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Nonlinear dendritic integration is thought to increase the computational ability of neurons.
Most studies focus on how supralinear summation of excitatory synaptic responses
arising from clustered inputs within single dendrites result in the enhancement of neuronal
firing, enabling simple computations such as feature detection. Recent reports have
shown that sublinear summation is also a prominent dendritic operation, extending
the range of subthreshold input-output (sI/O) transformations conferred by dendrites.
Like supralinear operations, sublinear dendritic operations also increase the repertoire
of neuronal computations, but feature extraction requires different synaptic connectivity
strategies for each of these operations. In this article we will review the experimental
and theoretical findings describing the biophysical determinants of the three primary
classes of dendritic operations: linear, sublinear, and supralinear. We then review a
Boolean algebra-based analysis of simplified neuron models, which provides insight
into how dendritic operations influence neuronal computations. We highlight how
neuronal computations are critically dependent on the interplay of dendritic properties
(morphology and voltage-gated channel expression), spiking threshold and distribution
of synaptic inputs carrying particular sensory features. Finally, we describe how global
(scattered) and local (clustered) integration strategies permit the implementation of similar
classes of computations, one example being the object feature binding problem.

Keywords: dendrites, neural computation, nonlinear transformations, Boolean analysis, binary neruons, uncaging,
input-output transformation, votlage activated channels

Introduction

In order to control behavior, the brain relies on the ability of its neuronal networks to process
information arising from external and internal sources. How single neurons decode combinations
of sensory features and transform them into a spiking output is still unknown, and represents a
subject of intense study. The complexity of the single neuronal coding problem can be illustrated
by the paradoxical finding that neurons exhibiting narrowly tuned receptive fields often appear
to be driven by synaptic inputs that themselves are broadly tuned (Chadderton et al., 2014). One
hypothesis is that nonlinear dendritic transformations are critical for such neuronal computations.
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Decades of experimental and modeling studies on dendrites
have led to the consensus that active properties of dendrites
are primarily responsible for nonlinear integration, in particular
supralinear operations (Mel, 1994; Spruston and Kath, 2004;
Johnston and Narayanan, 2008). Nonetheless other findings
indicate that sublinear integration of synaptic inputs is possible
in multiple neuron types, and results from either active (Cash
and Yuste, 1998; Hu et al., 2010) or passive dendritic properties
(Abrahamsson et al., 2012; Vervaeke et al., 2012).

What is the evidence that nonlinear dendritic properties
contribute to neuronal computations? Numerical simulations
suggest that supralinear dendritic operations are essential
for translation-invariant orientation tuning (Mel et al., 1998)
and binocular disparity tuning (Archie and Mel, 2000),
while sublinear dendritic operations contribute to coincidence
detection of auditory stimuli (Agmon-Snir et al., 1998). Recently,
state-of-the-art in vivo recordings have shown that dendritic
supralinearities are associated with various other neuronal
computations: formation of hippocampal place fields (Lee et al.,
2012), detection of multi-modal sensory stimuli (Xu et al., 2012),
angular tuning of barrel cortex pyramidal neurons (Lavzin et al.,
2012), and enhancement of orientation tuning (Smith et al.,
2013). Sublinear operations have also been shown to underlie
orientation selectivity of binocular neurons in visual cortex in
vivo (Longordo et al., 2013).

Nevertheless, a direct link between the dendritic
transformations and the associated neuronal computations
is still lacking. Analytical methods implementing mathematical
approximations of measured dendritic operations can be used
to make estimates of the possible number and type of neuronal
computations. For example, binary neuron models were used
to quantify what was previously shown with biophysical
models (Mel, 1994), namely that nonlinear dendrites support
a larger number of neuronal computations (Poirazi and Mel,
2001; Cazé et al., 2013). Such simplifications can provide
analytical insight and make testable predictions as to which
computations are made possible by dendritic operations.
Moreover, analytical methods show under which conditions the
expanded computational capacities are generic, i.e., not tied to
the specific example parameters of the biophysical model.

Here we review the biophysical determinants of different
classes of dendritic operations (linear, sublinear and supralinear),
how they are measured experimentally, and finally, using a
recently published Boolean-based analysis of equivalent dendritic
trees (Cazé et al., 2012, 2013, 2014), we review how these
operations combine with other cellular properties to determine
neuronal computations.

Dendritic Integration

Neurons integrate synaptic inputs arriving primarily on dendritic
trees carrying information from presynaptic neurons, by
transforming them into synaptic potentials using a variety
of cell-specific synaptic and cellular mechanisms. During
synaptic transmission, the activation of neurotransmitter-gated
conductances results in either a transient depolarization or
hyperpolarization of the postsynaptic membrane potential.

When the net depolarization resulting from synaptic integration
of multiple synaptic inputs is greater than the spike threshold
potential, the neuron generates an action potential (AP), or
spike. Synaptic integration is a critical determinant of neuronal
computations, the process by which a postsynaptic neuron
transforms presynaptic information (coded in input activation
patterns) into an output signal (encoded in a firing pattern)
(Häusser and Mel, 2003; London and Häusser, 2005; Silver,
2010; Larkum, 2013; Chadderton et al., 2014). This review will
focus primarily on the integration of excitatory post-synaptic
potentials (EPSPs) mediated by ionotropic glutamate receptors.

Dendritic integration can be quantified by comparing
the observed depolarization resulting from the simultaneous
activation of the same synaptic inputs (Figure 1B), also called
a compound EPSP, and the arithmetic sum of individual EPSPs
(expected membrane depolarization) (Figure 1C). The dendritic
subthreshold input-output (sI/O) relationship is easily described
by plotting observed vs. expected depolarizations for different
numbers of co-activated synapses (Figure 1). Mathematical
functions can be used to describe the operation performed.
The sI/O relationships fall into three categories of dendritic
operations: (1) linear, where the observed depolarization
equals the expected depolarization; (2) supralinear, where the
observed depolarization exceeds the expected depolarization
(above the linear line; Figure 1D, left); and (3) sublinear,
where the observed depolarization is less than the expected
depolarization (below the linear line; Figure 1D, right). Much
of the experimental evidence of nonlinear integration suggests
dendrites perform supralinear operations, resulting from the
contribution of active dendritic conductances (Mel, 1994;
Johnston and Narayanan, 2008; Spruston, 2008). Recent studies
suggest that sublinear operations could be mediated solely
by passive properties (Abrahamsson et al., 2012; Vervaeke
et al., 2012), while other studies have shown that activation of
potassium channels can produce sublinear summation (Cash
and Yuste, 1999; Hu et al., 2010). The detailed biophysical
mechanisms determining specific dendritic operations are
discussed in depth below.

