
HAL Id: hal-01221702
https://hal.sorbonne-universite.fr/hal-01221702

Submitted on 28 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A framework for plasticity implementation on the
SpiNNaker neural architecture

Francesco Galluppi, Xavier Lagorce, Evangelos Stromatias, Michael Pfeiffer,
Luis A. Plana, Steve B. Furber, Ryad B. Benosman

To cite this version:
Francesco Galluppi, Xavier Lagorce, Evangelos Stromatias, Michael Pfeiffer, Luis A. Plana, et al.. A
framework for plasticity implementation on the SpiNNaker neural architecture. Frontiers in Aging
Neuroscience, 2015, 8, pp.429. �10.3389/fnins.2014.00429�. �hal-01221702�

https://hal.sorbonne-universite.fr/hal-01221702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ORIGINAL RESEARCH ARTICLE
published: 20 January 2015

doi: 10.3389/fnins.2014.00429

A framework for plasticity implementation on the
SpiNNaker neural architecture
Francesco Galluppi1*, Xavier Lagorce1, Evangelos Stromatias2, Michael Pfeiffer3, Luis A. Plana2,

Steve B. Furber2 and Ryad B. Benosman1

1 Equipe de Vision et Calcul Naturel, Vision Institute, Université Pierre et Marie Curie, Unité Mixte de Recherche S968 Inserm, l’Université Pierre et Marie Curie,
Centre National de la Recherche Scientifique Unité Mixte de Recherche 7210, Centre Hospitalier National d’Ophtalmologie des quinze-vingts, Paris, France

2 Advanced Processors Technology Group, School of Computer Science, University of Manchester, Manchester, UK
3 Institute of Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland

Edited by:

Tara Julia Hamilton, University of
Western Sydney, Australia

Reviewed by:

Siddharth Joshi, University of
California, San Diego, USA
Jayram Moorkanikara Nageswaran,
Brain Corporation, USA

*Correspondence:

Francesco Galluppi, Vision Institute,
Université Pierre et Marie Curie,
Unité Mixte de Recherche S968
Inserm, l’Université Pierre et Marie
Curie, Centre National de la
Recherche Scientifique Unité Mixte
de Recherche 7210, Centre
Hospitalier National
d’Ophtalmologie des quinze-vingts,
75012 Paris, France
e-mail: francesco.galluppi@inserm.fr

Many of the precise biological mechanisms of synaptic plasticity remain elusive, but
simulations of neural networks have greatly enhanced our understanding of how specific
global functions arise from the massively parallel computation of neurons and local
Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural
tissue, this has created an increasingly strong need for large scale simulations of plastic
neural networks on special purpose hardware platforms, because synaptic transmissions
and updates are badly matched to computing style supported by current architectures.
Because of the great diversity of biological plasticity phenomena and the corresponding
diversity of models, there is a great need for testing various hypotheses about plasticity
before committing to one hardware implementation. Here we present a novel framework
for investigating different plasticity approaches on the SpiNNaker distributed digital neural
simulation platform. The key innovation of the proposed architecture is to exploit the
reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them
exclusively to process synaptic plasticity updates, while the rest perform the usual
neural and synaptic simulations. We demonstrate the flexibility of the proposed approach
by showing the implementation of a variety of spike- and rate-based learning rules,
including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP,
and the rate-based BCM rule. We analyze their performance and validate them by running
classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an
efficient, modular, flexible and scalable framework, which provides a valuable tool for the
fast and easy exploration of learning models of very different kinds on the parallel and
reconfigurable SpiNNaker system.

Keywords: SpiNNaker, learning, plasticity, neuromorphic hardware, STDP, BCM

1. INTRODUCTION
Learning is crucial for the survival of biological organisms,
because it allows the development of new skills, memories, and
behaviors, in order to adapt to the information acquired from
their local environment. Such high-level changes of behavior are
the manifestation of an intricate interplay of synaptic plasticity
processes, which lasts from early development throughout the
adult life, and is taking place simultaneously and continuously
in all parts of the nervous system. Although neuroscience has
developed an increasingly better insight into the local plasticity
mechanisms at specific types of synapses, we still have a poor
understanding of the global effects of plasticity that lead to the
emergence of our astonishing cognitive capabilities. Clearly, this
is one of the great unsolved questions, not only for neuroscience,
but with great implications for fields like philosophy, psychology,
medicine, and also for engineering disciplines concerned with the
development of artificial intelligent systems that can learn from
their environment.

Much of our understanding of the functional effects of local
plasticity comes from theoretical and simulation studies of sim-
plified learning rules in neural network models. Most influential
is the hypothesis of Hebb (1949), which says that synaptic con-
nections strengthen when two connected neurons have correlated
firing activity. This has inspired many classical models for associa-
tive memory (Hopfield, 1982), feature extraction (Oja, 1982), or
the development of receptive field properties (Bienenstock et al.,
1982). Later, the discovery of Spike-timing Dependent Plasticity
(STDP) (Markram et al., 1997; Bi and Poo, 1998) has led to a
number of models that have exploited the precise timing proper-
ties of spiking neurons for receptive field development (Song and
Abbott, 2001; Clopath et al., 2010), temporal coding (Gerstner
et al., 1996; Guyonneau et al., 2005), rate normalization (Song
et al., 2000; Kempter et al., 2001), or reward-modulated learning
(Izhikevich, 2007; Legenstein et al., 2008; Friedrich et al., 2011;
Potjans et al., 2011). It has also been realized that there is not
one standard model for STDP, but that there is a huge diversity

www.frontiersin.org January 2015 | Volume 8 | Article 429 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00429/abstract
http://community.frontiersin.org/people/u/125050
http://community.frontiersin.org/people/u/173095
http://community.frontiersin.org/people/u/173788
http://community.frontiersin.org/people/u/21160
http://community.frontiersin.org/people/u/185595
http://community.frontiersin.org/people/u/71641
http://community.frontiersin.org/people/u/94237
mailto:francesco.galluppi@inserm.fr
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

of learning rules in nature, depending on species, receptor, and
neuron types (Abbott and Nelson, 2000; Kullmann et al., 2012),
the presence or absence of neuromodulators (Pawlak et al., 2010;
Cassenaer and Laurent, 2012), but also on other factors like post-
synaptic membrane potential, position on the dendritic arbor, or
synaptic weight (Sjöström et al., 2001).

The discovery that basic effects can be achieved with local
learning rules has had a big influence on the development of
larger scale learning models that have mapped methods from
machine intelligence onto spiking neural networks. Examples
include supervised learning methods for classification of visual
(e.g., Brader et al., 2007; Beyeler et al., 2013), or auditory stim-
uli (Sheik et al., 2012), and unsupervised learning methods like
Expectation Maximization (Nessler et al., 2013; Kappel et al.,
2014), Independent Component Analysis (Savin et al., 2010), or
Contrastive Divergence (Neftci et al., 2014). This has opened up
the possibility of using spiking neural networks efficiently for
machine learning tasks, using learning algorithms that are more
biologically plausible than backpropagation-type algorithms typ-
ically used for training artificial neural networks.

The increased interest in spiking neural networks for basic
research and engineering applications has created a strong interest
for larger, yet computationally efficient simulation platforms for
trying out new models and algorithms. Being able to easily and
efficiently explore the behavior of different learning models is a
very desirable characteristic of a such platform. The major prob-
lem for computation with spikes is that it is a resource-intensive
task, due to the large number of neurons and synapses involved.
Synaptic activity, and specifically synaptic plasticity, which might
be triggered by every spike event, is dominating the computing
costs in neural simulations (Morrison et al., 2005; Brette et al.,
2007), partly because the communication and processing of large
numbers of small messages (i.e., spikes), is a bad match for cur-
rent von Neumann architectures. Different strategies to improve
the scale and run-time efficiency of neural simulations either rely
on supercomputer simulations (Plesser et al., 2007; Wong et al.,
2013), parallel general-purpose devices such as GPUs (Fidjeland
and Shanahan, 2010) and FPGAs (Neil and Liu, 2014), or spe-
cial purpose neuromorphic hardware (Indiveri et al., 2011). Each
solution involves a trade-off between efficiency, reconfigurability,
scalability and power consumption.

In this context we present a framework for studying arbitrary
plasticity models on a parallel, configurable hardware architec-
ture such as SpiNNaker. The SpiNNaker system (Furber et al.,
2006, 2014) has been designed as a massively parallel, highly
reconfigurable digital platform consisting of multiple ARM cores,
which optimally fits the communication requirements for explor-
ing diverse synaptic plasticity models in large-scale neural sim-
ulations. Previous implementations of plasticity on SpiNNaker
have been limited in their ability to model arbitrary spike- and
rate-based learning rules. Here, we present a new approach for
implementing arbitrary plasticity models on SpiNNaker, using a
dedicated plasticity core that is separated from other cores that
process other neural and synaptic events. Specifically we demon-
strate the implementation of three synaptic plasticity rules with
very different requirements on the trigger events, and on the
need to store or access additional variables for computing the

magnitude of updates. We show that the same architecture can
implement the rate-based BCM rule (Bienenstock et al., 1982), an
implementation of standard STDP based on a model by Morrison
et al. (2008), and a voltage-dependent STDP rule suggested by
Brader et al. (2007). We compare the efficiency and correctness of
the STDP rule to previous implementations on SpiNNaker, and
provide the first implementation of BCM and the learning rule of
Brader et al. (2007) on this platform. All the experimental results
presented in this paper come from implementations of learning
rules on a 4-chip SpiNNaker board.

