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On scheduling with the non-idling constraint∗

Philippe Chrétienne†‡

February 4, 2014

Abstract

In this paper, we give an overview of the main results obtained
on the complexity of scheduling under the non-idling constraint, i.e,
when the jobs assigned to each machine must be processed with no
intermediate delay. That constraint is met in practice when the cost of
intermediate idle time is too high due to the idle time itself and/or the
machine restarting. The non idling constraint is a strong constraint
that often needs a new solving approach and most results about classi-
cal scheduling problems do not easily extend to the non-idling variant of
the problem. In this survey, we mainly consider the non-idling variants
of the basic scheduling problems. So, we first present basic properties,
complexity results and some algorithms concerning the one-machine
non-idling scheduling problem. Then we consider the m-machine non
idling scheduling problem. We show that a few basic problems may be
solved by rather easy extensions of the algorithm solving their classical
counterpart. However, the complexity status of the non idling version
of quite easy polynomial basic problems remains an open question. We
finally consider a more constrained version of non-idling, called the ”ho-
mogeneously non idling” constraint, where for any subset of machines,
the union of their busy intervals must make an interval and we present
the structural property that leads to a polynomial algorithm for unit
time jobs and a weak precedence. We conclude by giving some research
directions that seem quite interesting to study both for theoretical and
practical issues.

1 Introduction

This paper is an updated version of [1]. We consider scheduling problems
where a set of jobs {J1, · · · , Jn} must be processed on a set {M1, · · · ,Mm}
∗This is an updated version of the paper that appeared in 4OR, 12(2), 101-121 (2014)
†Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
‡CNRS, UMR 7606, LIP6, F-75005, Paris, France
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of identical machines. At any time, a machine cannot process more than one
job and a job cannot be processed by more than one machine. Moreover at
most m jobs may be processed at the same time. Each job Ji has a process-
ing time pi, a release time ri (its execution cannot start before ri) and may
also have a deadline di. If di is a hard deadline, then the execution of Ji
must not end after di while if di is a soft deadline, Ji may end after di but,
in that case, Ji is late and penalized in the objective function. In addition
to the release dates and deadlines, the jobs may be constrained by a set ≺
of precedences so that if (Ji, Jj) is such a precedence, the execution of Jj
cannot start before the end of Ji. A schedule assigns each job a machine
and a starting time on that machine so that all the constraints are satisfied.
The quality of a schedule is measured by an objective function (e.g., the
makespan, the maximum lateness,. . . ) that must be minimized. In general,
Φ is a function of the completion times of the jobs. Φ is a regular objective
function if it non decreasing with respect to the completion time of each job.
A schedule is optimal if the corresponding value of the objective function is
minimum over the set of schedules.
The scheduling problem just described is denoted by P |pj , rj , dj ,≺ |Φ where
the first field describe the resource constraints (here P means that the num-
ber of identical machines is a parameter of the problem), the second field
describes the job constraints (here the release dates, the deadlines, and the
precedence constraints) and the third field Φ is the objective function. In
the particular case of a decision problem when the objective is to decide
whether there exists at least one schedule, Φ is replaced by the symbol −.
Most studies concerning the scheduling problem P |rj , dj ,≺ |Φ assume that
no cost is incurred when a machine waits between the completion of a job
and the start of the next job. Moreover, it is well-known that such waiting
delays are often necessary to get optimality. This is the key feature why list
algorithms, that do not allow a machine to wait for a more urgent job, do
not generally provide optimal schedules. However, in some applications such
as those described in [6], the cost of making a running machine stop and
restart later is so high that a non-idling constraint is put on the machine so
that only schedules without any intermediate delays are required.
A simple example could be the following. Let us suppose that n products
P1, · · · , Pn are respectively delivered in n distinct warehouses W1, · · · ,Wn

at times r1, · · · , rn. These products must be collected by a vehicle so that
the vehicle must not wait for the arrival of any of these products. If the
sum of the loading time of Pi and of the travel time from Wi to Wi+1 is
pi, then the problem is to find a non-idling schedule of the sequence of jobs
(J1, · · · , Jn) on a single machine (here the vehicle) where the parameters of
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job Ji are ri and pi. Indeed, a schedule must be such that, when the vehicle
arrives at any warehouse Wi, product Pi must be already there. So, when
arriving at warehouse Wi, the vehicle must immediately load Pi and then
restart to Wi+1. In other words, we search for a non idling schedule. As
will be shown in the paper, this problem is simple since it consists in finding
a starting time of the sequence (T1, · · · , Tn) such that these tasks may be
scheduled without any intermediate idling time. In this example, the total
travel time of any schedule is

∑n
i=1 pi and no objective function has been

mentionned. One could be the makespan (this problem is simple and solved
in the paper). Another (much more difficult to handle in the general case)
could be

∑n
i=1 fi(Ci) where Ci is the completion time of task Ti and where

fi(t) is a cost function attached to the completion time of task Ti.
Problems concerning power management policies may also yield similar
scheduling problems [7] where for example each idling period has a cost and
the total cost has to be minimized [2]. Note that the non-idling constraint
will not necessarily ensure full machine utilization (i.e: no idling period from
time 0 to the completion time of the last job of the machine) but will remove
the cost of machine re-starts, maybe at the price of processing the first job
of each machine later.