The type of dendritic operation strongly contributes to the
nature of the resultant neuronal computation. For example, co-
activation of synapses within a single electrical compartment that
exhibits supralinear integration will produce dendritic voltage
signals that are larger than expected due to amplification by
activation of voltage-sensitive channels. This large depolarization
is thereby more likely to drive the neuron to spike threshold. The
resulting sI/O will reflect a neuronal computation that is cluster
sensitive (Figures 1E,F, left, θ1). For a neuron with sublinear
dendrites, clustered synaptic activity will be less efficient at
triggering a spike than if the same inputs were distributed in
different compartments, thus promoting computations that are
scatter sensitive (Figures 1E,F, right, θ1; Cazé et al., 2013). Such
neuronal computations enable the discrimination of patterns of
synaptic activation with different levels of spatial and temporal
correlations, which could not be otherwise performed by linear
dendrites (Mel, 1992). Nevertheless, it should be noted that the
dendritic operation is insufficient to define the computation,
synaptic placement and spike threshold also influence the final
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FIGURE 1 | Dendritic operations and their influence on neuronal firing.
(A) Schematic diagram of a subthreshold synaptic input-output experiment in a
neuron with supralinear dendritic compartments (left, supralinear compartments
in green, linear compartments in black) or in a neuron with sublinear dendritic
compartments (right, sublinear compartments in blue). The red spots are sites
of synaptic activation or sites of glutamate uncaging. (B) Somatic voltage
responses evoked by simultaneous synaptic activation or uncaging. Green
curves are responses evoked with increasing number of synapses activated
within a supralinear dendrites. Blue traces are similarly obtained within a
sublinear dendrite. (C) Arithmetic sum of individual responses to synaptic
activation or uncaging. (D) Subthreshold input/output relationships (sI/O) used
to quantify dendritic operations. The dashed line represents a linear

releationship. Two horizontal dotted lines indicate two example somatic spike
thresholds (θ1 and θ2). (E,F) Example of synaptic integration of three synaptic
inputs distributed across the dendritic tree (E) or clustered on a single dendritic
branch (F) of a neuron with supralinear dendritic compartments (left) or
sublinear compartments (right). The output spike train, and hence neuronal
computation, differs depending on the threshold. The more depolarized
threshold value (θ1) allows the neuron with supralinear dendrites to exhibit a
cluster-sensitive neuronal computation (fires only when three inputs are
activated in the same compartment). The θ1 threshold also allows a neuron with
sublinear dendrites to exhibit scatter-sensitive neuronal computations. The
lower threshold (θ2) imparts a different neuronal computation based on simple
linear summation and is not sensitive to activated synapse location.
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neuronal computation. In Figures 1D–F we show that lowering
the spike threshold (θ2) would restrict the access to only the linear
regime of the subthreshold dendritic operation. Finally, ongoing
synaptic activity can occur in the presence of AP firing, and thus
constitutes supra-threshold synaptic integration (Silver, 2010),
which we will not address in this review.

Biophysical Mechanisms Influencing
Synaptic Integration

Effect of Passive Membrane Properties on
EPSPs Summation
Because neurons communicate with each other using electrical
signals, the analysis of their signaling properties is generally
performed using principles of electrical circuits. A single
compartment equivalent circuit describes well the electrical
behavior of a cell without any dendrite or active properties.
Four parameters determine the amplitude and time course
of the EPSP: a transient synaptic conductance (Gsyn), the
electromotive force of its ion flux (driving force), the membrane
resistance (specific membrane resistance; Rm), and the specific
membrane capacitance (Cm). The difference between the
membrane potential and the reversal potential for Gsyn sets the
driving force (Vm − Erev; Figure 2A), thus as Gsyn increases,
Isyn increases, and Vm becomes more depolarized. For large
conductances, Vm approaches Erev and the driving force is
reduced, resulting in decreased current flow for the same Gsyn
(Figure 2A). This results in a sublinear relationship between
Gsyn and EPSP size. Since quantal synaptic conductances are
generally small, it is when multiple synapses are activated
simultaneously that the driving force decreases sufficiently
to produce sublinear integration (Figure 2C). Therefore, for
passive single compartment model cells, synaptic summation is
already essentially sublinear, which was first demonstrated at the
neuromuscular junction (Martin, 1955).

More complex, but also more realistic, equivalent circuit
models take into account neuronal morphology, such as
dendritic arborizations. Wilfrid Rall pioneered the use of such
multi-compartmental equivalent circuit models in order to
study synaptic integration in neurons with passive dendrites.
His primary advance was to consider dendrites as electrical
cables (Rall, 1967) that contained an additional parameter,
the axial resistance (ra), which electrically couples multiple
elementary single compartment models (Figure 2B). Because
each elementary compartment will allow current to leak across
the membrane, the current injected in the next compartment
(across ra) decreases progressively as it travels along the cable
or dendrite, which results in an attenuation of the local EPSP
amplitude and a slowing of its time course. Such dendritic
filtering accounts for why local EPSPs in dendrites tend to be
larger and faster than those recorded in the soma. It therefore
follows that more distal synaptic inputs (for a given Gsyn) would
result in a progressively smaller somatic depolarization and thus
a smaller influence on the firing output of a neuron (Rinzel
and Rall, 1974; Magee and Cook, 2000; Spruston, 2008). Also
in dendrites the local input resistance (RD) or impedance (ZD;
to account for the effect of capacitance on fast time-varying

inputs) increases with increasing distance from the soma due to
a diminished shunt effect of the soma and the high resistance
of the sealed cable (Rinzel and Rall, 1974). We will henceforth
refer to ZD, since it is the more general form that accounts for
the capacitive current dependance on synaptic conductance time
course. It should be noted that at steady state ZD = RD. This
distance-dependent increase in ZD results progressively larger
local EPSPs, which in some morphologies, can combine with
an efficient passive propagation of EPSPs to the soma (transfer
impedance), thereby counteracting the distance-dependance
reduction in the somatic EPSP amplitude due to cable filtering
(Jaffe and Carnevale, 1999; Nevian et al., 2007; Schmidt-Hieber
et al., 2007). This location independence of EPSP amplitude is
also referred to as passive normalization (Jaffe and Carnevale,
1999). Distance-dependent increases in ZD are also thought to be
important to increase the probability of evoking a local dendritic
spike at distal inputs of basal dendrites of pyramidal neurons,
which can then propagate to the soma (Rudolph and Destexhe,
2003).