The ability to implement different rules with very different
requirements, that are either based purely on spike-timing, on
the correlation of firing rates, or on additional voltage signals
indicates that the framework can be used as a generic way of
implementing plasticity in neural simulations. This new architec-
ture therefore provides an efficient way for exploring new network
models that make use of synaptic plasticity, including novel rules
and combinations of different plasticity rules, and paves the way
toward large-scale real-time learning systems.

This article is organized as follows: the next Section introduces
different approaches to model learning, from a theoretical and an
implementation point of view. Section 3 describes the SpiNNaker
system, the previous solutions for plasticity on SpiNNaker and
our novel approach presented in this work. The flexibility of
the framework introduced is demonstrated by the implementa-
tion of three different rules, presented in Section 4, 5, and 6:
Spike-Timing Dependent Plasticity (Gerstner et al., 1996), the
rate-based BCM rule (Bienenstock et al., 1982) and the voltage-
dependent variation of the STDP rule (Brader et al., 2007).
We validate the implementation by replicating classical plasticity
experiments, and discuss the performances of each rule in Section
7. The paper is concluded in Section 8, which also provides an
outlook toward future applications.

2. LEARNING IN SPIKING PLATFORMS
The use of parallelization to mitigate the computational costs and
difficulties of modeling large plastic networks has been exploited
using different tools and strategies. Using many processors in a
supercomputer is an important exploratory solution, which can
be used to rapidly implement and test learning rules. However,
setting up a Message Passing Interface (MPI) mediating the spike
communication is a challenging process on a distributed von-
Neumann architecture, because the network infrastructure is
optimized for large-frame transfers (Plesser et al., 2007; Wong
et al., 2013) as opposed to small spike packets.

Dedicated neuromorphic (Mead, 1989) systems are natural
candidates for emulating parallel neural computation. On these
systems, circuits modeling neurons and synapses can be replicated
using Very Large Scale Integration technology (VLSI, Indiveri
et al., 2011). Synapses usually take up the majority of the
resources, in terms of computation and chip area. It is also par-
ticularly challenging to design plastic hardware synapses. In the
FACETS wafer-scale hardware (Schemmel et al., 2007), for exam-
ple, the area of plastic synapses is minimized by separating the
accumulator circuit for the spike-timing dependency and a global
weight-update controller, which drives the update of multiple
synapses (Pfeil et al., 2012). Having a separate plasticity engine

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 8 | Article 429 | 2

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

makes the update slower, but adds flexibility to the plasticity
algorithms that can be implemented. The trade-off in this case
relates to the controller frequency update, which evolves slower
than the neural dynamics, and the precision of the synapses, lim-
ited to 4-bits. Despite these limitations the system is capable of
modeling a variety of plasticity models, characterized by differ-
ent weight dependencies. Also, the synaptic resolution is shown
to be not-critical in the simulation of a series of network bench-
marks. Vogelstein et al. (2002) have introduced a general system
where synapses are stored in digital memory with a processor
implementing the synaptic update mechanism, while a separate
set of ASICs implement the neural integration process. While they
demonstrate STDP, more general functions can be implemented
using the same scheme.

Brader et al. (2007) proposed a learning rule that captures bio-
logical properties such as memory preservation and encoding.
Furthermore, it is optimized for efficient implementation in a
neuromorphic system. The rule is dependent on the post-synaptic
neuron membrane potential and recent spiking activity at the
time of a pre-spike arrival. Every synapse has internal dynam-
ics, which drives the weight toward a bistable state. Its advantage
for VLSI implementations (Indiveri et al., 2006; Giulioni et al.,
2008; Mostafa et al., 2014) lies in its ability to smooth device mis-
match by applying a threshold to the internal state variable, in
order to set the synapses to one of two possible states. The bistable
representation of memory has the additional advantage of being
power efficient. The fact that the rule can be computed when a
pre-synaptic spike is received reduces the chip area required by
a synapse, and consequently increases the number of synapses
that can be modeled. This assumes that the synapses are located
on the post-synaptic neuron, and have access to the neural and
synaptic state variables when a spike is received. This is the case
in the VLSI devices mentioned above and also in SpiNNaker (Jin
et al., 2010a). A review of different neuromorphic approaches and
challenges in designing plastic synapses can be found in Rahimi
Azghadi et al. (2014), which discusses power consumption, area
requirements, storing techniques, process variation and device
mismatch.

Recently, Resistive Random Access Memories, commonly
referred as memristors, have raised interest in the neuromorphic
community. They are small, power-efficient devices that can be
used to store weights and thereby increase the amount of neu-
rons and synapses that can be integrated in a chip. Weight change
can be induced by controlling the voltage at the terminals of a
memristor, inducing a change in its state and thus modeling a
learning rule such as STDP (Zamarreño Ramos et al., 2011) or
triplet-based STDP (Mayr et al., 2012). In Indiveri et al. (2013)
memristors are used directly to model synaptic dynamics, using
them both for computation and memory storage.

There are also difficulties when implementing synaptic plas-
ticity in general purpose hardware. Regarding GPUs Fidjeland
and Shanahan (2010), for example, propose a simplified nearest-
neighbor pairing scheme with a time-limited STDP window.
They continuously accumulate STDP statistics that are then
used to update synapses at fixed intervals. In such implementa-
tion, increasingly shorter intervals impact performance, lowering
the overall spike throughput of the platform. Weight change

accumulation is commonly used in other GPU approaches, e.g.,
in Nageswaran et al. (2007), where the synaptic kernel update
is applied every second, and in software simulations (Izhikevich,
2006).

The diversity of approaches for studying synaptic plasticity in
hardware, indicates a need for general purpose, massively parallel,
and reconfigurable computing platforms. Only this will allow fast
prototyping of plasticity rules, and their exploration in large scale
models, which can in a second stage directly lead to dedicated
hardware implementations.

3. A NOVEL FRAMEWORK FOR PLASTICITY
IMPLEMENTATION ON SPINNAKER

SpiNNaker (Furber and Temple, 2008; Furber et al., 2014) is a
digital multi-core, multi-chip architecture designed for the simu-
lation of large neural networks in real time. Each SpiNNaker chip
is equipped with a 1Gbit SDRAM and 18 programmable ARM968
cores embedded in a congurable packet-switched asynchronous
fabric (Plana et al., 2007).

The SpiNNaker network infrastructure is designed with spik-
ing communication in mind: every chip contains an on-chip
Multicast (MC) router capable of handling very efficiently one-
to-many communication of spikes (MC packets). The router
links every chip to its six neighbours. Each core has a small
local tightly-coupled memory (32 kByte instruction and 64 kByte
data, ITCM and DTCM respectively). The massive synaptic data
required for neural simulations is stored in the shared, off-die
SDRAM 128 MByte chip that can be accessed by the cores through
DMA requests, for an aggregate read/write bandwidth of 900
MBytes/s (Painkras et al., 2013). The system is designed to scale
up to 60,000 chips for a total of over one million ARM cores. The
goal of the system is to simulate 1% of the human brain in real
time.

A high level view of the main chip components is presented
in Figure 1. When simulating neural networks, spikes are deliv-
ered and processed by the ARM cores, which update the states
of the neurons and synapses. A C-based API is used to program
neural kernels (Sharp et al., 2011). The API offers an accessi-
ble interface to the hardware substrate and to real-time event
scheduling facilities, and can be used to write applications that are
executed in parallel on the machine. The API promotes an event-
driven programming model: the neural kernels are loaded into
the ARM cores and are used to configure callbacks that respond
to events. A timer event allows the periodic execution of func-
tions, such as neuron state update. A packet event signals the
arrival of an MC packet (spike) and can be used to initiate a
request to transfer synaptic data from SDRAM. Finally, a memory
event indicates that the requested data is available for processing.
The neural kernels are parameterizable and can support different
classes of neural models and connectivity patterns. Model specifi-
cation, system mapping and run-time control is obtained through
the PArtition and Configuration MANager (PACMAN, Galluppi
et al., 2012), which offers interfaces with two languages exten-
sively used in the neural modeling community: PyNN (Davison
et al., 2008), a simulator-independent specification language, and
Nengo (Stewart et al., 2009), the simulation tool implementing
the principles of the Neural Engineering Framework.

www.frontiersin.org January 2015 | Volume 8 | Article 429 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

Figures 2A,B shows the current implementation of a neural
kernel, highlighting the processes involved: every millisecond, a
timer event triggers the evaluation of the neural dynamics. A
spike is then emitted if a configurable threshold of the membrane
potential has been reached. Spikes travel as MC packets through
routers on the interconnection fabric and are delivered to the des-
tination cores, triggering a packet event. Whenever a packet is
received, a memory look-up is initiated to retrieve the relevant
synaptic information (such as weight, delay, destination neurons
on the core, and type of synapse) from SDRAM, where the con-
nectivity matrix, indexed by pre-synaptic neuron, is stored. When
the requested data arrives this creates a memory event, and the
spike is processed by every post-synaptic core. Due to the lim-
ited memory available in the ARM cores, the synaptic weights
are only locally available to the core right after a memory trans-
fer from DMA has occurred as a consequence of the arrival of a
spike. Therefore, the time available for the weight update process

FIGURE 1 | High-level view of the SpiNNaker chip, showing: the ARM

cores with their Instruction and Data Tightly coupled memory (DTCM

and ITCM, 32 and 64 Kbyte respectively) to run applications and locally

store data; the Multicast (MC) router responsible of spike

transmission; the port to the 128 Mbyte SDRAM off-chip memory,

containing the synaptic data.

is very short; moreover, since delays are reintroduced at the post-
synaptic end, the update process relies on information which
might concern the future state of the neuron. This has limited the
flexibility of previous approaches for implementing plasticity on
SpiNNaker.