Contrary to the well-known no-wait constraint in shop scheduling where
no idle time is allowed between the successive operations of a same job, the
non-idling machine constraint has just begun to receive research attention
in the literature. To the best of our knowledge, the first work on such
problems concerns the earliness-tardiness single-machine scheduling problem
with no unforced idle time, where a Branch and Bound approach has been
developed [5]. More recently, some aspects of the impact of the non-idling
constraint on the complexity of single-machine scheduling problems as well
as the important role played by the earliest starting time of a non-idling
schedule has been studied in [3]. Moreover, in [4] and [9], exact methods
have been designed to solve the basic one-machine non-idling problem and
in [10], approximation algorithms have been developped for the non-idling
single-machine scheduling problem with release and delivery times.

2 The non-idling single-machine problem

Let Π = 1|rj , prec|Φ be a one-machine scheduling problem with jobs set
J = {J1, · · · , Jn} where:

• the release dates rj are compatible with prec (i.e: if job Ji precedes
job Jj , then rj ≥ ri + pi) and satisfy r1≤ · · ·≤rn;
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• Φ is a regular objective function;

• all numerical data are positive integers.

For any K ⊂ {1, · · · , n}, the sum
∑

j∈K pj is denoted by PK .
Let σ = (Ji1 , · · · , Jin). The sequence σ is said to be feasible if there is at
least one feasible schedule with sequence σ. If σ is feasible, we denote by
e(σ) the earliest feasible schedule with sequence σ. Since Φ is regular, e(σ) is
also the best feasible schedule with sequence σ. Finally we denote by Σ the
set of the feasible sequences and by Σ∗ the subset of the optimal sequences
of Σ.
The non-idling scheduling problem ΠNI associated with Π is denoted by
1, NI|rj , prec|Φ in the 3-field notation. ΠNI has exactly the same instances
as Π but, for each instance, the candidate schedules are those feasible sched-
ules whose jobs are processed on the machine with no intermediate delay.
In the non preemptive case, a sequence σ = (Ji1 , · · · , Jin) is said to be NI-
feasible if there is at least one non-idling feasible schedule with sequence σ.
Given a NI-feasible sequence σ, we denote by eNI(σ) the earliest non-idling
feasible schedule with sequence σ. Since Φ is regular, eNI(σ) is also the best
non-idling feasible schedule with sequence σ.
It is easily seen that the starting time αNI(σ) of eNI(σ) is as follows:

αNI(σ) = max{0, max
k∈{1,··· ,n}

{rik −
k−1∑
q=1

piq}

Moreover, as illustrated in Figure 1, we got in this case eNI(σ) from e(σ)
simply by right-shifting all the blocks of e(σ) except the last one.

time
the schedule e(s) (3 blocks)

time
the schedule eNI(s) 

0

0

Figure 1: From e(σ) to eNI(σ)

We denote by ΣNI the set of the NI-feasible sequences and by Σ∗NI the sub-
set of the optimal sequences of ΣNI .

4



Finally, αNI and βNI will respectively denote the earliest starting time
of a non-idling feasible schedule and the earliest starting time of an optimal
non-idling feasible schedule, whenever these schedules exist.

2.1 Complexity aspects

Let us first observe that 1, NI|rj , dj |− is NP-complete in the strong sense
since in the well-known reduction from 3-PARTITION, the feasible sched-
ules of the instance of 1|rj , dj |− are non-idling [?].
The same argument may be used from [8] to show that the decision versions
of 1, NI|rj |Lmax and 1, NI|rj |

∑
Cj are respectively NP-complete and NP-

complete in the strong sense.
Nevertheless it is not always true that the non-idling version of an NP-
complete single-machine scheduling problem is also NP-complete. For ex-
ample, deciding whether non-preemptive jobs may be scheduled within given
machine availability time intervals, is NP-complete while its non-idling vari-
ant is clearly polynomial.

2.2 The earliest starting time of a non-idling schedule

We know from Section 2.1 that the question whether a non-idling schedule
exists is an NP-complete problem. In fact, when Π has no hard deadlines or
if the time windows are regular (i.e: (i, j) ∈ prec⇒ (ri ≤ rj) and (di ≤ dj)),
then there is at least one non-idling schedule and αNI is easy to compute.

Property 1. Assume Π = 1, NI|rj , prec|Φ either has no hard deadlines
or has regular time windows and at least one NI-feasible sequence. Then
αNI = αNI(J1, · · · , Jn).

Proof. In both cases, we know that ΣNI 6= ∅. Let σ be a sequence of ΣNI

such that the two consecutive jobs Ji and Jj satisfy i > j. Since Ji is not
an ascendant of Jj in the precedence graph, we may exchange these two
jobs in the schedule eNI(σ) and get a feasible non-idling schedule starting
at time αNI(σ) and whose sequence σ′ is obtained by exchanging the jobs Ji
and Jj in σ. Since eNI(σ′) is the earliest non-idling schedule with sequence
σ′, we get that αNI(σ′) ≤ αNI(σ). After O(n2) such exchanges, we get
that (J1, · · · , Jn)) is a NI-feasible sequence and that αNI((J1, · · · , Jn)) ≤
αNI(σ).

Remark 1. When Π has no hard deadlines, αNI may be computed in
polynomial time. So any problem 1, NI|prec, ri|f(Cmax), where f is non-
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decreasing, is polynomial. In that case the non-idling schedule eNI(J1, · · · , Jn)
is optimal.