Rall provided a simple parameter that describes cable filtering:
the space constant (λ), derived from the steady state (λDC)
or frequency-dependent (λAC) solution to the cable equations.
It represents the distance along a cable where the membrane
potential is 63% of the maximal at the site of current injection.
Therefore if the dendrite length is longer than λ, significant cable
filtering can be expected; similarly, if the dendritic length is much
shorter than λ then EPSPs propagating to the soma are filtered
very little. A critical morphological parameter determining λ is
the dendritic diameter, to which λ is proportional (Figure 2B);
meaning a larger diameter produces a longer λ (Figure 3A,
left). For fast synaptic conductances (rise and decay <2 ms), the
capacitive current acts as a frequency-dependent shunt and can
dramatically alter λ. In cerebellar molecular layer interneurons,
for example, the frequency-dependent length constant (λAC) can
be over a factor of 5 shorter than λDC. Their thin (∼0.4 µm
diameter), 100 µm long dendrites are electrically compact for
steady-state depolarizations (with total length 3 times shorter
than λDC, 300 µm). But for rapid synaptic conductances λAC
is 50 µm (half the dendritic length), resulting in significant
dendritic filtering of EPSPs for distances greater than 20 µm
(Abrahamsson et al., 2012). Dendritic branching tends to
shorten the space constant, since it effectively decreases the
membrane resistance (acting like a shunt for current flow
(Figure 3A; right; Abrahamsson et al., 2012). It is also worth
noting that λ also serves as a rough indicator of the size of
effective dendritic compartments. Synapses located within a
distance of λ are more likely to interact than non-neighboring
synapses (Figure 2C; Abrahamsson et al., 2012).

The Influence of Passive Dendrites on sI/Os
As described above, sublinear summation of simultaneously
occurring EPSPs within an electrical compartment is a natural
consequence of the loss of driving force for synaptic currents.
Dendritic compartments with narrow diameters are particularly
sensitive to this due to a high ZD. Therefore when multiple
dendritic synapses are activated simultaneously within a close
proximity (<λ), the local depolarization resulting from the
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activation of a given synaptic input will be large, thus decreasing
the local driving force, resulting in a sublinear sI/O (Figures 1D,
2B). As the diameter of the passive dendrite decreases, ZD will
increase and the local EPSPs will be even larger (Abrahamsson
et al., 2012). One can use the equation for input resistance
of an infinite cable to appreciate the influence of dendritic
diameter (Figure 2B, equation 3). The larger ZD causes a larger
depolarization, thus the sublinear summation of synaptic inputs
will be more prominent with fewer active inputs (Figure 3A, left;
see also Rinzel and Rall, 1974). If the distance of the synapse
from the soma increases, the current sink of the soma, the end
effect of the dendrite and/or dendritic tapering will contribute
to a distance-dependent increase in ZD, together resulting in
more pronounced sublinear sI/O curves particularly for more

distal dendritic compartments (Figure 3A, middle). Finally, the
number of dendritic branch points, despite increasing dendritic
filtering, tends to decrease the local ZD by adding a current
sink, thus favoring a more linear sI/O (Figure 3A, right). Gap
junctions have also been shown to reduce sublinear summation
by providing a current sink (Vervaeke et al., 2012).

Although passive membrane properties are sufficient to
produce sublinear dendritic operations, experimental evidence
of such a mechanism has only recently been described
(Abrahamsson et al., 2012; Vervaeke et al., 2012). The
authors concluded that the combination of thin dendrites
and low levels of expression of voltage-gated channels favors
sublinear dendritic operations. In these neurons, sublinear
summation is apparent even for as few as two active synapses

FIGURE 2 | Theoretical basis for sublinear summation within passive
dendrites. (A) Equation (1) describes the different current components
underlying an EPSP in a single electrical compartment. Integration of this
equation describes the variation of the membrane voltage over time. The
transient change in driving force (∆V = Vm − Esyn) is determined by the
amplitude and time course of the local dendritic EPSP (black trace). At the peak
of the EPSP (solid blue arrow) the driving force is maximally reduced, and then
recovers back to that at resting membrane potentials during the EPSP decay
(dotted blue arrow). The reduced driving force decreases the synaptic current,
and hence the net depolarization, creating a sublinear relationship between
EPSP and its underlying conductance. (B) Equivalent circuit for dendritic cables,
where gm and cm are the membrane conductance and capacitance,
respectively, and ra is the axial resistance of a unit of cable. A synapse is
represented in the circuit (by the synaptic conductance Gsyn and the synaptic
reversal potential Esyn). For an infinite cable, the spatio-temporal distribution of
voltage is described by the relation (2), where τm is the membrane time

constant, and λ is the length constant. The length constant relationships are
derived from solving the cable equation (2) for step changes in membrane
voltage (λDC) or for a sinusoidal membrane potential change (λAC). The latter is
helpful to understand the dendritic filtering of transient EPSPs. Equation (3) is
the relation for the input resistance RD for an infinite cable. (C) Top,
ball-and-stick model of a neuron with colored arrows indicating the location of
three synapses (Syn 1--3). The graph above the diagram represents the peak
amplitude of a dendritic EPSP as a function of distance. Bottom, the two
graphs describe respectively the dendritic and somatic depolarizations in
response to individual (colored lines) or combined synaptic inputs (black lines).
Concomitant activation of two neighboring synaptic inputs (within ∼ λAC) will
therefore mutually reduce their driving force and sum sublinearly (for example
synapses 1 and 2, solid black trace for the EPSP observed in response to their
simultaneous activation, dashed black trace for the arithmetic sum of the
individual EPSPs). More separated synapses will, however, sum more linearly
(synapses 1 and 3, gray trace).
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FIGURE 3 | Contribution of dendritic and synaptic properties to EPSP
summation. (A) Influence of morphological parameters dendritic: diameter
(left), increasing distance to soma (middle) and increasing dendritic branching
(right) on the dendritic sI/O. The inserts illustrate the effect of morphology on
somatic EPSPs under the different conditions. Synapse location and traces
are color coded. Dashed line shows a linear I/O for reference. (B) The role of
ion channels on the shape of the sI/O, for a given morphology. Either K+

channels, (orange), Na+ channels (green), VGCC (pink), or NMDA receptors
(sky blue) are added to a passive dendrite (blue). (C) Example of sI/O in three
realistic combinations: thick (>2 µm) dendrites with active conductances (blue
curve, as in Branco and Häusser, 2011), thinner dendrites with active
conductances (brown curve, <1 µm, Losonczy and Magee, 2006), or thin
dendrites with only passive properties (blue curve, Abrahamsson et al., 2012).
(D) Influence of synaptic properties on the sI/O for a given morphology and ion
channel combination. An increase in synaptic strength makes the sI/O diverge
from linearity both in the sublinear and the supralinear regime, whereas
increasing the interval or the distance between synaptic inputs tends to
linearize the curve (right).

(Abrahamsson et al., 2012). Synapses activated on separate
dendrites summed linearly, supporting a scatter sensitive
neuronal computation (Abrahamsson et al., 2012), that was
confirmed in a realistic active model (Cazé et al., 2013).

