full line is the mean

reaction time for one subject averaged over representative steps. To compare

with the simulated reaction time, each distribution of RTs is standardized

according to the respective median and interquartile range. Over the

subjects’ RTs, the simulated RT is plotted with a color indicating which type

of model was chosen. In this case, only dual-learning systems have been

selected as best models to explain the evolution of mean reaction times.

the contribution of QL increases. However, the weight is small,
meaning that the contribution of QL is always higher than that
of BWM. This is also observed in Figure 9B with H(Weight-
based mixture) closer to H(weight-based mixture with Q-L
only). Nevertheless, a contribution of BWM is necessary from
Step 1 to 5 in order to solve the task. Finally, the VPI-based
selection model displays a coherent behavior with the hypothesis
that it incarnates, i.e., speed-accuracy trade off with the goal-
directed strategy in the beginning of the task and the habitual
strategy at the end of the task. The fact that the VPI is higher
than the reward rate during the acquisition trials favors BWM

[i.e., H(VPI-based selection) is equal to H(VPI-based selection

with BWM only)]. At the fifth and sixth steps, the VPI falls
down, which corresponds to the end of the acquisition phase.

The agent have received all the correct answers and the VPI
decreases abruptly. Still, the VPI is higher than the reward
rate, and a switch of strategy is observed around trial 8 as the

reward rate is higher than the VPI. In Figure 9C, H(VPI-based
selection) slowly approaches H(VPI-based selection with Q-L
only).

4. Discussion

In this study, we fitted the behavioral results from the

instrumental learning task designed by Brovelli et al. (2008,
2011) to study the interactions of the goal-directed and

habitual systems. We proposed a new model of Bayesian

Working Memory as a goal-directed strategy. We also

proposed entropy-based coordination as a new model of
coupling between goal-directed and habitual strategies (Q-

Learning algorithm). To compare with the corresponding
literature, we adapted models of strategy interaction as
Weight-based mixture from Collins and Frank (2012) and
VPI-based selection from Keramati et al. (2011). To optimize

free parameters of each best possible model (i.e., single
learning strategies or dual-learning strategies), we used the
multi-objective evolutionary algorithm NSGA-2 (Mouret and
Doncieux, 2010) applied to each subject’s behavior measured
as choice and reaction time. In addition, we used a diversity
function to ensure the convergence of the optimization
process.
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A B C

D E

FIGURE 9 | Average contribution at each representative steps of the

goal-directed and habitual strategy for each model from the set of

best model. (A–C) For each model, the contribution is evaluated by

removing Q-values from one strategy and comparing the resulting entropy H

of probability of action. The green triangle line is the final entropy from the

dual-strategy with BWM only. The yellow star line is the final entropy from the

dual-strategy with Q-L only. Also plotted with circles is the final entropy of the

full model (i.e., BWM+Q-L). (D) The weight from the Weight-based mixture

model that shows the reliability of BWM over QL. (E) The speed-accuracy

trade-off of the VPI-based selection shows a switch of strategy around trial 8.

In the first step, we performed optimization upon choices
only and the raw likelihood favored dual-learning strategies.
Nevertheless, we found that applying a complexity penalty upon
likelihood score (Schwarz, 1978) drastically changed the result
of the optimization. The single learning strategies, with a fewer
number of parameters, were assigned as best models to explain
choices in this case.

In the second step, we constrained the evolutionary algorithm
to minimize, along with the likelihood of the choices, the least-
square error between subjects’ average reaction times andmodels’
simulated reaction times. Selecting solutions from subjects’
Pareto fronts gave a set of only dual-learning strategies as
best models to capture the full behavioral observations of the
instrumental learning task.