3.1. THE DEFERRED EVENT DRIVEN MODEL
The STDP algorithm requires computation whenever a pre spike
is received or a post spike is emitted. This causes two relevant
issues for the cores running neural simulation on SpiNNaker:

1. Weights are only available in local memory upon the reception
of a MC packet signaling that a spike has occurred in one of
the pre-synaptic neurons. At the time of a post-synaptic spike
such information is stored in SDRAM, which is indexed by
pre-synaptic neuron and therefore is not easily accessible for
a fast update.

2. A spike packet is delivered to the post-synaptic core as soon
as it is emitted, and biological delays (stored in SDRAM as
well) are re-introduced by the core modeling the post-synaptic
neuron after the relevant information has been retrieved from
memory; the delay itself is stored into memory, and can be
different for different post-synaptic neurons on the same core
(Jin et al., 2010a). The weight value is stored in a circular buffer
which rotates with the timer event interval, and lumps all the
synaptic contributions for one millisecond in a way similar to
that described in Morrison et al. (2005). The consequence of
delaying the input into the future is that when a synapse is
processed, the state of the post-synaptic neuron (e.g., its mem-
brane potential or the presence of a post-synaptic spike) is not
available.

The Deferred Event Driven Model (DED) for computing plasticity
was introduced in Jin et al. (2009) to circumvent these problems.
DED enables computation of STDP at the time when a pre spike
is received by deferring the weight update process into the future,
until enough information is gathered. Post spikes are collected in
a spike window, stored in the local core memory, while pre spikes
are stored in SDRAM, along with the rest of the synaptic infor-
mation. Upon the retrieval of the weights related to a pre spike,

FIGURE 2 | (A,B) current STDP implementation on SpiNNaker, following the Deferred Event Driven model (C,D) the proposed novel implementation
framework for plasticity implementation.

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 8 | Article 429 | 4

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

these two time windows are compared and weight update is per-
formed. Plasticity is therefore always computed on the next pre
spike arrival, and only if enough time has passed, to guarantee
that all the necessary information is available. This poses restric-
tions on the pre-to-post firing rates: if a pre-synaptic neuron
fires with a low rate, the spike information of the post-synaptic
neuron might have already expired. Thus, the algorithm loses a
pre-post spike pair, even if they were close in time, if the next
pre spike arrives after the expiration of the post-spike window.
Furthermore, because the algorithm needs to check every spike
pair, its efficiency depends on the length of the history and on
the number of the pre-post pairs. Such limitations are discussed
in Jin et al. (2010b), where the trade-offs between spike-history,
efficiency and correctness are analyzed.

Davies et al. (2012) try to address the problem from a different
angle, using the Time To Spike (TTS) strategy: STDP is computed
only upon the reception of a pre spike, using the current mem-
brane potential as a predictor of future spiking activity. By doing
so, weight updates can be performed while synaptic information
is in local memory, addressing the first of the two problems men-
tioned above. However, as mentioned earlier, spikes are delivered
to the post-synaptic neurons as soon as they are emitted, and the
biological delays are reintroduced at the post-synaptic end. This
creates errors when using delays, as reported in the original work
presenting the TTS approach: the membrane potential used as a
predictor of the post neuron firing is the one corresponding to
the time of spike emission by the pre neuron, rather than that of
spike reception by the post neuron (after the propagation delay).
Such problem makes the TTS algorithm usable and efficient when
delays are constant and short, but cannot deal correctly with
longer delays. This also creates problems for detecting temporal
patterns where delays play an important role (Izhikevich, 2006),
such as in the experiments in Section 6.2.

3.2. THE DEDICATED PLASTICITY CORE APPROACH
The previous implementations of plasticity are not limited by the
SpiNNaker hardware, but rather by their software implementa-
tion. Therefore, we present an alternative approach: instead of
having a single core evaluating neural dynamics and plasticity,
we divide the job into two parallel processes. One core performs
the neural updates and spike integration, while the second core
deals with plasticity (see Figures 2C,D). Plasticity operates as a
slower process in the background. It processes the whole synaptic
block in SDRAM and the information about spike timing, and
modifies the weights according to the chosen plasticity mech-
anism. The proposed approach takes inspiration from previous
work where plasticity effects are accumulated and evaluated peri-
odically (Izhikevich, 2006; Nageswaran et al., 2007; Fidjeland and
Shanahan, 2010; Pfeil et al., 2012). Plasticity is thus updated less
frequently than neural dynamics, which is radically different from
the previously described DED model on SpiNNaker.

In our novel approach, the PACMAN mapping tool automati-
cally instantiates a twin plasticity core alongside each neural core
whenever it detects a neural population with incoming plastic
connections. Neural and plasticity cores have access to the same
portion of SDRAM through replication, in their local memories,
of the look-up tables used to index it. The neural core performs

the usual operation that a non-plastic core would perform, thus
eliminating all the overheads required by the DED model. The
neural core is also in charge of trivially updating a bitmap pre-
spike window whenever a pre spike is received, as shown by the
dashed arrow in Figure 2C. The plasticity core is concerned solely
with the weight update process, which can be performed by walk-
ing the local SDRAM weight matrix and computing plasticity at
a slower pace. When a neuron in the neural core emits a spike,
the corresponding packet is delivered to the plasticity core, and to
the post-synaptic neurons as under normal conditions. Because
the plasticity and neural core always reside on the same chip,
this process does not add overhead to the routing process. This
allows to keep track of the post-synaptic spiking history. Here we
decided to update the weights every 128 ms and store the spike
times with a resolution of 2 ms, as a compromise between perfor-
mance, platform-specific limitations and precision. Pre-synaptic
spikes are stored at the beginning of each synaptic row as spike-
history bitmaps. The plasticity process needs to know all the
spikes which happened in its considered 128 ms window. This
data has been stored by the neural core in one of the spike win-
dows (0 or 1 in the Figure) during the previous 128 ms before
the update. For the plasticity core to be able to read this buffer
while the neural core is storing the next 128 ms of spikes, we use a
double buffer technique: when the plasticity core is reading spike
window 0, the neural core is storing the spikes in spike window
1 and viceversa. This has been emphasized in the Figure 2C by
using different color codes for the two different processes. The
double buffers contain data for different time slots and there-
fore do not need to be accessed concurrently by the neural and
plasticity core, so there is no need for mutual exclusion or locks.
Memory contention is eliminated by the fact that the neural core
operates in the current 128 ms window, while the plasticity core
works in the previous 128 ms time window. The same technique
used for the spike windows could be used on the whole synap-
tic matrix to ensure coherency of the whole matrix during the
entire simulation. Because this method only switches the pointer
used to lookup the data between consecutive plasticity periods,
this would not change the approach or performances. Whenever
a portion of memory is ready for computation, the request for
the next row of the synaptic matrix is issued and weight updates
of the current synaptic row are performed, thus masking memory
access costs through parallelization. This separation of neural and
plasticity operations gives rise to an environment where weight
update rules can be easily programmed separately. This lever-
ages the reprogrammability of the general processors used by
SpiNNaker and the generality of the event-driven API presented
in Sharp et al. (2011). The general infrastructure for the frame-
work is presented in Appendix A. While it is worth noting that
the difference between neural and the plasticity processes is only
in the software running on the ARM cores, they can be thought of
as hardware threads. The SpiNNaker software infrastructure does
not support threads. If software threads were available, besides the
costs related to thread switching, the neural and synaptic update
threads would need to split between them the limited local mem-
ory (DTCM) and the processor cycles. In SpiNNaker, clock cycles
are also limited in order to meet real-time targets. The proposed
solution, on the other hand, uses hardware threads (cores), one

www.frontiersin.org January 2015 | Volume 8 | Article 429 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

for neural update and one for synaptic update, with each thread
owning all of its local resources. This results in a more efficient use
of the available resources. In fact, depending on the relative com-
plexity of the neural and synaptic update processes, the ratio of
hardware threads can be adjusted, using N neural update for every
M synaptic update threads (cores). The plasticity core has access
to the pre- and post-synaptic spike activity history of the previous
128 ms time window; the first is stored in SDRAM and the second
one in DTCM. Such information can be used to compute rates,
traces, timing differences or other required variables for different
learning rules, as shown by the three rules implemented in this
paper.

4. STDP
Derived from biological observations that synaptic plastic-
ity depends on the relative timing of pre- and post-synaptic
spikes (Markram et al., 1997; Bi and Poo, 1998), Spike-Timing
Dependent Plasticity (STDP) (Gerstner et al., 1996; Song et al.,
2000) has become a popular model for learning in spiking neu-
ral networks. In its standard form, STDP weight-updates are
expressed by the double-exponential form

F(�t) = A+e
�t
τ+ �t < 0 (1)

F(�t) = −A−e
−�t
τ− �t ≥ 0 (2)

where �t = tpre − tpost is the time difference between a pair of
pre- and post-synaptic spikes, A+ and A− are scaling factors for
potentiation and depression, and τ+ and τ− are the time con-
stants of the plasticity curves. The weight update rule is illustrated
in Figure 3. There are different strategies for computing the total
amount of weight change after seeing multiple pre- and post-
synaptic spikes (Morrison et al., 2008), e.g., by considering only
nearest neighbor spike pairs, or summing the weight changes
F(�t) for all pairs. Here we adopt a form of STDP proposed by
Morrison et al. (2008) to compute the weight change using local

variables in the form of pre- and post-synaptic traces. Each trace
xi has the form

dxi

t
= −xi

τ
+ A

∑

t
f
i

δ(t − t
f
i), (3)

where xi is the value of the trace for neuron i, A is the amplitude

by which the trace increases with each new spike at time t
f
i , and τ

is the exponential decay time constant. The concept is illustrated
in Figure 3: potentiation occurs at post-synaptic spikes, using the
value of the pre-synaptic trace as the weight increase; conversely,
depression happens at pre-synaptic spike times, and reduces the
weight by the value of the post-synaptic trace.