The Influence of Active Dendrites on sI/Os
The large local synaptic depolarizations produced in dendrites
can also recruit the activation of voltage-dependent channels
(NMDARs, Na+, Ca2+, K+ and HCN channels, see Johnston and
Narayanan, 2008; Figure 3B). The number of activated synaptic
inputs needed to engage active conductances is determined, in
part, by the passive properties of the dendrite, the amplitude
and kinetics of the synaptic conductance, the voltage-dependance

of channel gating, and the channel density and distribution
along the somato-dendritic axis. Active conductances can either
enhance (Williams and Stuart, 2000; Migliore and Shepherd,
2002) or dampen (Cash and Yuste, 1999; Hu et al., 2010) local
dendritic depolarizations, depending on whether the channels
mediate inward (depolarizing) or outward (hyperpolarizing)
currents, respectively. Distance-dependent increases in Ih
currents have been shown to compensate for the temporal
slowing caused by dendritic filtering (Magee and Cook, 2000;
Williams and Stuart, 2002). Differential expression of HCN
channels across mitral cells has also been shown to increase the
membrane noise and lower the rheobase, thus facilitating AP
generation (Angelo and Margrie, 2011). Because of the presence
of NMDARs at many glutamatergic synapses, most studies
find that NMDARs activate other voltage-dependent channels
by boosting local synaptic depolarization (Schiller et al., 2000;
Losonczy and Magee, 2006; Nevian et al., 2007; Makara et al.,
2009; Branco and Häusser, 2011; Katona et al., 2011; Krueppel
et al., 2011). The resulting dendritic operation is determined by
the concurrence of a passively determined sublinear (Losonczy
and Magee, 2006; Krueppel et al., 2011; Chiovini et al., 2014) or
linear operation (Branco and Häusser, 2011), and a supralinear
operation.

In some cases, the voltage activation of conductances results
not only in EPSP boosting, but in a threshold-dependent, all-or-
none regenerative response, often called a dendritic spike. This
regenerative behavior is characterized by a steep change in the
sI/O followed by a plateau (Figures 1D, 3B; Polsky et al., 2004;
Losonczy and Magee, 2006; Larkum, 2013). Locally-generated
dendritic spikes can be mediated by either Na+ channels,
Ca2+ channels or NMDA receptors (NMDARs). Na+-spikes are
triggered by high-amplitude local depolarization, are relatively
brief, and can be accompanied by entry of Ca2+ through VGCC
or NMDARs. In pyramidal cells, these dendritic Na+ spikes can
be generated in most regions of the dendritic tree, propagate
throughout the dendritic tree, albeit with some attenuation,
but can still trigger somatic spiking (Golding and Spruston,
1998; Rudolph and Destexhe, 2003; Nevian et al., 2007). Recent
findings have also shown Na+-channel dependent spikes in
dendrites of dentate gyrus granule cells (Chiovini et al., 2014). On
the other hand, Ca2+ and NMDA spikes are longer, plateau-like
events, that are thought to be generated in particular regions
of the dendritic tree, and require the synchronous activation
of many clustered synapses. The biophysical mechanisms of
the NMDA spikes and their functional consequences have been
described in detail in a recent review (Major et al., 2013). In
cortical pyramidal neurons, the Ca2+ spike is likely to propagate
actively from the primary apical dendrite to the soma, thereby
representing a more global dendritic operation, whereas NMDA
spikes are locally restricted to dendritic compartments such as
tufts or basal dendrites (Larkum, 2013). In contrast, simulations
of in vivo spontaneous synaptic activity allow glutamate-bound
NMDARs to act as global nonlinearities providing an entirely
different computation than those initiated in single dendrites
(Farinella et al., 2014). Nevertheless, several recent in vivo
studies have reported the involvement of local NMDA spikes
during sensory processing, across all layers of the cortex (Lavzin
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et al., 2012; Xu et al., 2012; Smith et al., 2013; Gambino
et al., 2014; Palmer et al., 2014). It should also be noted that
Polsky et al. (Polsky et al., 2004) pointed out that a Ca2+-
spike exhibits saturation of the voltage response and thus
can also be considered sublinear for very high stimulation
strengths.

In summary, the modus operandi of supralinear dendritic
compartments is comprised of a continuum of voltage-
dependent operations from simple boosting of synaptic
depolarization to regenerative spikes. Considering the
biophysical underpinnings of this range of operations, it follows
that the interplay of the active and passive properties of dendrites
ultimately determines the shape of the sI/O (Figure 3C). For
example, sI/Os of thick dendrites, which have a low ZD, do
not suffer from driving force losses, thus sum linearly for low
numbers of activated synapses, then transition into supralinear
summation (Makara and Magee, 2013). Thin dendrites on the
other hand may exhibit sublinear sI/O relationships for only a
few inputs, but then easily engage NMDAR and Ca2+ channels
(Losonczy and Magee, 2006; Chiovini et al., 2014) with fewer
synaptic inputs than in larger dendrites (Figure 3C). Due to
tapering of dendritic width, which increases the ZD along the
dendrite with increasing distance to the soma, the dendritic
operations can be altered as a function of distance from the soma
(Branco and Häusser, 2010, 2011).

The Influence of the Size, Time Course and
Location of the Synaptic Conductance on sI/Os
The strength of synaptic conductance varies from synapse to
synapse across neuron types, but also within neurons. The
synaptic strength not only serves to bias the output of a
neuron to particular inputs (Ko et al., 2011), but it can
also be tuned to compensate for dendritic attenuation by
passive dendritic properties (Magee, 2000). Synaptic strength
influences dendritic operations by modulating the gain (slope)
and shape of the sI/O, which is achieved by engaging sub- and
supralinear transformations with different numbers of synaptic
inputs (Figure 3D). Larger synaptic conductances will lead to
larger dendritic depolarizations, and in turn either a larger
reduction in driving force or increased activation of voltage-
gated conductances. Depending on the intrinsic membrane
properties and synaptic conductance amplitude the ‘‘linear
regime’’ may be more or less prominent in the sI/O relationship.

The temporal window for synaptic interactions depends
ultimately on the time course of local EPSPs, which is itself
shaped by the local passive dendritic properties and the time
course of the synaptic conductance (Jonas, 2000). Although
the local dendritic EPSPs are larger than those at the soma,
it is important to note that their time course is generally
much faster, due to charge redistribution down the dendrite
(Schmidt-Hieber et al., 2007). The degree to which nonlinear
mechanisms are engaged during EPSP summation also depends
on the temporal summation of local EPSPs (Losonczy andMagee,
2006; Abrahamsson et al., 2012; Makara and Magee, 2013).
Simultaneous synaptic activation enables the largest degree of
nonlinear summation, which will progressively decrease as the
time difference between synaptic events increases (Figures 2A,

3D). Thus, combined with the synaptic strength, the temporal
coincidence between co-activated synapses within a single
dendritic compartment will determine gain of the dendritic
operations (Gómez González et al., 2011; Abrahamsson et al.,
2012; Makara and Magee, 2013).