The set of best dual-learning strategies is composed of nine
entropy-based coordinations, three weight-based mixtures, and
two VPI-based selections. Despite the fact that the entropy-
based coordination is assigned to more subjects than the two
other models, we have not found a clear supremacy of one
dual-system model over the others. Each model of dual-learning
strategy provides a particular mode of interaction that explains
a matching subject. On the one hand, this accounts for part
of inter-individual differences; on the other hand, this absence
of supremacy raises a question about the possibility of a
more general model to approximate each dual-system model
depending on the subject. Through the literature, all proposed
models can be reduced to three possible modes of interaction that
we have compared (i.e., selection, coordination, and mixture of
strategies). In Chavarriaga et al. (2005); Daw et al. (2005); Dollé
et al. (2010); Keramati et al. (2011); Pezzulo et al. (2013); Renaudo
et al. (2014), the mode of interaction is selection. In Wiering
and van Hasselt (2008); Gläscher et al. (2010); Collins and Frank

(2012); Lesaint et al. (2014), the mode of interaction is mixture
based on weighting. Coordination as a model of interaction is
harder to define since single learning strategies can be implicit.
An example is provided in Dezfouli and Balleine (2012) where
action sequences (i.e., habitual strategy) are a full part of the
goal-directed strategy. To our knowledge, no studies have ever
tried to systematically compare all the different approaches of
coordination of strategies.

We demonstrated the limitations upon fitting only choices
while not taking reaction times into account with our specific
dataset. Such an issue may reveal itself as important in the future
in other datasets from decision-making studies. As illustrated
here, a diversity of solutions exists when trying to fit both
choices and reaction times, i.e., when transposing the problem
of finding the best parameters to a multi-objective framework.
These observations might also call for a reinterpretation of
some previous results if reaction times were to be included.
In fact, a notable example of multi-objective optimization in a
neuroscientific computational model is provided in Liénard and
Girard (2014). The authors demonstrated the existence of a set
of good solutions for a basal ganglia model that would satisfy
the corresponding biological observations. The counterpart of
the multi-objective optimization is the selection of one solution
among a set of possible solutions. Besides, the quality of the
compromises depends largely on the shape of the Pareto fronts.
For instance, the compromises within a right-angled shape can
easily be found in the corner. On the contrary, the compromises
are tricky in a flat Pareto front. In fact, information about a model
can be gained from the shape of a Pareto front (Doncieux et al.,
2015). To overcome these limitations, one solution would be to
confront each model with several decision-making tasks to build
systematic comparisons.
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For years, the study of reward-based learning has mostly
been concentrated upon model-free learning with great successes
(Schultz et al., 1997; O’Doherty et al., 2004). Yet, the
influence of higher level cognitive systems in such instrumental
learning paradigms has never been neglected but needs to be
computationally explained (Miller and Cohen, 2001; Donoso
et al., 2014). In this work, the combination of reinforcement
learning and working memory proved to be more efficient
to capture the behavioral observations from an instrumental
learning task. In other words, neither model-free learning alone
nor working memory alone are sufficient as shown in Collins
and Frank (2012). Complex cognitive systems require the ground
provided by reinforcement learning algorithms. This hypothesis
is conforted in this work by the approximation of reaction times
with a dual-learning model. The same kind of deterministic
task is used in monkey studies (Quilodran et al., 2008). The
focus there has been made on reinforcement learning but a
contribution of workingmemory is not to be excluded (Khamassi
et al., 2015). More work is required to investigate further whether
humans and non-human primates rely on a similar combination
of RL and WM processes in this type of task.