4.1. METHODS: IMPLEMENTATION OF STDP ON THE PLASTICITY CORE
The plasticity core is in charge of computing all traces, using the
spike timing information collected during the simulation. Weight
changes are then computed by walking through all the synaptic
block. The pre-trace is computed every time a portion of mem-
ory is received through a DMA process using the information
in the spike window, while the post trace is computed at the
beginning of each plastic phase starting from the spike history
bitmap collected during the packet received callback. Traces can
have longer time scale than the plasticity window, as the expo-
nential filtering is updated at the beginning of each phase, and
the previous value of the exponential filter carries over from one
plasticity window to the next. Delay needs to be reintroduced at
the post-synaptic end, and can be used to compute the amount
of shift required to correctly compute weight de/potentiation, as
shown in Figure 3, where the black part shows the spike tim-
ing and traces using the presynaptic spike time as the reference,
while the red part shows how this reference is shifted once delay
has been reintroduced. Not considering the delay generates sub-
stantial errors in the weight update. A pseudocode version of the
algorithm is presented in Appendix B.

FIGURE 3 | (A) Algorithm for STDP learning implementation on the plastic
core (B) STDP function (C) Implementation of pair-based STDP with local
traces and delays, as suggested by Morrison et al. (2008): potentiation
occurs at post-synaptic spike times and corresponds to the value of the
pre-synaptic trace; conversely, depression happens at pre-synaptic spike

times and corresponds to the value of the post-synaptic trace. d
represents the delay, reintroduced at the post-synaptic end; black and red
lines represent the traces and spike timings when the delay is
reintroduced (red) as opposed to using the presynaptic spike time as
reference (black).

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 8 | Article 429 | 6

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

FIGURE 4 | Shift of post-synaptic firing onset via STDP. (A)

Potentiation: The spike raster plot (bottom) shows that at the beginning
of the stimulation 3 input spikes (blue) are needed to make the target
neuron (red) fire; after 400ms, potentiation has made the synapse strong
enough so that the post-synaptic neuron fires after only 2 spikes. This is
also visible in the membrane potential (top) and post-synaptic currents
(PSC; middle). (B) Depression: (bottom) The green neuron is made to
spike consistently after the target (red) neuron, hence its weight gets

depressed, as can be observed by its decreasing contribution in the
membrane potential (top) and PSC (middle). (C) Reduced spike latency:
at the beginning of the simulation (upper-left panel) 10 spikes from 10
different input neurons (blue) are needed to make the post-synaptic (red)
neuron fire; after repeated stimulation (upper-right-panel), potentiation via
STDP makes the red neuron fire already after 2 spikes, hence firing
closer to the pattern’s start, which is also shown by the latency plot
(bottom panel).

A simple experiment in which STDP, implemented with the
above scheme achieves synaptic potentiation and depression is
shown in Figures 4A,B. The final part of the Figure presents a
classical experiment where a plastic neuron can reduce the latency
of its firing to a repeatedly presented pattern (Mehta et al., 2000;
Song et al., 2000): a (red) neuron receives connections from 10
inputs neurons (blue) which fire at 2 ms from each other; during
the first repetition all the 10 input neurons are required to make
the target neuron fire. After repeated presentations, due to poten-
tiation, only two input neuron spikes are needed to elicit activity
in the post neuron, which responds with a lower latency to the
onset of the pattern.

4.2. RESULTS: PRE-POST PAIRING USING A TEACHER SIGNAL
In Figure 5 we reproduce results of a classical stimulation pro-
tocol for potentiation induced by pre-post synaptic pairing. The
network comprises a stimulus population and a target population,
each separately driven by two different Poisson sources emitting
spike bursts at high frequency (350 Hz) for short periods of time
(20 ms). Both populations also receive independent background
noise. The Poisson and noise source populations are intercon-
nected with a one-to-one connectivity pattern to their respective
inputs and outputs. The stimulus and the target populations are
interconnected with a 50% probability.

At the beginning of the simulation, external stimulation com-
ing from the stimulus population is not strong enough to trigger
activity in the target post-synaptic population (0 ≤ t ≤ 1500 ms).
Afterward (1500 ≤ t ≤ 3000 ms) the stimulus and target popula-
tions are stimulated together by their respective Poisson inputs, so
that the target population spikes 10 ms after the stimulus popu-
lation, hence inducing potentiation. Finally, for 3500 ≤ t ≤ 4000
ms, the Poisson process feeding the post-synaptic population is

removed, and the post-synaptic population is only stimulated
by inputs from the pre-synaptic population. It can be seen that
because of the induced potentiation, the pre-synaptic input is
now strong enough to make the target population fire without
any supervisor input.

4.3. RESULTS: BALANCED EXCITATION
Song et al. (2000) have shown that STDP can establish a state of
balanced excitation in the post-synaptic neuron, which makes it
more likely to fire with a controled output rate in response to fluc-
tuations in its input. This is achieved by competition between the
synapses that project onto the post-synaptic neuron, induced by
STDP. The characteristic effect described by Song et al. (2000)
is that STDP creates a bimodal distribution of input weights,
pushing them either toward the minimum or maximum values,
and creating groups of strong and weak synapses. In Figure 6 we
simulate a group of 1000 input neurons, firing independently
according to a Poisson process at 20 Hz, and projecting onto a
single output neuron. The weights are initialized uniformly, and
then undergo STDP. After 300 s of simulation, the distribution of
synaptic weights in Figure 6 shows clearly the characteristic sepa-
ration into two groups of very different strengths. The experiment
can be observed in Movie 1 (Supplementary Material), which
shows the weight distribution as the simulation is running.

5. BCM
The BCM rule, named after their inventors Bienenstock, Cooper,
and Munro (Bienenstock et al., 1982), is a rate-based synap-
tic plasticity rule, introduced to model binocular interactions
and the development of orientation selectivity in neurons of
the primary visual cortex. The BCM rule is based on Hebbian
principles, but introduces synaptic competition by correlating

www.frontiersin.org January 2015 | Volume 8 | Article 429 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

FIGURE 5 | STDP with a teacher signal. (A) Network structure: two
different Poisson spike sources (red) are used as supervisor signals to
individually stimulate the Stimulus (top) and Target (bottom) populations at
different times (blue), which also received noise from two separate sources
(green). (B) Initially (between 0 and 1000 ms), only the pre-synaptic
population is stimulated, but the synaptic weights are weak, thus the
resulting spikes (blue) do not elicit post-synaptic spikes. Between 1500 and
3000 ms, both populations are stimulated with a 10 ms time difference,
such as to induce synaptic potentiation. The effect can be seen between
3500 and 4500 ms, when the teacher signal for the post-synaptic
population is removed: after the potentiation the pre-synaptic spikes are
able to drive the post-synaptic neurons by themselves.

the pre-synaptic rate with a non-linear function of the post-
synaptic rate. In its simplest form the BCM rule computes this
non-linearity as the product of the post-rate with its deviation
from the mean post-synaptic activity (see Figure 7B):

dw

dt
= [rpost(rpost − θ)rpre]δ − ε · w . (4)

Here w denotes the synaptic weight and dw/dt its change, rpost and
rpre are the firing rates of the pre- and post-synaptic neurons, θ is
the modification threshold, which is computed here as the mean
firing rate of the post-synaptic neuron, δ is a learning rate, and
ε a weight-decay parameter. If rpost exceeds the mean firing rate
θ , the weight is potentiated; conversely, for lower activity (rpost <

θ) the weight is depressed. The learning rate parameter δ can be

used to normalize the magnitude of the synaptic weight change
according to the neural model used. Many variations of the BCM
rule have been studied since its introduction, using different kinds
of non-linearities, but here we study only the basic version from
Bienenstock et al. (1982).

5.1. METHODS: IMPLEMENTATION OF BCM ON THE PLASTICITY CORE
Since the BCM rule only requires firing rates, the plasticity core
just has to increment a counter whenever a post-spike is received,
and to use a low-pass filtered version of the rate. Analogously,
when processing a row relative to an afferent neuron, the num-
ber of spikes received during the previous phase is used to update
the pre-synaptic rate information. At the end of each plasticity
phase θ (the threshold parameter representing the mean rate) is
updated using a configurable exponential moving average, and
the pre spike windows are reinitialized. A pseudocode version
of the algorithm is presented in Appendix C and is outlined in
Figure 7A.

In Figure 7C we show a classical potentiation protocol using
the BCM rule. For the first 600 ms the target population is only
receiving spikes from the stimulus population, but the weights
are too weak to cause firing in the target population. Between
600 and 1200 ms, a teacher population is activated which is
strong enough to drive the target population, thereby potenti-
ating also the simultaneously active stimulus-target connections.
Afterwards, when the teacher population is switched off, the
stimulus population alone is able to drive the target population
without teacher input.