The location of synapses carrying similar information (e.g., a
single sensory feature) determines which dendritic mechanism
is recruited. For example, if features of an object are always
clustered on a single dendritic compartment, then nonlinear
summation will be the prominent operation influencing
integration. Below we will use a mathematical formalism to
provide insight into how synaptic placement and dendritic
operations influence neuronal computations.

Experimental Strategies for Studying
Dendritic Integration

How do researchers study the biophysical properties of
dendrites and their influence on excitatory synaptic integration?
Classical electrophysiology methods such as sharp electrode- or
patch-clamp-based recordings of somatic membrane potential
provided insight into the intrinsic passive electrical properties
of neurons by measuring the input resistance and the
membrane time constant (τ = Rm

∗Cm) (Spruston and Johnston,
1992). When combined with multi-compartmental dendritic
models, with either simplified morphologies (equivalent cylinder
approximation) or full anatomical reconstructions (Clements
and Redman, 1989; Major et al., 1994), the passive electrotonic
properties of dendrites can be estimated from model parameters
that predict the membrane potential decay from somatic current
injections (Rall et al., 1992). These constrained models are then
used to examine dendritic transformations of EPSPs as they
propagate to the soma.

Unfortunately, single electrode recordings at the soma do
not provide sufficient information about dendritic properties
to constrain complex morphological models. With the advent
of dendritic patch recordings (Stuart et al., 1993), at least for
large diameter dendrites (≥1µm), cable model predictions could
be directly verified. This powerful recording method allows
estimations of the critical parameters influencing dendritic
filtering, such as internal resistivity (Ri; Stuart et al., 1993;
Stuart and Spruston, 1998; Roth and Häusser, 2001; Nevian et al.,
2007; Schmidt-Hieber et al., 2007; Hu et al., 2010), Rm and
voltage-gated channel properties and density along the somato-
dendritic axis (Magee and Johnston, 1995; Stuart and Spruston,
1998; Hu et al., 2010). Dendritic recordings also enabled the
measurement of local EPSPs and EPSCs, which allowed the
authors to conclude that dendritic filtering can be compensated
by a distance-dependent increase in synaptic conductance in
certain neuron types (Magee and Cook, 2000).

More recently, fluorescence imaging techniques have
greatly increased the toolkit for studying dendritic integration,
particularly in those dendrites with narrow diameters
(<1 µm). Ca2+ indicators are one of the most popular class of
fluorescence probes, which are used to indirectly study dendritic
nonlinearities resulting from activation of voltage-dependent
ion channels, provided at least one type of Ca2+ conductance
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was activated (Markram et al., 1995; Schiller et al., 1995, 1997,
2000). Ca2+ indicators have also been used to monitor synaptic
activity because of the prevalence of NMDAR activation in
single spines and Ca2+-permeable AMPARs at synapses in
interneurons (Soler-Llavina and Sabatini, 2006). In vivo two-
photon Ca2+ imaging experiments provided the first insights
into the spatial and temporal distribution of sensory-evoked
synaptic signaling within dendrites (Varga et al., 2011; Lavzin
et al., 2012; Smith et al., 2013; Jia et al., 2014; Palmer et al.,
2014). The contribution of in vivo Ca2+ imaging studies to
understanding dendritic function has been recently reviewed
by Grienberger et al (Grienberger et al., 2015). However, a
limitation of using Ca2+ imaging to study synaptic integration
is that it does not report the true dendritic voltage, a parameter
critically influencing dendritic operations. Also, the slow
nature of the whole-cell averaged [Ca2+] and the use of high
affinity Ca2+ indicators limits the temporal resolution of this
method (Farinella et al., 2014; Fernández-Alfonso et al., 2014).
Voltage-sensitive dyes are, in principle, an ideal alternative
for direct measurement of dendritic integration. Whereas
voltage-sensitive dye recordings have provided unprecedented
optical reports of the spatial and temporal distribution of
APs in axons (Foust et al., 2010; Popovic et al., 2011) and
dendrites (Acker and Antic, 2009; Casale and McCormick,
2011), their use to monitor EPSPs in dendrites has been less
successful due to poor signal-to-noise ratio, typically requiring
hundreds of trials of averaging (Palmer and Stuart, 2009).
However, inhibitory post-synaptic potentials (IPSPs) have been
detected (Canepari et al., 2008) and a recent study reports
good signal-to-noise ratios sufficient to detect spine EPSPs
(Popovic et al., 2014). The advances in genetically-encoded
voltage indicators are also rapidly maturing (Hochbaum et al.,
2014; St-Pierre et al., 2014; Zou et al., 2014), and could eventually
provide a powerful tool for studying dendritic integration in
vivo.

Another widely-used in vitro technique to characterize
the integration properties of dendrites is to directly
activate postsynaptic receptors using photolysis of caged-
neurotransmitter (i.e., caged-glutamate) within the diffraction-
limited focal volume of the microscope (Gasparini and Magee,
2006; Losonczy and Magee, 2006). Using galvanometer-driven
mirrors, the type regularly used in scanning confocal microscopy,
the focal illumination volume can be rapidly moved (within
0.1--1 ms) and positioned at multiple locations. The uncaging
light pulse is then rapidly gated at each location to focally release
glutamate. This allows for the near simultaneous activation of
many postsynaptic sites. The somatic depolarization is then
recorded using standard whole-cell patch-clamp methods. The
observed response to uncaging at multiple synaptic locations
(typically within 1 ms) is compared to the arithmetic sum of the
uncaging-evoked responses at individual sites. The resulting plot
is identical to the sI/O plots described in Figures 1, 3, provided
that the uncaging responses are similar to synaptic activation.
Using light, rather than presynaptic vesicular release, to activate
neurotransmitter receptors provides a more flexible strategy to
systematically vary the number, pattern, and timing of synapse
activation. Electrical stimulation does not permit a precise

identification of the synapses being activated, nor precise control
of the number of synapses activated. Holographic illumination
provides an alternative strategy for true simultaneous glutamate
uncaging at multiple sites within the dendrites and is more
amenable to multibranch activation (Lutz et al., 2008; Yang
et al., 2014, 2011). The only potential drawback of uncaging
is the difficulty in some preparations to accurately reproduce
very fast synaptic conductances due to the large volume of
diffraction-limited focal spots relative to the point source nature
of neurotransmitter release from synaptic vesicles (DiGregorio
et al., 2007), as well as a tendency to partially block GABARs
(Fino et al., 2009). Nevertheless, neurotransmitter uncaging
is an essential tool for quantifying the biophysical properties
underlying dendritic operations.