2.3 Some specificities of non-idling scheduling

Let Π be a single-machine scheduling problem such that ΣNI 6= ∅. Figure
2 illustrates a situation where βNI > αNI for a small instance with 2 jobs
and the cost function C1 + 3C2.

schedule e(J1,J2) : cost=11 optimal non-idling schedule : cost=10

J1 J2

0 1 2

r1 r2

3

J1J2

0 1 2

r1 r2

4

Figure 2: βNI > αNI

We now give an example showing that a sequence of Σ∗ may not be a
sequence of Σ∗NI . Consider the instance of 1, NI|rj , pj , qj |max(Cj + qj)
where qj is the tail of job Jj and whose data are given in the array below:

i 1 2 3 4 5 6

pi 5 3 4 3 5 3

ri 0 10 11 11 20 30

qi 40 7 26 24 31 8

Figure 3 shows first the schedule of Σ we get using the Jackson’s rule.
This schedule is optimal since its cost is 56 and in any schedule we have
C5 + q5 ≥ 56. So the sequence π = (J1, J2, J3, J4, J5, J6) is in Σ∗. The
next schedule is eNI(π) whose cost is 61 and where it clearly appears that
scheduling job J2 at time 15 is not a good decision since jobs J3 and J4 are
also ready at that time but have greater latency times. The last schedule is
eNI(J1, J3, J5, J4, J2, J6), which is an optimal non-idling schedule since its
cost is 56.
Before introducing a third example, let us denote by I(u) (u ≥ 0) the
instance of Π with the same parameter values as the initial instance (say I)
except for the release dates rj(u) which are defined by:

∀j ∈ {1, · · · , n}, rj(u) = max{rj , lj + u}

where lj is the value of longest path ending at Jj in the precedence graph of
I. The feasible schedules of I(u) are the schedules of I whose starting time is
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0 10 11 20 30
J1 J2 J3 J4 J5 J6

r1 r2 r3=r4 r5 r6

0 10 11 20 30
J1 J2 J3 J4 J5 J6

r1 r2 r3=r4 r5 r6

15

0 10 11 20 30
J1 J2J3 J4J5 J6

r1 r2 r3=r4 r5 r6

15

25

2825

33

33

33

Figure 3: An instance such that S∗ ∩ S∗NI = ∅

at least u and the notations Σ(u),ΣNI(u),Σ∗(u),Σ∗NI(u), α(σ, u), αNI(σ, u),
e(σ, u) and eNI(σ, u) are defined in the same way as Σ,ΣNI ,Σ

∗,Σ∗NI , α(σ),
αNI(σ), e(σ) and eNI(σ) for instance I but apply to the instance I(u). What
the following example shows is that if u− is the smallest u such that there is
a sequence σ in Σ∗(u−) such that the schedule e(σ, u−) is non-idling, then
this schedule is not necessarily an optimal non-idling schedule.
Let us consider the instance described by the following array where the
objective function is fa(Ca) + fb(Cb) + fc(Cc).

jobs pj rj fj(t)

a 2 0 { 0 if 2 ≤ t ≤ 5,
t− 5 otherwise.

b 3 5 t− 8

c 2 7 5(t− 9)

Figure 4 first shows the schedules e(σ, u) for the six orders and for the three
cases: u = 3, 3 < u < 5 and u = 5. In each rectangle of a schedule are
inscribed the job and its individual cost in the schedule.
First, it is easy to see that αNI = 3. We see that Σ∗(3) = {(a, c, b)} and
that the corresponding schedule e((a, c, b), 3) has cost 4 but is not a non-
idling schedule. For 3 < u < 5, we still have Σ∗(u) = {(a, c, b)} and the
corresponding schedule e((a, c, b), u) whose cost is u+ 1 is not a non-idling
schedule. At time u = 5, we again have Σ∗(5) = {(a, c, b)} but now the
corresponding schedule e((a, c, b), 5) is a non-idling schedule with cost 6.
For this instance, we thus have u− = 5 but the corresponding non-idling
schedule e((a, c, b), 5) of Σ∗(5) is not an optimal non-idling schedule since
the schedule eNI((a, b, c)) has cost 5.
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2.4 The Earliest Non-Idling property

The question whether there is an optimal non-idling schedule starting at
time αNI is clearly a quite interesting matter. . A problem with that
property is said to have the ENI property. In [3], “No-Wait” schedules (in
short NW schedules) are introduced and it is proved that problems for which
NW schedules are dominant have the ENI property. Moreover it is shown
that preemptive problems have the ENI property.

Definition 1. A schedule is said to be no-wait if it is non-idling whenever
there is at least one non completed available job.

Property 2. If the NW schedules are dominant, then Π has the ENI prop-
erty.

Remark 2. The dominance of NW schedules is not a necessary condition
for the ENI property to be satisfied. This is illustrated by the small example
of Figure 2 with two jobs where e(J1, J2) is the unique NW schedule of Σ
while the optimal non-idling schedule, which starts at time βNI = αNI = r2,
is e(J2, J1).

An interesting case when the ENI property is satisfied is when preemp-
tion is allowed. The formal proof, given in [3], shows that, in this case,
NW-schedules are dominant.

Property 3. If preemption is allowed, then the ENI property is satisfied.