5.2. RESULTS: EMERGENCE OF ORIENTATION SELECTIVITY WITH BCM
The BCM rule has been originally proposed in Bienenstock et al.
(1982) to explain how neurons in the primary visual cortex can
acquire their feature selectivity from sensory stimulation. As a
test of our implementation of BCM on SpiNNaker we replicate
a simple neural network with lateral inhibition which undergoes
plasticity while receiving monocular visual input in the form of
oriented bars.

The network consists of 2 layers, an input layer which com-
prises 16× 16 neurons and an output layer with 4 neurons. Each
neuron in the input layer projects, in an all-to-all fashion, to the
output neurons. All synapses are initialized with random weights
and delays. Each neuron in the output layer has an inhibitory
projection to every other neuron, forming a network of lateral
antagonism (Shouval et al., 1997). The aforementioned connec-
tivity pattern matches anatomical data, for example the lateral
plexus of the Limulus’s eye, as originally found by Hartline et al.
(1956). Bienenstock et al. (1982) themselves point out that no
selectivity is achieved without lateral inhibition.

For this experiment four images of oriented bars are used as
input stimuli, each rotated by 45◦C. Bars are 3 pixels thick and
12 pixels in length, and the intensity of each pixel is a random
value between 0.8 and 1.0. Each pixel is converted to Poisson
spike trains, in order to simulate spikes coming from the retina
or LGN. The firing rates are proportional to the value of the
pixels, while all firing rates are scaled such that the input layer
generates approximately 1000 spikes per second. During the sim-
ulation each orientated bar is presented to the network in a

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 8 | Article 429 | 8

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

FIGURE 6 | Competition between synapses undergoing STDP: In the

experiment introduced by Song et al. (2000), 1000 uncorrelated

pre-synaptic neurons, firing at a Poisson-rate of 20 Hz, project onto a

single post-synaptic neuron. (A) Initial uniform weight distribution before

plasticity. (B) After 300 seconds of stimulation STDP has divided the synaptic
weights into weak and strong ones, thereby regulating the activity of the
post-synaptic neuron. The red line shows the mean of the initial weights. (C)

Scatter plot of the final weight distribution.

FIGURE 7 | Implementation of BCM plasticity. (A) Algorithm for
BCM learning on the plasticity core. (B) Illustration of the BCM rule:
normalized weight change as a function of the pre- and post-rates,
with θ = 35 Hz. (C) Potentiation experiment using a teaching signal:

when stimulation is paired with a teacher signal that forces the
post-synaptic neurons in the target population to fire, the weights
get potentiated and become strong enough to drive the post-synaptic
neuron.

random order for 1 s and for 80 repetitions. Learning takes place
in the synapses between the input and output layer, while the
inhibitory synapses in the output layer are static and set to a
weight of−9 nA.

The results are summarized in Figure 8. Figure 8A shows that
the weights and neuronal responses to input stimuli are initially
random. At the end of the simulation, Figure 8B shows that each
output neuron has developed via BCM plasticity a receptive field
that corresponds to one particular orientation. In Figure 8C we
show the orientation tuning curves of each neuron, measured by
rotating the stimulus bar counter-clockwise in 10◦C steps. The
results show that each neuron has successfully learned to respond
best to one preferred orientation, which is in line with previous
modeling studies and experimental and anatomical data (Moore
and Freeman, 2012; Jeyabalaratnam et al., 2013). The learning can
be observed in Movie 2 (Supplementary Material), where the four

receptive fields are emerge from the repeated presentation of the
input stimulation.

6. VOLTAGE-GATED STDP
Brader et al. (2007) have presented an STDP rule that is triggered
by the arrival of pre-synaptic spikes, and in which the change in
synaptic efficacy is a function of post-synaptic depolarization and
of an internal variable at the spike arrival time. The rule is moti-
vated by the necessity to design learning rules which are at the
same time biologically plausible, but also compatible with imple-
mentation constraints on neuromorphic devices. Several studies
have demonstrated the ability of the learning rule to discrimi-
nate complex spatio-temporal patterns (Indiveri and Fusi, 2007;
Giulioni et al., 2009; Mitra et al., 2009), even if the synapses
are allowed to take on only one of two stable states. Every time
the post-synaptic neuron emits a spike an internal variable C(t),

www.frontiersin.org January 2015 | Volume 8 | Article 429 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

FIGURE 8 | Emergence of orientation selectivity with the BCM learning

rule. (A,B): The top row represents the input stimuli bars presented in
different orientations, the total firing rate for each stimulus is 1,000 Hz; the
middle row shows the weight matrix for the output neurons, with (A) random
initial weights and (B) results after the training, where it can be observed that

neurons have developed their receptive fields according to the input
stimulation; the bottom row shows the firing rates of the output neurons,
where each color codes for a different neuron which has learned a preferred
orientation. (C) Orientation tuning curves obtained by rotating a horizontal bar
counter-clockwise with a step size of 10◦C.

representing calcium concentration due to back-propagating
action potentials, is incremented by a value JC and then decays
with a time constant τC according to the dynamics described by

dC(t)

dt
= −C(t)

τC
+ JC

∑

i

δ(t − ti), (5)

where ti are the post-synaptic spike times. Potentiation and
depression happen only if C(t) is in an appropriate interval
[θh

down, θ
h
up] for potentiation and [θ l

down, θ
l
up] for depression. Post-

synaptic membrane depolarization V(t) influences this plasticity
rule, triggering potentiation (or depression) only if the mem-
brane potential of the post-synaptic neurons is higher (lower)
than a threshold value θV at the time of arrival of a pre-synaptic
spike (tpre). Modification of the synaptic efficacy w can then be
summarized by the following equations:

w = w + a if V(tpre) > θV and θh
down ≤ C(tpre) < θh

up (6)

w = w − b if V(tpre) ≤ θV and θ l
down ≤ C(tpre) < θ l

up (7)

where a and b represent the constant weight increase and decrease
values respectively.

If none of the conditions in (6) and (7) are met, or if no spike
is received in the period of time considered, then the weight drifts
toward one of two stable values (wmin and wmax). The direction
of the drift is determined by comparing the current weight w to
a threshold θW , and speed of the drift toward the minimum and
maximum stable states is determined by the constants α and β

respectively. This leads to the following dynamics:

dw(t)

dt
= α if w(t) > θW (8)

dw(t)

dt
= −β if w(t) ≤ θW (9)

6.1. METHODS: IMPLEMENTATION OF VOLTAGE-GATED STDP ON THE
PLASTICITY CORE

The voltage-gated STDP rule needs further information from the
post-synaptic neuron, as the membrane potential gates potenti-
ation or depression. The cores communicate this information as
means of shared memory in SDRAM, using a double buffer tech-
nique so that they always work on different phases. This induces a
slight overhead in the neural core, which has to perform the check
against θV and saves the result for each millisecond in a bitmap
stored in memory. The plasticity core retrieves the results of the
comparison at the beginning of each plasticity phase, and uses
them in the weight update process. At the same time the function
C(t) is computed starting from the post neuron spike timings,
similarly to computing the STDP traces. A pseudocode version of
the algorithm is presented in Appendix D.

The basic dynamics of this voltage-gated STDP rule are shown
in Figure 9: The bottom row shows the trace of the calcium vari-
able V(t), which is increased by JC whenever the post-synaptic
neuron fires, and then exponentially decays with time constant
τm. The central part shows the potentiation of a synapse, because
here the pre-spikes arrive when V(tpre) > θV and θh

down ≤
C(tpre) < θh

up, and thus fewer spikes are needed to drive the tar-
get neuron. Conversely, on the right we observe the depression
of a synapse, because pre-spikes arrive when V(tpre) ≤ θV and

θ l
down ≤ C(tpre) < θ l

up. After depression, the synaptic input is too
weak to make the target neuron fire.

6.2. RESULTS: LEARNING TEMPORAL PATTERNS
To verify our implementation of the voltage-gated STDP rule
by Brader et al. (2007), we implemented the model by Coath
et al. (2013) for learning temporal structures in auditory data,
which has originally been implemented on a neuromorphic chip
in Sheik et al. (2012). The study focused on learning dynamical
patterns in the context of a sound perception model by tuning
auditory features through presentation of stimuli and learning
using the STDP rule implemented in VLSI.

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 8 | Article 429 | 10

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

FIGURE 9 | Implementation of voltage-gated STDP. (A) Concept for
implementing voltage-gated STDP on the plasticity core. (B) Example of
synaptic potentiation: three pre-synaptic spikes (blue) arrive while the
membrane potential is greater than θV and θh

down ≤ C(tpre) < θh
up (red-shaded

area in bottom row). Initially, the post-synaptic neuron (red) fires after the

third spike, after potentiation only two spikes are needed to make the target
neuron fire. (C) Depression example: three pre-synaptic spikes (blue) arrive
while the membrane potential is less than θV and θ l

down ≤ C(tpre) < θ l
up

(blue-shaded area in bottom row). After depression takes place, the
post-synaptic neuron (red) no longer fires after receiving the 3 input spikes.