Linking Dendritic Operations to Neuronal
Computations Using Mathematical Models

Because experimental evidence of a direct link between the
dendritic operations and the associated neuronal computations
is still lacking, a parallel strategy is to use analytical models to
make testable predictions (Poirazi andMel, 2001; Legenstein and
Maass, 2011; Cazé et al., 2013). These methods take advantage of
mathematical approximations of measured dendritic operations
to make estimates of the possible number and type of neuronal
computations. Biophysical models, in contrast, although explicit,
do not easily provide insight into the classes of possible
computations because of the large parameter space. There
is no doubt that such models have provided deep insights
into neuronal computations that involve nonlinear dendritic
operations. They have been used to show that neurons with
supralinear dendrites are cluster-sensitive (Mel, 1993) and
neurons with sublinear dendrites are scatter-sensitive (Koch
et al., 1983; Cazé et al., 2013). Yet it was not clear whether either
type of nonlinearity provides similar computational advantages.
To examine the difference between supralinear and sublinear
operations of binary neuron models Cazé et al. (2013) used
a Boolean-based analysis. Here we review how this Boolean
framework can be used to argue that either supralinear or
sublinear summation is sufficient to endow neurons with a new
class of computations.

Within this analytical framework, neurons are modeled as
having binary inputs (xi), which can be weighted and integrated,
resulting in binary outputs (y). In this context the input-output
relation is described by a unique truth table, corresponding to a
Boolean function. In Figure 4A, the truth table describes three
simple Boolean functions: OR, AND and XOR. This well-known
mathematical framework (Wegener, 1987; Crama and Hammer,
2011), which deals with binary classifications of binary words,
allows us to analytically determine what type of classifications
are possible with nonlinear dendrites and which are otherwise
impossible.

The simplest binary neuron model is called the threshold
linear unit, also known as the point neuron model as described
first by McCulloch and Pitts (Figure 4B; McCulloch and Pitts,
1943). Synapses are assigned a binary value of 0 or 1, for inactive
or active states, which is then multiplied by a positive synaptic

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 March 2015 | Volume 9 | Article 67

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Tran-Van-Minh et al. Dendritic operations and neuronal computations

FIGURE 4 | Using Boolean algebra to analyze binary neuron models
with dendritic nonlinearities. (A) Truth tables for the Boolean functions
AND, OR and XOR for two synaptic inputs (x1 and x2). The two colored
horizontal lines illustrate how the AND and OR functions are linearly separable,

(Continued)

FIGURE 4 | Continued
i.e., a single line divides all inputs between two groups, one group having an
output of 0 and the other group having an output of 1. Neuron output binary
value is denoted as y. (B) Threshold linear unit model neuron with two inputs.
The weight of each input is represented by the area of the black disc drawn
between the input and the model neuron. Here all weights are equal to 1. A
spiking threshold (θ) of 2 allows the model neuron to compute the AND
function (left), whereas if θ =1 the neuron computes the OR function (right).
(C) Top, Simplified representations of a supralinear sI/O (left) and its
mathematical approximation by a Heaviside function (right) with a height h and
a threshold θ. Bottom, simplified representation of a sublinear sI/O and its
mathematical approximation by a piecewise linear, then saturating function.
(D) Generalized diagram representing a two-layer integration model neuron
with several compartments and n inputs. Each branch represents a dendritic
compartment, and the integration operation performed by this compartment is
represented by the box on the branch. The threshold θ and the output value h
of the nonlinearity are indicated within the box. The result from the integration
from each branch is then linearly summed and compared to the somatic spike
threshold Θ. (E) Implementation of the (partial) feature binding problem (pFBP)
by binary neurons with two dendritic compartments D1 and D2, either
supralinear or sublinear. Top, truth table describing various input feature
combinations, the response of each dendritic compartment, D
(0:inactive/1:active), and the final neuronal output, y. Columns with green
shading are the outputs of dendrites exhibiting supralinear operations, while
columns shaded in blue contain outputs of dendrites that exhibit sublinear
operations. Bottom, Model neuron with equivalent dendrite representation that
can implement the pFBP using supralinear (left) or sublinear dendritic
compartments (right), with θ and h values indicated in the box. If dendritic
integration is supralinear, two groups of inputs are needed to activate a
compartment, and a single compartment can trigger a spike. If dendritic
integration is sublinear, a single input can activate the dendritic compartment
and the two compartments must be active to trigger a spike.

weight for excitatory synapses. The sum of the active weighted
inputs is then compared to a somatic spike threshold Θ. If
this weighted sum is greater than the threshold, the output is
assigned a value of 1, and otherwise zero. If one considers a
neuron with linearly summing excitatory inputs, adjustment of
the threshold allows it to either perform a Boolean AND or
OR (Figure 4B). However, it is not possible to find a threshold
value and positive synaptic weight that allows the computation
of the XOR, the function corresponding to a binary neuron that
would fire only when one synapse is active, but not otherwise.
This illustrates well the fact that the threshold linear unit can
only perform functions that are linearly separable, i.e., there
is a set of weights and a spike threshold that categorizes the
inputs into two distinct groups, which differ by their output
values (Figure 4A). The XOR does not meet this criterion and
is therefore a part of the class of functions that are linearly
non-separable. To solve this problem we must either invoke
a non-monotone function to combine synaptic values (Zador
et al., 1992) or consider synaptic inhibition by using negative
weights (Mel, 1994; Cazé et al., 2014). Because the former
has not been described experimentally, and the latter requires
specific wiring within the network, we will focus here on linearly
non-separable functions that can be implemented with only
excitatory synapses and monotone dendritic operations. These
functions are known as positive Boolean functions (Cazé et al.,
2013).

Linearly--separable functions represent only a small fraction
of all the possible computations (Cazé et al., 2013). However, a

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 March 2015 | Volume 9 | Article 67

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Tran-Van-Minh et al. Dendritic operations and neuronal computations

neuron with nonlinear dendritic compartments can implement
the set of linearly non-separable functions, which encompasses a
much larger fraction of all computations (Cazé et al., 2013). Thus
both supralinear and sublinear compartments unlock the access
to all the possible computations (Mel and Koch, 1990;Mel, 1991).
This formal result is true for an infinite number of dendritic
compartments (Poirazi and Mel, 2001). This is clearly impossible
in practice. So what can a neuron compute with a finite number
of dendritic compartments?