Most results about reinforcement learning come from
simplified and idealized paradigms. In this study, the
instrumental learning task is composed of only three states
and five actions. The low dimensionality of this environment
allows a simple model of Bayesian Working Memory to work
properly. Yet, it is not the goal of the analysis proposed here
to capture all the phenomenological observations associated
with working memory (Baddeley, 1992). Besides, the proposed
model of working memory embodies a process of decision that
depends on the rules of the task (i.e., only one action is associated
with a correct answer). While the proposed model of Bayesian
Working Memory lacks generalization, the three processes of
combination that we compared can be tested on more complex
and realistic tasks. In the robotic world, the number of states
and actions is definitely larger than in the computational
neuroscience world. Studies have already tried to adapt dual-
learning strategy (Caluwaerts et al., 2012; Jauffret et al., 2013;
Renaudo et al., 2014, 2015) and some hypotheses appear to be
inadequate. For instance, the assumption that the model-based
system has perfect information for action values (Keramati
et al., 2011) does not make sense in a rich, fast, and dynamic
world. The number of states or transitions is too important and
complex. A tree-search does not have enough time to compute
the values of all the possibilities even in the beginning of a
task. Further inter-disciplinary works and exchanges between
computational neuroscience and robotics could be fruitful in
helping understand how humans, animals, and robots can
efficiently coordinate multiple learning and decision-making
systems to display robust efficient adaptive behaviors.

5. Materials and Methods

5.1. Ethics Statement
Fourteen healthy subjects participated in the study (all were
right handed and seven were females; average age 26 years old).
All participants gave written informed consent according to

established institutional guidelines and they received monetary
compensation (45 euros) for their participation. The project
has been approved by the Comité Consultatif de Protection des
Personnes dans la Recherche Biomédicale de Marseille 1 (50).

5.2. VPI-based Selection
Strategies are selected according to a trade-off between speed
and accuracy, and BWM and QL are fully segregated. The Q-
values are computed independently and chosen according to a
comparison between a Value of Perfect Information (VPI) and a
reward rate R̄ (Keramati et al., 2011).

5.2.1. Value of Perfect Information
When observing one particular state st , VPI(st, a) is evaluated
from the Q-Learning algorithm according to Equation (16). The
burden of this method is the requirement for Q-values to be
represented with normal distributions N(Q(st, a)

QL, σ 2(st, a)).
This issue is resolved by the use of Kalman Q-Learning algorithm
as described in Geist et al. (2009). The learning is also based
on reward prediction errors, and after convergence, the relative
position of the mean of each normal distribution is equivalent
to those of a simple Q-Learning algorithm. If the environment
is stationary and the rewards values are constant, σ 2(st, a) will
decrease, reflecting a low uncertainty and the confidence of the
Kalman Q-Learning algorithm in predicting the correct reward.
On the contrary, unpredictable environments will increase
σ 2(st, a). This property and the relative position of each normal
distribution is exploited in Equation (16) to compute VPI, where
a1 and a2 are the best and the second best actions, respectively,
at state st .

VPI(st, a)

=



























(

Q(st, a2)
QL − Q(st, a)

QL
)

P(Q(st, a)
QL < Q(st, a2)

QL)+
σ (st,a)√

2π
exp−(Q(st,a2)

QL−Q(st,a)QL)2/2σ 2(st,a) if a = a1
(

Q(st, a)
QL − Q(st, a1)

QL
)

P(Q(st, a)
QL > Q(st, a1)

QL)+
σ (st,a)√

2π
exp−(Q(st,a1)

QL−Q(st,a)QL)2/2σ 2(st,a) if a 6= a1

(16)

If a = a1, then P(Q(st, a1)
QL < Q(st, a2)

QL) is obtained from the
cumulative distribution function of the normal law and measures
the overlap between the best action and the second best action.
Similarly, Q(st, a2)

QL − Q(st, a1)
QL is the distance between the

center of the two gaussian distribution.

5.2.2. Speed/Accuracy Trade-off
The selection between strategies is made according to the
following rules:

Q(st, a) =
{

Q(st, a)
BWM if VPI(st, a) > R̄(st)

Q(st, a)
QL if VPI(st, a) < R̄(st)

(17)

In the first condition, the uncertainty VPI is larger than the
reward rate R̂, and the action must be evaluated accurately.
In the inverted second condition, the reward rate is larger
than the uncertainty and the action must be sampled rapidly.
Once Q-values are selected from one of the strategies, then
probabilities of action are computed within a Softmax function
as in Equation (2).
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5.3. Weight-based Mixture
In Collins and Frank (2012), a model mixing of working memory
and reinforcement learning in the decision process has been
proposed. At the time of reward, the first step is to compute the
likelihood of each strategy p(rt|st, at)strategy with the following
equation:

p(rt|st, at)strategy =
{

p(at|st)strategy if rt = 1
1− p(at|st)strategy if rt = 0

(18)