The proposed network learns to respond to particular input
timing patterns. The network comprises 3 layers of tonotopically
organized frequency channels, representing different positions on
the basilar membrane. The first layer A represents a spiking signal
produced by an artificial cochlea (such as the one in van Schaik
and Liu, 2005); each neuron in the A layer projects to a neuron in
2 layers, B1 and B2 through excitatory synapses, while B1 projects
to B2 through inhibitory synapses. Each neuron in B2 also receives
plastic connections from all the neighboring B1 neurons, with
delays proportional to the distance, as shown in Figure 10. Since
delays are programmable in SpiNNaker we incorporated them
directly in the B1 to B2 connection, and not through a separate
neural population as in the original model. This delay property is
essential for learning: correlation between the delayed feedback
arriving from other B1 neurons to the B2 neurons is detected
by the plasticity rules, and it controls synaptic potentiation and
depression by coincidence detection. To implement the model on
SpiNNaker while coping with the 1 ms time resolution used in the
current neural kernels we multiplied all the time quantities by 10.
For learning we use the same three input patterns that were used
in the original model (see Figure 10): Pattern (C) is a forward
frequency sweep, where every frequency (and therefore every A
neuron) is activated in order, with a short delay between one pre-
sentation and the next. For pattern (D) we perform the same
frequency sweep, but we move backwards through the frequency
space. Finally for pattern (E) we perform a forked frequency
sweep, starting from the middle frequency. We present the stimu-
lus multiple times to the network and analyze what it has learned
by examining the B1/B2 weight matrix. The results are presented
in Figure 10, and can be compared with the results in Figures 7,
8 in Sheik et al. (2012). After repeated presentations of the tar-
get patterns, the weight matrix, initialized randomly, converges
to a state where it is only sensitive to the spike-timing pat-
tern presented, by coincidence detection through delay lines. The

emergence of the connectivity matrix for the forked frequency
sweep can be observed in Movie 3 (Supplementary Material).

7. PERFORMANCE ANALYSIS AND DISCUSSION
In Diehl and Cook (2014), the authors describe an STDP varia-
tion of the DED which follows the strategy proposed in Morrison
et al. (2008) by storing traces in SDRAM, rather than perform-
ing spike pairing as proposed in Jin et al. (2010b). The authors
evaluate the performance of their implementation as well as the
one present in the stable release of the SpiNNaker software pack-
age1 in terms of synaptic events processed per second, as done in
Sharp and Furber (2013) and Stromatias et al. (2013). They do
so by feeding a leaky integrate-and-fire population of 50 neurons
with a neural population of variable size that produces spikes at
≈250 Hz, according to a Poisson process, with a 20% connection
probability. They report that their implementation of plasticity
is capable of handling around 500K synaptic events per second
per core (using 150 input neurons), while the original SpiNNaker
implementation is limited to 50K events.

We adopt a similar strategy to evaluate our plasticity algo-
rithms, but in more stringent conditions, and with a larger
connectivity range. Rather than testing a single core we test a full
chip (16 cores). In this way, we can also evaluate the effects of
memory contention between different cores, as memory access
can be a bottleneck for simulations on SpiNNaker. We model a
population of 800 neurons in a single SpiNNaker chip (8 cores
modeling neurons and 8 cores dedicated to plasticity) fed by an
input Poisson neural population of 150 neurons with a variable
rate, and measure the maximum firing rate at which the sim-
ulation can run in real time. We take as a starting point the
connectivity levels reported by Diehl and Cook (2014) (20%

1https://spinnaker.cs.man.ac.uk/tiki-index.php?
page=SpiNNaker+Package+(quarantotto)

www.frontiersin.org January 2015 | Volume 8 | Article 429 | 11

https://spinnaker.cs.man.ac.uk/tiki-index.php?page=SpiNNaker+Package+(quarantotto)
https://spinnaker.cs.man.ac.uk/tiki-index.php?page=SpiNNaker+Package+(quarantotto)
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

FIGURE 10 | Learning temporal patterns with the model by Coath et al.

(2013) and Sheik et al. (2012). (A) Network structure: each frequency
channel f comprises three neurons A, B1 and B2, and is connected to other
frequency channels (dashed in figure), arranged in a tonotopical way, with

distance-based delays and plastic connections. (B) Delay matrix (top) and
example of initial random weight matrix (bottom). (C–E) Input spikes (top) and
resulting weight matrix (bottom) after learning for a forward, backwards and
forked frequency swipe respectively.

interconnection probability, 150× 50× 0.2 synapses, for a total
of 1,500 per core and 24,000 per chip if considering 16 cores)
and increase the connectivity level up to 100% (7,500 synapses
per core, 120,000 per chip). This results in synaptic rows which
are 5 times longer, as every pre-synpatic neuron is connected to
every post-synaptic neuron in each core, rather than only 20%
as in the original experiment. We then scale the model further
up by adding more pre-synaptic neurons so as to reach a total
of 156,000 synapses. The performance analysis of the algorithms
proposed in this work uses the same leaky integrate-and-fire cur-
rent based neuron. To be able to scale the rate while maintaining
the post-synaptic activity constant, we set all the weights and all
the weight increments in the plasticity rules to 0, similarly to the
approach in Stromatias et al. (2013). This means that plasticity is
normally computed, but the weight is clipped to 0 and stored back
in SDRAM. Such values are set at runtime and cannot therefore
by optimized by the compiler; we have also ensured that setting
these values to 0 would not bypass part of the code by removing
some optimization tests (like not updating weights which do not
change), thus ensuring that the code behaves in our test case as the
worst possible real case. Post-synaptic activity is induced by feed-
ing the leaky integrate-and-fire neurons with a current inducing
an activity of≈ 22 Hz.

We check if at any moment any core is lagging behind real time
as this would make the simulation incorrect and unrepeatable. We
also check if a walk through of the weight matrix is completed
before the end of the plasticity period or, in other words, if the
plasticity process is finished before the next one starts, as overlap-
ping in this sense is not possible when operating in real time. This
allows us to measure the maximum number of synaptic events
that can be handled in real time by a single SpiNNaker chip, using
the three learning rules proposed in this paper (STDP, BCM and
voltage-gated STDP), and to understand if the performance is
limited by the neural or the plasticity core.

Results are shown in Figure 11; for each given connectivity
level (number of synapses) pre-synaptic firing rates are increased
until the limit after which real-time simulation is no more pos-
sible. Each point of the plot hence represents the limits of the

approach for a given connectivity, for each of the plasticity rules
implemented. From the Figure it can be observed that the three
learning rules implemented within this framework have similar
performances untill the limit of 96,000 synapses (corresponding
to scaling up to 80% connectivity the model by Diehl and Cook,
2014). This is due to the fact that, up to that point, all three learn-
ing rules are limited by the neural cores lagging behind real time,
rather than by the plasticity process taking too long. Such limit
peaks just below 1,5 million synaptic events per second per core
for all three rules (23 million events for the full chip). In a non-
plastic performance analysis, Stromatias et al. (2013) measured a
maximum throughput of ≈ 2.38 million synaptic events per sec-
ond per core. After this connectivity level the complexity of the
two STDP models (standard and voltage-gated) becomes the lim-
iting factor, and a complete walk of the synaptic matrix is not
possible anymore within the 128 ms period used in this paper.
The BCM algorithm is not affected by this, as the algorithm is
computationally less intense, and keeps improving above 1,6 M
synaptic events per second per core. The decay in performances
reflects the complexity of the algorithm considered: standard
STDP, being more complex than the voltage-gated version, has
a sharper decrease in performances.

When comparing these scenario results with the previous plas-
ticity models based on the DED by Jin et al. (2010b) and Diehl
and Cook (2014) (around 50k and 500k synaptic events per sec-
ond per core respectively in the 20% case - the leftmost part of
Figure 11), it must be remembered that these algorithms work
with a 1 ms spike-window resolution, while the experiments pro-
posed in this paper have adopted a resolution of 2 ms. Also the
former algorithms might lose spikes, while in the approach pre-
sented here the contributions from all the spikes are accumulated
(or, in other words, no spike is lost).

While our approach was designed for maximal flexibility, there
might be tradeoffs in terms of efficiency for some scenarios,
depending on connectivity and firing rates. One limitation of
our approach is, for example, that every plasticity event triggers
an update of the complete synaptic matrix. For the rules pro-
posed in this paper is not possible to selectively update only some

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 8 | Article 429 | 12

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

FIGURE 11 | Performance evaluation of the three learning rules in terms of synaptic event processed per core per second as a function of different

number of synapses.

rows. For pre/post sensitive rules (such as STDP) destinations are
encoded in the synaptic row, which is stored in SDRAM, so it
is not possible to know if a pre neuron connects to a post neu-
ron which has fired (thus inducing LTP) before retrieving the
row itself. In rate based models such as BCM, where the firing
rate is considered as a moving average, the absence of spikes is
not sufficient to ensure there is no plasticity in act. Finally rules
with relaxation toward one (BCM) or multiple (voltage-gated
STDP) states require a weight update even in the absence of a
spike.

Since in our implementation plasticity updates occur every
128 ms, pre-synaptic firing rates should be at least on the order
of ≈ 7− 8 Hz to avoid having to update silent synapses regu-
larly. In scenarios with lower firing rates, a purely event-driven
update would be more efficient. However, a main motivation for
our approach is to ensure real-time performance, even in situa-
tions with momentarily high load, e.g., if multiple neurons are
firing in bursts. Such scenarios are common when using natu-
ral inputs with coincident input spikes or models with oscillatory
background signals. In such cases the plasticity core approach
offers greater flexibility to process plasticity in real time: instead
of having to process neural and synaptic updates of all simulta-
neous spikes within the 1ms time step of the neural core, which
might be challenging for complex plasticity rules or for complex
neural models, our approach accumulates events over the longer
time window of the plasticity core.