To address this question we can construct a two-layer
binary model with nonlinear dendritic compartments. We first
approximated the dendritic sI/O with functions each having
a characteristic dendritic threshold θ, which represents the
threshold of the dendritic nonlinearity, and h, which represents
the maximal value of the dendritic nonlinearity. To approximate
supralinear compartments we used a Heaviside function, and
for sublinear functions we used a piecewise linear saturating
function (Figure 4C). The output of the dendritic compartments
is then linearly summed and compared with spike threshold
(Figure 4D). If we vary synaptic weights, the thresholds, and
the nonlinear dendritic operations, we can use Boolean analysis
to examine the different functions this model can implement. A
functionally salient neuronal computation that requires dendritic
nonlinearities is the association (or binding) of two features
of an object (for example, their shape and color). This is
known as the feature binding problem (FBP). If we suppose
that that different features of objects are encoded by different
groups of pre synaptic neurons impinging on the same post
synaptic neuron, then it is obvious that by allowing the features
of an object to target the same supralinear dendrite, the
coincidence of those features can be easily detected when co-
active (i.e., ‘‘red’’ + ‘‘apple shape’’; Figure 4E). It can also
be shown that a sublinear operation can bind features if the
inputs that encode object features are distributed onto different
dendritic subunits (and the spiking threshold increased). From
these simple binary models it is again clear that supralinear
operations favor cluster sensitivity and sublinear operations
favor scatter sensitivity. However, a keen eye may notice that
the sublinear model will also produce a spike if the apple
shape and banana shape are both activated. This therefore
constitutes a partial FBP. Below we will describe a neuron model
with equivalent dendrites that can implement the complete
FBP.

Because neurons are known to have both linear and nonlinear
compartments, we considered how more realistic dendritic trees
could be represented using our simple binary model, by creating
a neuron model with equivalent dendrites (Figures 5A,B). All
linear regions of the dendritic tree (typically, the perisomatic
compartment or the large diameter primary dendrites) were
collapsed to a single equivalent ‘‘linear’’ compartment (black
regions of schematic neuron and left branch of the model
neuron). The nonlinear dendritic compartments receiving more
than one synaptic input were represented as a second equivalent
dendritic branch. This then generalizes to an equivalent dendritic
branch for each nonlinear electrical compartment (Figure 4D).
The presence of a linear compartment is important, since
inputs contacting two separate nonlinear dendrites will sum

linearly (Figure 5A). Also, even inputs contacting the same
nonlinear dendrite, provided they are not in the same electrical
compartment, will sum linearly.

Legenstein et al. demonstrated that a model neuron with
supralinear dendritic integration is capable of learning and
computing the FBP (Legenstein and Maass, 2011). This function
detects any correct combination of features for an object, but not
incorrect combinations. In the Boolean framework this would
be the truth table corresponding to (‘‘red’’ + ‘‘apple shape’’)
or (‘‘yellow’’ + ‘‘banana shape’’). In Figure 4 we showed that
two supralinear dendrites are sufficient to solve the FBP for
two objects made of two features each. In Figure 5, a neuron
displaying at least one supralinear compartment and a linear
compartment can also solve the FBP for four inputs. In this
case, inputs encoding the features of one object are assigned to
the supralinear compartment, and the features corresponding
to the other object are assigned to the linear compartment
(Figure 5C). Because the features of the object must ‘‘cluster’’
on the same compartment we refer to this model as using a
local strategy of computation. Interestingly, it is also possible
to implement the same computation using a global strategy,
meaning that the features corresponding to one object need to be
‘‘scattered’’ onto both the nonlinear and the linear compartment
(Figure 5D), provided that appropriate changes in the synaptic
weights and threshold values are also implemented. As shown
by Cazé et al. (2013), a model with a linear and sublinear
compartment requires the global strategy to perform the FBP
(Figure 5E). The synaptic weights and threshold will also be
different than in the case of a model neuron with a supralinear
compartment. The fact that the FBP can be implemented using
a global strategy contrasts with the notion that recognition
of an object required the clustering of the inputs carrying
its features onto a same dendritic branch (Legenstein and
Maass, 2011), and the assumption that two-layer integration
models require independent branch-specific operations
(Behabadi and Mel, 2014). Using a biophysical model with
a model stellate cell morphology, Cazé et al. showed the
predictions are robust, since only passive thin dendrites
were necessary to convey a scatter sensitivity of output
firing, even in the presence of synaptic noise (Cazé et al.,
2013).

How might simplified Boolean models be modified for
more features and/or more objects? For objects represented
by more than two features, clustered strategies would simply
require more synaptic inputs, such that the number of the
number of inputs per subunit (dendritic compartment) equals
the number features. A change in threshold would also be
required. The requirements for neuronal computations using
sublinear dendrites, however, depend on the type of computation
and are less straightforward to determine explicitly. The
necessary number of nonlinear subunits also varies given the
implementation strategy, the number of objects, the type of
nonlinear subunits and the number of features. To solve the
FBP with more objects using supralinear operations, each
object will require at least one subunit (Cazé et al., 2012). For
computations with sublinear operations, Cazé et al. showed
that using binary weights, the FBP requires a maximum of 2n
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FIGURE 5 | Computing a linearly non-separable function (full FBP)
with supralinear and sublinear dendrites and using local vs. global
synaptic wiring strategies. (A) Left, model neuron with equivalent
dendrite representation of two compartments, linear (black) and
supralinear (green), and a clustered distribution of object features (object
1 : ×1, ×2 and object 2 : ×3, x4) (local strategy). Right, schematic
representations of synaptic placements equivalent to the model on the
left. (B) Left, model neuron with equivalent dendrite representation of
two compartments, linear (black) and sublinear (blue), and a distributed
placement of inputs carrying object features. (C–E) Implementation of the

full FBP (y = 1; “apple shape and red” or “banana shape and yellow”).
(C), implementation of the full FBP using a model with a supralinear
compartment and a local wiring strategy. Inactive inputs are represented
in light gray and the corresponding feature in lighter color. (D)
Implementation of the full FBP using a model with a supralinear
compartment and a global wiring strategy. The area of the disc adjacent
to a compartment next to each object feature represents the relative
weight of this feature. Here the relative weights used are of 1 and 2.
(E) Implementation of the full FBP using a model with sublinear
compartment and a global wiring strategy.

subunits (Cazé et al., 2012). Considering non-binary weights
then reduces the number of subunits needed, but this number
is still higher than the number of necessary supralinear subunits
(nsubunits = nobjects).

In summary, neurons with sublinear dendrites are capable
of solving linearly non-separable functions, but require using a
distributed strategy of synaptic placement (Figure 5E). These
neurons will be scatter sensitive. On the other hand, neurons
with supralinear dendrites can also access the same class
of computations either by using this strategy (Figure 5C)
or by clustering functionally relevant inputs onto the same

compartment (Figure 5C). Hence they can be either scatter or
cluster sensitive. Thus, the final neuronal computations depend
not only on the type of dendritic operation and the dendritic
and axosomatic thresholds, but also the global mapping of input
features throughout the dendritic tree.