Property 3 may be used to easily solve problems 1, NI|prec, rj , pmtn|fmax,
1, NI|rj , pmtn|

∑
Cj and 1, NI|rj , dj , pmtn|−. In each case, the algorithm

first computes αNI and then applies the algorithm solving the unrestricted
problem to the instance I(αNI). Consider for example the instance of
1, NI|rj , dj , pmtn|− whose data are written in the array below:

j 0 1 2 3 4 5 6 7 8

pj 3 4 2 5 7 2 1 2 2

rj 0 0 4 13 16 27 28 32 32

dj 23 24 23 27 23 32 30 36 38

We have αNI = 8. Applying the Jackson preemptive algorithm to I(8), we
get the non-idling schedule illustrated by Figure 6.
Since this schedule is not feasible (job 3 is completed at time 29), we may
conclude that the original instance has no feasible preemptive non-idling
schedule.
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sequence cost optimal schedule of the sequence 

a,u-3 c,5(u-2)b,u-37u-16(a,b,c)

a,u-3 c,0 b,4u+1(a,c,b)

b,0 a,5 c,1520(b,a,c)

b,0 c,5 a,712(b,c,a)

c,0 a,6 b,612(c,a,b)

c,0 b,4 a,913(c,b,a)

3<u<5

sequence cost optimal schedule of the sequence

a,2 c,15b,219(a,b,c)
a,2 c,0 b,46(a,c,b)

b,0 a,5 c,1520(b,a,c)

b,0 c,5 a,712(b,c,a)

c,0 a,6 b,612(c,a,b)

c,0 b,4 a,913(c,b,a)

u=5

sequence cost optimal schedule of the sequence 

a,0 c,5b,05(a,b,c)

a,0 c,0 b,44(a,c,b)

b,0 a,5 c,1520(b,a,c)

b,0 c,5 a,712(b,c,a)

c,0 a,6 b,612(c,a,b)

c,0 b,4 a,913(c,b,a)

u=3

0 5 7
u

3 4 6 8 9 10 11 12 14

0 5 7
u

3 4 6 8 9 10 11 12 14

0 5 7
u

3 4 6 8 9 10 11 12 14

Figure 4: (a, c, b) ∈ Σ∗(5),e((a, c, b), 5) is non-idling but not optimal
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Jk Jl
....... JnJ1 J2 ...

taNI

jobs of T .......

u0

the schedule eNI(J1,...,Jn)

the schedule s*

Figure 5: The schedules s∗ and eNI(J1, · · · , Jn).

0 2 4 1 3 6 5 7 8

0 8 11 13

1

16 23 24 29 30 32 34 36

Figure 6: An optimal non-idling schedule

2.5 The critical times of an instance

2.5.1 Definition

Let us first denote by Z(u) (u ≥ 0) the set of the sequences σ such that we
get a feasible non-idling schedule (denoted by z(u, σ)) when performing the
jobs from time u with no intermediate delays in the order of σ. The critical
times of an instance are then defined as the times u at which Z(u) increases
or decreases.
Let σ = (Ji1 , · · · , Jin). It is easy to see that z(u, σ) meets the release times
if and only if u ≥ αNI(σ). Conversely, z(u, σ) meets the deadlines if and
only if u ≤ ωNI(σ) where ωNI(σ) = mink∈{1,··· ,n}{d̃ik −P{i1,··· ,ik}} is (if it is
non negative) the latest time at which a non idling schedule with sequence σ
can start and respect the deadlines. From these definitions, we get that the
sequence σ is NI-feasible if and only if αNI(σ) ≤ ωNI(σ) and that σ ∈ Z(u)
if and only if αNI(σ) ≤ u ≤ ωNI(σ).
It follows from the definitions of αNI(σ) and ωNI(σ) that the critical times
of an instance are the distinct and non negative values we may obtain from:

1. the values rj − PK where Jj is a job and K is a subset of jobs such
that Jj 6∈ K;

2. the values dj − PK where Jj is a job and K is a subset of jobs such
that Jj ∈ K.

Also note that if 0 is not such a value, then by convention it will also be
considered as a critical time. If N is the number of critical times, then
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we denote by (c1, · · · , cN ) the sorted list of these values. Let z∗(ck), k ∈
{1, · · · , N} be an optimal non-idling schedule starting at time ck. The next
property, whose proof is given in [3], shows that the schedule z∗(ck) whose
cost is minimum is an optimal non-idling schedule.

Property 4. Let (c1, · · · , cN ) be the sorted list of the critical times of an
instance of ΠNI and let k∗ be such that: ∀k,Φ(z∗(ck∗)) ≤ Φ(z∗(ck)). Then
z∗(ck∗) is an optimal non-idling schedule.

2.6 Equal processing times

We assume in this section that ΠNI is a single-machine scheduling problem
whose non preemptive jobs have the same processing time p and that the
objective function Φ(s) has one of the two forms

∑
fj(Cj) or max fj(Cj)

where fj is a non decreasing function of the completion time of Jj . We
first consider the special case of independent jobs and show that the corre-
sponding problems are polynomial even if the individual cost functions are
no longer regular.
It is clear from their definition that the critical times of an instance are the
distinct and non negative values we may obtain from:

1. the value 0;

2. the values rj − ap where Jj is a job and a ∈ {0, · · · , n− 1};

3. the values dj − bp where Jj is a job and b ∈ {0, · · · , n} .

We thus know that N (the number of critical times) is O(n2) and that the
sorted list (c1, · · · , cN ) of the critical times may be computed in O(n2 log n)
time.
Let u ≥ 0 and let us denote by z∗(u) an optimal non-idling schedule starting
at u (if such a schedule exists). Property 5 shows [3] that, if it exists, the
schedule z∗(u) may be computed by solving an assignment problem.