This decoupling enables the neural cores to maintain the real-
time constraints, and opens up new possibilities for trade-offs
to reduce the load on the plasticity cores if necessary. The sim-
plest possibility is, as in the DED model, to lower the number
of neurons simulated by each neural core (and therefore also by
its associated plasticity core). Other options, although not imple-
mented in the first proof-of-concept presented in this paper, are
possible. For the initial results presented in this work we maintain

a 1:1 ratio between neural and plasticity cores, but this will likely
not be optimal for all scenarios. When looking at Figure 11 it can
be see that the two STDP models show a sweet spot for perfor-
mance at around 80% connectivity. Before such maximum the
performance is limited by the neural cores, while after that is
the plasticity core which is not able to keep up with the real-
time requirements. An interesting alternative would be to allocate
more plasticity cores to a single neural core, and adapt the plas-
ticity:neural core ratio according to the network characteristics
and to the computational complexity of the neural and plasticity
algorithms and the associated workload.

A limiting hardware factor for any implementation of plas-
ticity on SpiNNaker is the memory bandwidth, because rows
of the synaptic matrix need to be written back to SDRAM. It
was shown in Figure 9 of Painkras et al. (2013) that writing is
the main bottleneck, since the read bandwidth is twice as high.
Our approach reduces the write load, since rows are only writ-
ten back to SDRAM at most once every plasticity interval, rather
than once every pre-synaptic spike as in the DED model. This
means that, for example, if pre-synaptic neurons are firing at
24 Hz each synaptic row would be transferred back to SDRAM 24
times per second using the DED model, but only 8 times with our
approach.

Finally another possibility is to increase the duration of plas-
ticity intervals, which increases the time available for computing
the updates, but comes at the cost of larger memory requirements
for storing traces in the core-local DTCM. For long plasticity
intervals this might grow beyond what can be stored in DTCM
(64 Kbytes for each ARM core, of which some space needs to
be reserved for other parameters and buffers). The capacity can
be increased by lowering the precision for storing the traces,
or using a coarser time resolution. All these possible trade-offs,
although not fully explored in this initial work, show the versatil-
ity of the approach, which can be adapted to different situations

www.frontiersin.org January 2015 | Volume 8 | Article 429 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

and modeling needs, and constitutes one of its key features, as
discussed in the last Section.

8. DISCUSSION
Current research on understanding the relationship between the
local electrochemical processes of synaptic plasticity and their
manifestations as high-level behavioral learning and memory is
increasingly relying on theoretical modeling and computer sim-
ulations (Gerstner et al., 2012). Because of the great diversity
of plasticity phenomena observed in biology and the result-
ing diversity of proposed mathematical models, as well as the
computational complexity of spiking neural network simulations
dominated by the costs of synaptic processing, it is necessary to
create simulations tools that provide both the flexibility to try out
new models easily, and the speedup of specialized hardware. This
meets the demand of increasingly large neural network simula-
tions, both for studying brain function, and for applications in
artificial intelligence (Le et al., 2012). SpiNNaker has proven to
be a well-suited platform for massively parallel large-scale simu-
lations of spiking neural networks, and is flexible enough to let
researchers implement and test their own computational mod-
els in standard programming languages. The previous Deferred
Event Driven Model of handling events in SpiNNaker has made
it difficult to implement plasticity rules with arbitrary trigger-
ing events (pre-, or post-synaptic, or at regular time intervals),
rules which depend on third factors available only at the post-
synaptic neuron, or plasticity in networks with variable axonal
delays. We have presented here a framework which uses the mod-
ular architecture of SpiNNaker and delegates weight updates to
dedicated plasticity cores, while the network simulation operates
on the remaining neural cores. We have shown that a variety of
commonly used plasticity rules can be exactly replicated on this
framework, with a greatly increased capacity of processing plas-
ticity events in real-time, by running experiments on a 4-chip
SpiNNaker board. The separation of neural from plastic concerns
is the feature that enables the great flexibility of the architecture.
The two cores work in parallel on different time scales and phases,
and the plasticity core has all the information to compute plastic-
ity for the recent past, can access the weight matrix shared with
the neural core, and any other information that can be passed
through means of shared memory, e.g., membrane potentials and
spike timings of the pre- and post-synaptic neurons. All this infor-
mation can be pre-processed before plasticity is computed, which
allows e.g., the computation of rates in an otherwise spike-based
simulation. The architecture can be configured easily, using PyNN
scripts. This standard, high-level neural language makes it easy
to integrate and explore new learning rules into the SpiNNaker
architecture.

The approach presented in this paper is tailored to
SpiNNaker and to its specific architecture, design and constraints.
Nonetheless the same principles could be applied to other digital-
analog hybrid architectures, where efficient neural simulation
could be realized on one neuromorphic chip, whereas complex
plasticity rules could be realized off-chip on computers or FPGAs.
Regarding GPUs it appears to be more favorable to let each ker-
nel perform the same operation following the SIMD paradigm.
Fidjeland et al. (2009) sequentially use two different kernels, one

for neural updates and one for applying plasticity updates. Such
kernels do not run in parallel on the same GPU, but serially.
This does not constitute a problem when running accelerated
simulations, which is the common case for GPUs, but can raise
difficulties when running in closed-loop real-time scenarios, as
in neurally inspired robotics (Galluppi et al., 2014). In fact con-
current kernel execution is a feature that has only recently been
introduced in GPUs, with the NVIDIA Fermi architecture. Using
such technique, a plasticity and a neural kernel could be instan-
tiated concurrently on the same GPU, in a similar way to what
is done in our approach. Memory access patterns, and the possi-
bility of accessing contiguous portions of memory is a key factor
when programming a GPU (Brette and Goodman, 2012). It could
be speculated that applying an approach like the one proposed
in this paper would have the benefit of guaranteeing memory
coalescence, as the synaptic matrix is sequentially accessed when
walking through it. Multi-core or cluster architectures could also
in theory benefit of separating neural simulation and plasticity,
running either on different threads or on different cores, and with
different time scales. However, clusters are equipped with more
powerful processing units than SpiNNaker, so computing neural
and synaptic updates in different cores could introduce unnec-
essary overheads and synchronization difficulties, particularly
regarding memory bandwidth and access patterns.

In our experiments we have deliberately chosen to repro-
duce classical results, in order to compare the run-time per-
formance of the novel framework to previous implementations
of plasticity on SpiNNaker. The examples of BCM, STDP, and
voltage-gated STDP learning provide templates for construct-
ing further experiments with rate-based, spike-timing-based, and
voltage-dependent learning rules. Our approach can be easily
extended to include additional third factors to modulate plastic-
ity, e.g., neuromodulators (Izhikevich, 2007; Potjans et al., 2011),
or weight-dependency (Morrison et al., 2008; Nessler et al., 2013),
can model homeostatic effects (Bartolozzi et al., 2008), or handle
different synaptic delays (Tapson et al., 2013; Wang et al., 2013). It
can also combine different models of plasticity in one simulation,
a feature which is used in several recent models, where network
function arises from the interaction of different synaptic plas-
ticity rules that are specific to particular cell types (Lazar et al.,
2009; Savin et al., 2010; Binas et al., 2014; Kleberg et al., 2014).
In fact, we have provided a tool that should be general enough
to model long-term potentiation rules, but is not restricted only
to phenomenological ones. Other biological structures i.e., glial
cells are considered to have a fundamental role in plasticity, and
can enhance learning capabilities (Min et al., 2012). The plasticity
core, by leveraging this functional segregation already present in
biology, is a natural candidate to model such structures.

The results presented in this work and the possibilities opened
by this approach point to the efficiency and to the generality of the
framework introduced: a modular, flexible and scalable tool for
the fast and easy exploration of learning models of very different
kinds on the parallel SpiNNaker system.

ACKNOWLEDGMENTS
This work has been partially supported by Labex Livesenses
(Eventsee) and by the Human Brain Project (aCORE). The

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 8 | Article 429 | 14

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

SpiNNaker project is supported by the Engineering and Physical
Sciences Research Council (EPSRC) under Grant EP/G015740/01.
Michael Pfeiffer has been supported by the Swiss National
Science Foundation Grant 200021_146608 and the Samsung
Advanced Institute of Technology. The work proposed in this
paper is resulted from discussions at the Capocaccia and Telluride
Workshops; the authors would like to thank the sponsors and the
organizers.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.2014.
00429/abstract

REFERENCES
Abbott, L. F., and Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nat.

Neurosci. 3, 1178–1183. doi: 10.1038/81453
Bartolozzi, C., Nikolayeva, O., and Indiveri, G. (2008). “Implementing homeostatic

plasticity in VLSI networks of spiking neurons,” in Proceedings of the 15th IEEE
International Conference on Electronics, Circuits and Systems, ICECS 2008 (St.
Julien’s), 682–685.

Beyeler, M., Dutt, N. D., and Krichmar, J. L. (2013). Categorization and decision-
making in a neurobiologically plausible spiking network using a STDP-like
learning rule. Neural Netw. 48, 109–124. doi: 10.1016/j.neunet.2013.07.012

Bi, G., and Poo, M. (1998). Synaptic modifications in cultured hippocampal neu-
rons: dependence on spike timing, synaptic strength, and postsynaptic cell type.
J. Neurosci. 18, 10464–10472.

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for the devel-
opment of neuron selectivity: orientation specificity and binocular interaction
in visual cortex. J. Neurosci. 2, 32–48.