Then, w(t, st) is updated according to:

w(t + 1, st)

= p(rt|st, at)BWMw(t, st)

p(rt|st, at)BWMw(t, st)+ p(rt|st, at)QL(1− w(t, st))
(19)

Therefore, the weight w(t, st) will move proportionally to the
confidence in the goal-directed strategy. At the decision step, a
softmax function is used only for the habitual strategy to compute
probabilities of action p(a|st)QL with an inverse temperature β .

5.4. Multi-objective Optimization
The optimization process maximizes three fitness functions: the
quality of fit to choices, the quality of fit to reaction times, and
the diversity within a population of parameters. This diversity
ensures a better convergence of the algorithm by fully exploring
a continuous space of parameters (Mouret and Doncieux, 2012).

5.4.1. Fitness Functions
To avoid any pittfall in our study, we conducted trial by trial
analyses (Daw et al., 2011) for each subjects. The first fitness
function is the likelihood L̂ that the model chooses the same
action as the subject:

L̂ =
∏

t

p(a = a
subject
t |st) (20)

The second fitness function evaluates the ability of the generative
model to predict the evolution of mean RTs. In the first step,
the distribution of RTs and sRTs are standardized using their
respectivemedian and interquartile range. In the second step, RTs
and sRTs are averaged according to representative steps. Finally,
the fitness function is a simple least square error that must be
maximized:

ERT = −
∑

steps

(RTstep − vRTstep)
2 (21)

5.4.2. Aggregation Functions
Aggregation refers to the process of combining numerical values
x1, . . . , xm into a single one M(x1, . . . , xm) so that the final
results of the aggregation takes into account all the individual
values. In our problem, a solution is in 2 dimensions and the
aggregations functions provides ranking of solutions according
to their respective positions within a Pareto fronts. To be able
to compare solutions, each objective value must be scalarized in
order to belong to the unit interval [0, 1]. To normalize, the upper

and lower bounds are, respectively, the best and worst values for
each fitness function.

One way to define a scalarizing function in multi-objective
optimization problems is to measure the distance to a reference
point p ∈ R

m. In the simplest aggregation function, the solutions
are ranked according to their distance to a reference point p =
1. This point corresponds to the upper bound for each fitness
function. The solution with the lowest euclidian distance to the
reference point is selected.

This method can be refined using a Chebyshev distance. The
quality of the solution is defined as the distance to the target
with the use of the infinite norm. A weighting vector λ ∈
R
m
+ is introduced to bias the ranking if some criteria are more

important than others. In this case, the reference point p is the
ideal point α ∈ R

m defined as αi = supx∈Xxi. One can note
that the ideal point is different for each pareto fronts. Inversely,
the Nadir (worst combination of criterion scores) is defined as
βi = infx∈Xxi. Finally, the aggregation function is defined as:

t(x) = max
i∈M

λi
αi − xi

αi − βi
+ ǫ

m
∑

i=1
λi

αi − xi

αi − βi
(22)

Given a small value of ǫ, the right term ensures that the solutions
stays Pareto-optimal. More details about this method is provided
in Wierzbicki (1986).

The last aggregation function tested in this study is the
Ordered Weighted Averages operator (OWA). Through a
permutation σ such that xσ (1) ≤ xσ (2) ≤ . . . ≤ xσ (m) and
a weighting vector w = (w1, . . . ,wm), w ∈ [0, 1], the scoring
function is defined as:

owa(x) =
m

∑

i=1
wixσ (i) (23)

Interestingly, varying w changes the behavior of the function to
a minimum, maximum, or median operator. More details can be
found in Yager (2004).
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