Property 5. For any time u ≥ 0, the schedule z∗(u) may be computed in
polynomial time

It follows from Property 4 and Property 5 that the problems 1, NI|pj =
p, rj , dj |Φ where Φ has one of the two forms

∑
fj(Cj) or max fj(Cj) are

polynomial.
Let us now consider the case of dependent jobs, that is the class of problems
1, NI|rj , pj = p, prec|Φ. We get from Property 4 that a sufficient condition
for the problem to be polynomial is that its special case with a fixed schedule
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starting time is itself polynomial. The preceding argument may for example
be applied to show that problems 1, NI|rj , pj = 1, prec| fmax, 1, NI|rj , pj =
p, prec|

∑
Ci and 1, NI|rj , pj = p, prec| Lmax are polynomial since their

variant with a fixed schedule starting time is itself polynomial [11],[12].

3 The non-idling m-machine problem

We consider in this section the case when m identical parallel machines are
available to process the jobs and when the jobs assigned to each machine
must be processed without any intermediate delay. We first consider the
special case with fixed job sequences on each machine. Then we show that
the problems P,NI|pj = 1, intree| Cmax, P2, NI|pj = 1, prec| Cmax and
P2, NI|pj = 1, rj , dj |− may be solved by rather easy extensions of the al-
gorithms solving their classical versions. We then show that the problem
P,NI|pj = 1, prec| Cmax is NP-hard while the complexity of P,NI|pj =
1, rj , dj |− is still unknown. We finally consider a stronger version of the
non-idling constraint, called the Homogeneously Non-Idling constraint (HNI
in short), where, for every subset of machines, the union of their busy pe-
riods must be an interval. For the special case P,HNI|pj = 1, rj , dj |−, we
provide a necessary and sufficient condition for a schedule to exist and we
propose a polynomial algorithm to solve the problem.

3.1 Fixed sequences of jobs on each machine

Let us denote by Lk the sequence of jobs processed by machine Mk, by Lk(p)
the job with rank p in Lk and assume that Lk is compatible with prec (i.e.,
Ji = Lk(r), Jj = Lk(s) and (Ji, Jj) ∈ prec implies r < s). Then a schedule
is entirely defined by the starting times θk of the first job of each sequence.
If (Ji, Jj) ∈ prec, Ji = Lk(q), Jj = Ll(r) and k 6= l, then the precedence
constraint (Ji, Jj) is satisfied if and only if:

θl + P l(r − 1) ≥ θk + P k(q)

where P k(r) =
∑r

s=1 pLk(s). Now, if we consider all the precedence con-
straints (Ji, Jj) such that Ji is in Lk and Jj is in Ll, all these constraints
will be satisfied if and only if :

θl − θk ≥ max{P k(q)− P l(r − 1)|(Ji, Jj) ∈ prec} = v(k, l, prec).

Let us define the arc-valued graph GM = (M,A) where M is the set of
machines, and where there is an arc (Mk,Ml) valued by v(k, l, prec) if there
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is at least one precedence constraint (Ji, Jj) in prec with Ji in Lk and Jj
in Ll. Then it is clear that at least one schedule exists if and only if GM
has no positive circuit and that in this case, there is an earliest schedule
(i.e., the smallest θk values) given by the values of the longest paths ending
at each node of GM . Figure 7 shows the graph GM associated with two
instances of the problem, one with no feasible schedule and one with an
earliest schedule.

1 2 4

7

3

5 6

9 8

12 11 10

1 2 4

7

3

5 6

9 8

12 11 10

L(1)=(1,3,5,7,8,10,12)
L(2)=(2,4,6,9,11)

M1 M2

(1)
(1)

(0)

M2M1
(-1)

no NI-schedule

L'(1)=(1,4,7,5,8,10,12)
L(2)=(2,3,6,9,11)

1 4 7 5 8 10 12

2 3 6 9 11

An optimal NI-schedule

Figure 7: 2 instances with fixed sequences of jobs.

3.2 Extension of classic algorithms

In this section, we show that the well-known polynomial algorithms solv-
ing respectively the problems P,NI|pj = 1, intree| Cmax, P2, NI|pj =
1, prec| Cmax and P2, NI|pj = 1, rj , dj |− may be rather easily extended
to solve their non-idling versions.
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3.2.1 P,NI|pj = 1, intree| Cmax

It is well-known that the problem P |pj = 1, intree| Cmax is polynomially
solved by the Hu’s algorithm [16], which is a list algorithm where the priority
of a job is its level in the intree. A key property of the schedule issued from
that list is that the number of jobs scheduled in time slot t+ 1 is not more
than that of time slot t. Since the machines are identical, by assigning
the n(t) jobs of slot t to the machines M1, · · · ,Mn(t), we get a non-idling
schedule which is obviously optimal. Figure 8 shows an example.

1 2 4 3

5

67

8

1 4 6 8

2 5 7

3

Figure 8: an instance of P,NI|pj = 1, intree| Cmax.

3.2.2 P2, NI|pj = 1, prec| Cmax

We recall that the problem P2|pj = 1, prec| Cmax is polynomially solved by
the Coffman-Graham algorithm [15] (CG algorithm in short).
Let I be an instance of P2, NI|pj = 1, prec| Cmax. The following property
shows that, if I has at least one schedule, then there is an optimal one with
a quite specific structure.

Property 6. If I has at least one schedule, then there exists an optimal
schedule whose structure is illustrated in Figure 9 where:

1. the jobs scheduled before a (called the left jobs) are the ascendants of
job a in prec;

2. the jobs scheduled after b (called the right jobs) are the descendants of
job b in prec;
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3. the jobs scheduled after a and before b (called the middle jobs) are
optimally scheduled without any idle time by the CG algorithm.