Open Questions

To understand how a neuron integrates its synaptic inputs
we need precise knowledge of the morphology, ion channel
distribution along the tree, strength and time course of
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synaptic conductances carrying particular information features,
the output spike threshold, and the spatio-temporal pattern of
activation of the synapses carrying these features. Although we
can determine most of these parameters, as we reviewed above,
the most challenging experiments are those designed to estimate
the spatio-temporal distribution of all synapses carrying relevant
sensory features (i.e., a functional connectivity map). Strategies
using injection of viral-based retrograde tracers (Marshel
et al., 2010) are powerful for the identification of connected
presynaptic cells, but these methods lack information about
features conveyed by the inputs. Using in vivo Ca2+ imaging,
researchers have begun the herculean task of estimating how
sensory features are mapped onto dendritic trees by examining
how single synapses and dendrites respond to behavioral stimuli.
It is not clear whether such feature mapping can be performed
on the entire dendritic tree, but initial results provide hints as
to whether there may be general mapping rules. Some studies
argue that features are clustered in single dendrites within the
somato-sensory cortex (Takahashi et al., 2012), consistent with
a local computation strategy, while other studies have shown
that neighboring synapses onto layer 2/3 pyramidal neurons of
the visual and auditory cortex respond maximally for activation
of inputs carrying different sensory features (Jia et al., 2010;
Chen et al., 2011), consistent with a global strategy. In light of
the conclusions described here, both computation strategies are
capable of performing linearly non-separable functions.

Why might neurons use different dendritic operations and
wiring strategies? It is conceivable that differences in timing
of sensory development or optimal local circuit wiring may
constrain wiring strategies for particular neurons. Thus to
perform the same computation, different wiring and dendritic
strategies are needed. Global wiring strategies are more amenable
to ‘‘random wiring,’’ in contrast to the specific connectivity
required for engaging local strategies. We speculate that different
dendritic operations may be implemented by neurons given
certain biological constraints, such as limitations in the number
and location of synapses carrying a particular feature, or
spike threshold. For example when both principal neurons and
interneurons receive a common set of input features along
relatively fixed axonal projections, but are required to perform
different computations, they may engage different dendritic
operations. In the cerebellum interneurons have been shown
to exhibit sublinear dendritic operations (Abrahamsson et al.,
2012; Vervaeke et al., 2012) on their parallel fiber inputs,
while Purkinje cells are thought to receive the same or similar
features from the same set of input fibers, yet display supralinear
dendritic operations (Rancz and Häusser, 2006). One could
speculate that the different nonlinearities and synaptic placement
strategies of Purkinje neurons and interneuronsmay enable them
to implement complementary computations, which ultimately
could result in a microcircuit that is highly selective for specific
input patterns.

What are the wiring rules? Three possible wiring strategies
are (1) predetermined connectivity (genetically encoded); (2)
random connectivity; and (3) activity-dependent pruning and
stabilization of connections. Although the exact contribution of
each mechanism is yet to be determined, synaptic plasticity has

been shown to modify and ultimately determine the functional
connectivity. For example computational modeling showed that
a local wiring strategy, in which synapses carrying features of
objects are clustered, can be learned using simple plasticity rules
(Legenstein and Maass, 2011). Experimental evidence supports
this theoretical work, suggesting that activity-dependent, branch-
specific plasticity strengthens clustered synaptic inputs and
their compartmentalization (Makara et al., 2009; Makino and
Malinow, 2011; Takahashi et al., 2012). On the other hand,
synaptic plasticity could also reinforce global computational
strategies. In cerebellar stellate cells, high-frequency firing
of clustered inputs has been described to induce profound
presynaptic short- and long-term synaptic depression (Beierlein
and Regehr, 2006; Soler-Llavina and Sabatini, 2006). Such
plasticity mechanisms would reinforce the neuron’s scatter
sensitivity, and thus tend to optimize the output firing for
specific spatially and temporally sparse synaptic activity patterns
(Abrahamsson et al., 2012; Cazé et al., 2013).

Synchronized neuronal activity is known to cause oscillations
of the dendritic voltage, which would inevitably reinforce
electrical interactions between dendrites and thus alter the
effective number of isolated dendritic subunits that contribute
to the neuronal computation. For example, Remme et al. (2009)
showed theoretically that input-dependent synchronization of
intrinsic dendritic voltage oscillations can facilitate global voltage
propagation, even throughout highly distributed dendritic trees.
It will be important to examine how local and global dendritic
integration strategies might be influenced by brain oscillations,
thus ultimately altering neuronal and even circuit computations.

Since many types of interneurons are known to contact
specific locations within the dendritic tree, inhibition will
undoubtedly influence integration properties and information
processing by neuronal circuits (as reviewed by Palmer et al.,
2012). Nevertheless, the experimental challenge is to determine
not only the timing and location of inhibition within the
dendrite, in order to determine their alteration of dendritic
operations, but also whether particular features are conveyed
similarly or differently by excitatory and inhibitory inputs.
Although complex, the problem is critical to understanding
brain function as the balance of excitation and inhibition
is well known to be tightly regulated, with alterations being
implicated in disease (Yizhar et al., 2011). Using the Boolean
analysis of equivalent dendrites, one can deduce that negative
weight associated with inhibition is capable of performing
the Boolean NOT function. Such a function would enable
a simple implementation of XOR computations, further
expanding the number of computable linearly non-separable
functions.

Summary

In this review we described categories of biophysical and
cellular mechanisms that influence dendritic operations: passive
and active membrane properties of the dendritic tree, the
time course and amplitude of synaptic activation, the output
spike threshold, and finally the location and pattern of the
activation of synaptic inputs. We discussed how each of these
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parameters shapes and tunes the sI/O. We briefly discussed
techniques for the characterization of dendritic operations,
including electrode-based methods to stimulate and/or record
from dendrites, optical techniques to image dendritic activity
or uncage neurotransmitter, and biophysical modeling. In
order to understand how the major classes of dendritic
operations (linear, sublinear and supralinear) link to neuronal
computations, we reviewed the use of binary models associated
with Boolean analysis. This analysis provides insight into the
types of computable neuronal functions, such as the object
feature binding problem. We also reviewed how such functions
can be implemented with either supralinear or sublinear
dendrites depending on the spatial mapping of those features
within the dendritic tree. Because the synaptic activity pattern
ultimately determines the neuronal computations, we propose
that the elemental computational unit is the neuron rather
than the dendrite (Cazé et al., 2014). Although there are cases
(local strategies) where dendritic operations can dictate the

neuronal computation, dendritic operations must be studied and
understood in the context of the knowledge of the wiring of
specific features onto the dendritic tree.
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