Proof. Let O be a schedule of I. If the jobs assigned to machine M1 and the
jobs assigned to machine M2 are processed in disjoint intervals in S (case 1
of Figure 9), then by applying the corresponding transformation, we get an
at least as good schedule O1, with no middle jobs), which has the expected
structure. If the two intervals contain at least a common slot (case 2 of
Figure 9), then by applying the corresponding transformation, we again get
an at least as good schedule O1 (with at least two middle jobs) which has
the expected structure.
We now show that if the job a exists in O1, then O1 may be transformed
into a schedule O2 (with the same structure) such that the jobs scheduled
before the middle jobs of O2 are the ascendants of the job a of O2 (if there
is one) in prec. Assume job Jx is not an ascendant of the job a of O1 in prec
and is the last such job to be scheduled before a in O1. Thus, job Jx may
be scheduled on machine M2 in the same time slot as job a and all the jobs
scheduled in O1 after Jx may be left-shifted by one time slot (see Figure
10). Iterating the process until either the job a (of the current schedule)
no longer exists or all jobs scheduled before a are the ascendants of a, we
get a schedule O2 at least as good as O1 satisfying the condition 1) of the
property.
The same line of reasoning may be applied to the schedule O2 if there is a
job b in that schedule.
We thus finally get a schedule O3 at least as good as O2 satisfying the
conditions 1) and 2) of the property. If O3 has some middle jobs, it is clear
that, since the partial schedule of O3 restricted to these middle jobs has no
idle time, the condition 3) of the property is also satisfied by O3.

a b

The structure of a dominant NI-schedule

Figure 9: The dominant structure of NI-schedules.

Property 6 easily yields to a polynomial algorithm (not necessarily the best)
solving P2, NI|pj = 1, prec| Cmax. Let (a, b) be two distinct jobs such
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M1

M2

M1

M2

M1

M2

M1

M2

Getting a dominant schedule

case 1

case 2

Figure 10: Getting the dominant structure.
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that (b, a) 6∈ prec. Let Asc(a) (resp. Desc(b)) be the ascendants (resp.
descendants) of a (resp. b) in prec. Let CG(a, b) be the schedule provided by
the CG algorithm on the restriction of I to the jobs of J \(Asc(a)∪Desc(b)).
Finally let

F (a, b) =

{
1 if CG(a, b) has an idle time,
0 otherwise.

Then we get from Property 6 that the instance I has no schedule if, for
every (a, b) such that (b, a) 6∈ prec, we have F (a, b) = 0. Otherwise, the
optimal schedule of I is issued from the couple (a, b) such that F (a, b) = 1
and |Asc(a)|+ |Desc(b)| is minimum.
Since the complexity of the CG algorithm is O(n2), computing F (a, b) takes
O(n2) time and the overall complexity of the algorithm is O(n4).

3.2.3 P2, NI|pj = 1, rj , dj |−

We recall that the problem P2, NI|pj = 1, rj , dj |− is polynomially solved
by the Earliest Deadline First algorithm (EDF algorithm in short) that
schedules one ready job with the minimum deadline as soon as a machine is
idle and there is at least one ready job. Let I be an instance of P2, NI|pj =
1, rj , dj |−. The following property shows that, if I has at least a schedule,
then there is an optimal one with the following structure.

Property 7. If I has at least one schedule, then there exists an optimal
schedule such that the value of the starting time of the busy period of each
machine is rj − k where j ∈ {1, · · · , n} and k ∈ {0, · · · , n}.

Proof. Assume that I has a schedule that executes respectively the sequences
σ1 and σ2 on M1 and M2. Let n1 = |σ1| and n2 = |σ2|. We know from Sec-
tion 2 that eNI(σ1) and eNI(σ2) are also feasible non-idling schedules of the
corresponding subsets of jobs. Since αNI(σ1) = max{0,maxk∈{1,··· ,n1}{rik −
(k−1)} and αNI(σ2) = max{0,maxk∈{1,··· ,n2}{rik−(k−1)}, we get a feasible
non-idling schedule with the required structure.

Let us now consider the following variant, NI-EDF, of EDF that takes
as input the instance I, the starting time slots a1, a2 (with values satisfying
Property 7) of the busy periods of M1 and M2 and the numbers of jobs n1

and n2. Let a = min{a1, a2} and b = max{a1, a2}. The NI-EDF applies
the following rule at each time-slot t from the leftmost one. If t belongs to
exactly one of the two busy periods and there is at least one unscheduled
ready job, then schedule one ready job with the minimum deadline and
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consider the next time slot. If there is no ready unscheduled job at t, then
stop (failure case). If t belongs to the two busy periods and there are at least
two unscheduled ready jobs, then schedule the jobs with the two smallest
deadlines and consider the next time slot. If there is at most one ready
unscheduled job at t, then stop (failure case).
It is easy to show that the instance I has at least a schedule where the
busy periods of machines M1 and M2 are respectively the sets of time slots
{a1, · · · , a1+n1−1} and {a2, · · · , a2+n2−1} if and only if the the algorithm
NI-EDF applied to (I, a1, a2, n1, n2) does not stop in the failure case.
Since NI-EDF is clearly polynomial, we get from Property 7 that the problem
P2, NI|pj = 1, rj , dj |− is polynomial. It is easy to see that this result easily
extends to a fixed number k of machines, that is Pk,NI|pj = 1, rj , dj |− is
polynomial.

3.3 The homogeneous non-idling constraint

Up to now, the complexity of P,NI|pj = 1, rj , dj |− remains an open ques-
tion. So, in order to better understand why the complexity analysis of this
problem is difficult, a more constrained variant of P,NI|pj = 1, rj , dj |−
has been studied [13] where the non-idling constraint is replaced by the ho-
mogeneously non idling (HNI in short) constraint. A schedule satisfies the
HNI constraint if, for any subset M ′ of machines, the time slots at which
at least one of the machines of M ′ is busy, make an interval. Clearly an
HNI schedule is an NI schedule but the converse is not true, as shown on
Figure 11 where the schedule on the left does not satisfy the HNI constraint
since, for the subset {M1,M3}, the set of the times units when M1 or M3

is busy, is not an interval. On the contrary, the schedule on the right is an
HNI-schedule.
So, we are given a set J = {J1, · · · , Jn} of n unit-time independent jobs that
are to be processed on a set M = {M1, · · · ,Mm} of m identical machines.
Job Ji must be executed within a given time-window F (i) = {ri, · · · , di}.

A schedule (T, µ) assigns a time-unit T (i) and a machine µ(i) to each
job Ji so that :

1. for each job Ji ∈ J, T (i) ∈ F (i);

2. for each time slot t, |{i|T (i) = t}| ≤ m;

3. for any M ′ ⊆ M , the time units t at which there is at least a job Ji
processed at t (i.e: T (i) = t) by a machine of M ′ ((i.e: µ(i) ∈ M ′)
make a single interval.
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Figure 11: HNI-schedule versus non-HNI schedule

The decision problem Π0 is to decide whether a given instance (J, F,m)
has at least one schedule. If the answer is yes, the instance is said to be
feasible.

Assume that (T, µ) is a schedule of the instance (J, F,m) and let us
denote by nT (t) the number of jobs scheduled in the time slot t. It is easy
to see that if the nT (t) jobs scheduled in time slot t are assigned to the
machines M1, · · · ,MnT (t), then we get a new schedule with the so called
pyramidal structure as shown on Figure 12. Thus an m-matching T , which
is not a schedule, has at least a k-hole (k ∈ {0, · · · ,m− 1}), i.e., a time slot
t such that there are two time slots t′ and t′′ with t′ < t < t′′, nT (t′) > k,
nT (t′′) > k and nT (t) = k. As an example, time slot t = 2 is a 1-hole of the
m-matching on the left part of Figure 12.

3 6 8

10

92

1 5

4 7

A non-pyramidal schedule 

3 6 8

10

92

1 5

4 7

A pyramidal schedule 

Figure 12: The pyramidal structure

If Θ is an interval (i.e: a finite set of consecutive positive integers), let
us denote by J(Θ) the set of the jobs Jj such that F (j) ⊆ Θ. Also, for

any interval Θ, we denote by λ(Θ) the number maxΘ′∈Int(Θ)d
|J(Θ′)|
|Θ′| e, where

Int(Θ) is the set of the intervals contained in Θ. Moreover, if Θ1 and Θ2

are two intervals such that Θ1∪Θ2 is not an interval (two such intervals will
be called disconnected), then Mid(Θ1,Θ2) is the interval made by the time

19



slots between Θ1 and Θ2. Finally (Θ1, · · · ,Θs) is a sequence of disconnected
intervals if for i ∈ {1, · · · , s−1} the ending time slot of Θi is strictly smaller
than the starting time slot of Θi+1.

3.3.1 Existence of a schedule

Let I = (J, F,m) be an instance of Π0. Following are three basic properties
of Π0, the first two ones concern the existence of an m-matching, the third
one comes from the pyramidal structure of a schedule.

Property 8. For any interval Θ and any m-matching T of I, there is at
least one time slot t of Θ such that nT (t) ≥ λ(Θ)

Property 9. I has at least one m-matching if and only if, for any interval
Θ, we have |J(Θ)| ≤ m|Θ|

Property 10. Let Θ1 and Θ2 be two disconnected intervals. If |J \ (J(Θ1∪
J(Θ2))| < |Mid(Θ1,Θ2)|min{λ(Θ1), λ(Θ2)}, then I has no schedule.

The necessary and sufficient condition for a schedule to exist is an exten-
sion of Property 10 to an arbitrary sequence (Θ1, · · · ,Θs) of disconnected
intervals. The following theorem has been proved in [13].

Theorem 1. I = (J, F,m) has at least one schedule if and only if

1. for any interval Θ, |J(Θ)| ≤ |Θ| ×m;

2. for any sequence (Θ1, · · · ,Θs) of disconnected intervals, |J\∪si=1J(Θi)| ≥∑s−1
i=1 |Mid(Θi,Θi+1| ×min{λ(Θi), λ(Θi+1)}

Proving that the two conditions are necessary is easy while proving
their sufficiency is more difficult and needs to introduce the concept of a
k-schedule. A k-schedule is an m-matching with a pyramidal structure up
to the level k (i.e., the function min{k, nT (t)} has a pyramidal structure).
Figure 13 illustrates this definition.

Then, the following theorem is proved using induction on k:

Theorem 2. I = (J, F,m) has at least one k-schedule if and only if

1. for any interval Θ, |J(Θ)| ≤ |Θ| ×m;

2. for any sequence (Θ1, · · · ,Θs) of disconnected intervals, |J\∪si=1J(Θi)| ≥∑s−1
i=1 |Mid(Θi,Θi+1| ×min{k, λ(Θi), λ(Θi+1)}
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k=1

k=2

Figure 13: k-schedule

3.3.2 A polynomial algorithm solving Π0

Let us first present the concept of propagation path, which will be the basic
tool used by the algorithm. The propagation graph G(T ) = (H, E(T )) is
the directed graph such that (t, t′) ∈ E(T ) if t 6= t′ and there is at least one
job Ji scheduled at t such that t′ ∈ F (i). If job Ji is scheduled at t and if
t′ ∈ F (i), then Ji is said to be a label of the arc (t, t′). A propagation path
of T is an elementary path γ = (t0, · · · , tk) of G(T ). A propagation path is
labelled when all its arcs are assigned a label and is said to be fitted if it is
labelled and satisfies nT (tk) < m.

If γ = (t0, · · · , tk) is a propagation path of G(T ) fitted with the la-
belling σ = (J[0], · · · , J[k−1]), we get another m-matching T ′ = T (T, γ, σ) by
putting T ′(J[p]) = tp+1 for all p ∈ {0, · · · , k − 1}. Figure 14 illustrates this
transformation.

k-schedules, as defined in the preceding section, are again essential in
the derivation of the algorithm. Note first that a 0-schedule always exists
and that an m-schedule is a schedule. The algorithm QuickSearchSchedule-
(J, F,m) presented below works as follows. It first checks for an m-matching
T of I. If there is no m-matching, then it stops in the failure case. Oth-
erwise it searches for the greatest k0 such that T is a k0-schedule and sets
the variable k to k0. Then it searches iteratively for a propagation path
to transform the current k-schedule into a new one either with strictly less
k-holes or with a more flat structure. If the current k-schedule is such that
there is no propagation path that removes a k-hole or makes the structure
more flat, then a sequence of disconnected intervals that does not satisfy
Condition 2 of Theorem 2 may be found from the current k-schedule. So, in
that case, we know that the instance I has no (k + 1)-schedule. Otherwise,
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Figure 14: The new m-matching T ′ = T (T, γ, σ)

the current k-schedule is a (k + 1)-schedule and, if k + 1 < m, k is set to
k + 1 and the process is iterated. If k = m− 1, we have got a schedule.
In the algorithm below, the following variables concern the current k-schedule
T : H is the set of k-holes, C+

p (resp. C−p ) is the largest (resp. smallest)

time slot of T such that nT (t) = p, and Ŝ is the set of the time slots t such
that nT (t) ≥ k + 2.
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function QuickSearchSchedule(J, F,m);
(1) T ← mMatching(J, F,m);
(2) If (T = nil) then return(nil);
(3) k ← max{l ∈ {0, · · · ,m}|T is a l-schedule};
(4) stop← false;
(5) while k < m and not stop do
(6) while not (H = ∅) and not stop do

(7) if there is a path γ from u ∈ Ŝ to v ∈ H
then [trans(T, γ);break]

(9) if there is a path γ from u ∈ ∪k+1
p=1{C+

p , C
−
p } to v ∈ H

then [trans(T, γ);break]

(11) if there is a path γ from u ∈ Ŝ to v ∈ {C+
k+1 + 1, C−k+1 − 1}

then [trans(T, γ);break]
(13) if there is a path of G(T ) from u to v where:
(14) u = C+

p ,v = C+
p−1 + 1 and C+

p < C+
p−1 for some p ∈ {2, · · · , k + 1}

(15) or u = C+
p ,v = C+

p + 1 and C+
p = C+

p−1 for some p ∈ {2, · · · , k + 1}
(16) or u = C−p ,v = C−p−1 − 1 and C−p < C−p−1 for some p ∈ {2, · · · , k + 1}
(17) or u = C−p ,v = C−p − 1 and C−p = C−p−1 for some p ∈ {2, · · · , k + 1}
(18) then
(19) choose a path γ such that nT (u)− nT (v) is maximum;
(20) [trans(T, γ);break]
(21) stop← true;
(22) endwhile;
(23) if not (stop) then k ← k + 1;
(24) endwhile;
(25) if k = m then return(T ) else return(nil).

procedure trans(T, γ);
(1) Let σ be a label of γ;
(2) T ← T (T, γ, σ).

It is worth noting that the propagation path chosen at each iteration
of the inner loop (line 19) is not an arbitrary one satisfying the required
starting and end node. If this choice was left free, then the algorithm would
not be polynomial. On the contrary, if at each iteration, we choose the
propagation path with a maximum level difference between its starting and
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ending nodes, it can be shown (bit this is not that easy) that the number of
iterations for a given value of k is polynomial [14].

4 Conclusion

In this paper, we have proposed a survey on the specific type of schedul-
ing problems where intermediate delays between jobs executed by the same
machine are not allowed. Even if such problems are encountered in prac-
tice, they have been investigated rather recently. In this context, the paper
presents results about the non-idling variants of very basic scheduling prob-
lems. These results have been established mainly from the complexity point
of view and it is clear that, in each case, more efficient algorithms could
be developed. Quite many research directions are still to be investigated.
From a theoretical point of view, it seems for example important to clas-
sify the problem P,NI|pi = 1, ri, di|− and answer the following question:
does a polynomial single-machine classical scheduling problem with a regu-
lar objective have a polynomial counterpart? If the restriction to a regular
objective function is removed, we know the answer is no. Another important
direction for which very few and often negative results are known, concerns
approximation algorithms for non-idling problems. Practical applications
also ask for studying scheduling problems with two sets of resources, one
set for which the tasks assigned to the resource must be processed in the
non-idling mode and one set for which they are processed in the classical
mode.
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