Binas, J., Rutishauser, U., Indiveri, G., and Pfeiffer, M. (2014). Learning
and stabilization of winner-take-all dynamics through interacting exci-
tatory and inhibitory plasticity. Front. Comput. Neurosci. 8:68. doi:
10.3389/fncom.2014.00068

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.
doi: 10.1162/neco.2007.19.11.2881

Brette, R., and Goodman, D. F. (2012). Simulating spiking neural networks on
gpu. Netw. Comput. Neural Syst. 23, 167–182. doi: 10.3109/0954898X.2012.
730170

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., et al.
(2007). Simulation of networks of spiking neurons: a review of tools and
strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Cassenaer, S., and Laurent, G. (2012). Conditional modulation of spike-
timing-dependent plasticity for olfactory learning. Nature 482, 47–52. doi:
10.1038/nature10776

Clopath, C., Busing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects
coding: a model of voltage-based STDP with homeostasis. Nature Neurosci. 13,
344–352. doi: 10.1038/nn.2479

Coath, M., Sheik, S., Chicca, E., Indiveri, G., Denham, S. L., and Wennekers, T.
(2013). A robust sound perception model suitable for neuromorphic imple-
mentation. Front. Neurosci. 7:278. doi: 10.3389/fnins.2013.00278

Davies, S., Galluppi, F., Rast, A., and Furber, S. (2012). A forecast-based STDP
rule suitable for neuromorphic implementation. Neural Netw. 32, 3–14. doi:
10.1016/j.neunet.2012.02.018

Davison, A. A. P., Brüderle, D., Eppler, J. J., Kremkow, J., Muller, E., Pecevski,
D., et al. (2008). PyNN: a common interface for neuronal network simulators.
Front. Neuroinformat. 2:11. doi: 10.3389/neuro.11.011.2008

Diehl, P. U., and Cook, M. (2014). “Efficient implementation of STDP rules on
SpiNNaker neuromorphic hardware,” in International Conference on Neural
Networks (IJCNN) 2014 (Beijing), 4288–4295.

Fidjeland, A., Roesch, E., Shanahan, M., and Luk, W. (2009). “NeMo: a plat-
form for neural modelling of spiking neurons using GPUs,” in 2009 20th
IEEE International Conference on Application-Specific Systems, Architectures and
Processors (Boston, MA: IEEE), 137–144.

Fidjeland, A., and Shanahan, M. (2010). “Accelerated simulation of spiking neu-
ral networks using GPUs,” in Neural Networks, International Joint Conference
on (Barcelona), 1–8.

Friedrich, J., Urbanczik, R., and Senn, W. (2011). Spatio-temporal credit assign-
ment in neuronal population learning. PLoS Computat. Biol. 7:e1002092. doi:
10.1371/journal.pcbi.1002092

Furber, S., Galluppi, F., Temple, S., and Plana, A. (2014). The SpiNNaker project.
Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Furber, S., and Temple, S. (2008). Neural systems engineering. Computat. Intell. 4,
763–796. doi: 10.1098/rsif.2006.0177

Furber, S., Temple, S., and Brown, A. (2006). “High-performance computing for
systems of spiking neurons,” in The AISB06 Workshop on GC5: Architecture of
Brain and Mind (Bristol).

Galluppi, F., Davies, S., Rast, A., Sharp, T., Plana, L., and Furber, S. (2012). “A
hierarchical configuration system for a massively parallel neural hardware plat-
form,” in CF ’12 Proceedings of the 9th Conference on Computing Frontiers, ed
ACM (Cagliari), 183–192.

Galluppi, F., Denk, C., Meiner, M. C., Stewart, T., Plana, L. A., Eliasmith, C., et al.
(2014). “Event-based neural computing on an autonomous mobile platform,” in
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
(Hong Kong) 2862–2867.

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A neu-
ronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78.
doi: 10.1038/383076a0

Gerstner, W., Sprekeler, H., and Deco, G. (2012). Theory and simulation in
neuroscience. Science 338, 60–65. doi: 10.1126/science.1227356

Giulioni, M., Camilleri, P., Dante, V., Badoni, D., Indiveri, G., Braun, J., et al.
(2008). “A VLSI network of spiking neurons with plastic fully configurable
learning synapses,” in 2008 15th IEEE International Conference on Electronics,
Circuits and Systems (St. Julien’s).

Giulioni, M., Pannunzi, M., Badoni, D., Dante, V., and Del Giudice, P. (2009).
Classification of correlated patterns with a configurable analog VLSI neural net-
work of spiking neurons and self-regulating plastic synapses. Neural Comput. 21,
3106–3129. doi: 10.1162/neco.2009.08-07-599

Guyonneau, R., Van Rullen, R., and Thorpe, S. J. (2005). Neurons tune
to the earliest spikes through STDP. Neural Comput. 17, 859–879. doi:
10.1162/0899766053429390

Hartline, H. K., Wagner, H. G., and Ratliff, F. (1956). Inhibition in the eye of the
limulus. J. Gen. Physiol. 39, 651–673. doi: 10.1085/jgp.39.5.651

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory.
New York, NY: Wiley-Interscience.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-
lective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558. doi:
10.1073/pnas.79.8.2554

Indiveri, G., Chicca, E., and Douglas, R. (2006). A VLSI array of low-power spik-
ing neurons and bistable synapses with spike-timing dependent plasticity. IEEE
Trans. Neural Netw. 17, 211–221. doi: 10.1109/TNN.2005.860850

Indiveri, G., and Fusi, S. (2007). “Spike-based learning in VLSI networks of
integrate-and-fire neurons,” in Circuits and Systems, 2007. ISCAS 2007. IEEE
International Symposium on (New Orleans, LA), 3371–3374.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., and Prodromakis,
T. (2013). Integration of nanoscale memristor synapses in neuromorphic
computing architectures. IOP Nanotechnol. 24:384010. doi: 10.1088/0957-
4484/24/38/384010

Izhikevich, E. (2006). Polychronization: computation with spikes. Neural Comput.
18, 245–282. doi: 10.1162/089976606775093882

Izhikevich, E. (2007). Solving the distal reward problem through linkage of
STDP and dopamine signaling. Cereb. Cortex 17, 2443–2452. doi: 10.1093/cer-
cor/bhl152

Jeyabalaratnam, J., Bharmauria, V., Bachatene, L., Cattan, S., Angers, A., and
Molotchnikoff, S. (2013). Adaptation shifts preferred orientation of tuning
curve in the mouse visual cortex. PLoS ONE 8:e64294. doi: 10.1371/jour-
nal.pone.0064294

Jin, X., Galluppi, F., Patterson, C., Rast, A., Davies, S., Temple, S., et al.
(2010a). “Algorithm and software for simulation of spiking neural networks
on the multi-chip SpiNNaker system,” in Neural Networks, 2010. IJCNN 2010.

www.frontiersin.org January 2015 | Volume 8 | Article 429 | 15

http://www.frontiersin.org/journal/10.3389/fnins.2014.00429/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00429/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00429/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00429/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00429/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00429/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

(IEEE World Congress on Computational Intelligence). IEEE International Joint
Conference on (Barcelona), 1–8.

Jin, X., Rast, A., Galluppi, F., Davies, S., and Furber, S. (2010b). “Implementing
spike-timing-dependent plasticity on SpiNNaker neuromorphic hardware,” in
Neural Networks, 2010. IJCNN 2010. (IEEE World Congress on Computational
Intelligence). IEEE International Joint Conference on (Barcelona: IEEE), 1–8.

Jin, X., Rast, A., Galluppi, F., Khan, M., and Furber, S. (2009). “Implementing
learning on the SpiNNaker universal neural chip multiprocessor,” in Neural
Information Processing, Volume 5863, Chapter 48, eds C. S.Leung, M. Lee, and
J. H. Chan (Berlin; Heidelberg: Springer), 425–432.

Kappel, D., Nessler, B., and Maass, W. (2014). STDP installs in winner-take-
all circuits an online approximation to hidden markov model learning. PLoS
Computat. Biol. 10:e1003511. doi: 10.1371/journal.pcbi.1003511

Kempter, R., Gerstner, W., and van Hemmen, J. L. (2001). Intrinsic stabilization of
output rates by spike-based hebbian learning. Neural Comput. 13, 2709–2741.
doi: 10.1162/089976601317098501

Kleberg, F. I., Fukai, T., and Gilson, M. (2014). Excitatory and inhibitory
STDP jointly tune feedforward neural circuits to selectively propagate corre-
lated spiking activity. Front. Comput. Neurosci. 8:53. doi: 10.3389/fncom.2014.
00053

Kullmann, D. M., Moreau, A. W., Bakiri, Y., and Nicholson, E. (2012). Plasticity of
inhibition. Neuron 75, 951–962. doi: 10.1016/j.neuron.2012.07.030

Lazar, A., Pipa, G., and Triesch, J. (2009). {SORN}: a self-organizing recur-
rent neural network. Front. Comput. Neurosci. 3:23. doi: 10.3389/neuro.10.023.
2009

Le, Q. V., Monga, R., Devin, M., Corrado, G., Chen, K., Ranzato, M., et al.
(2012). “Building high-level features using large scale unsupervised learning,”
in Proceedings of the 29th International Conference on Machine Learning (ICML)
(Vancouver, BC), 1–11.

Legenstein, R., Pecevski, D., and Maass, W. (2008). A learning theory for reward-
modulated spike-timing-dependent plasticity with application to biofeedback.
PLoS Comput. Biol. 4:e1000180. doi: 10.1371/journal.pcbi.1000180

Markram, H., Lbke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synap-
tic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215.
doi: 10.1126/science.275.5297.213

Mayr, C., Stärke, P., Partzsch, J., Schueffny, R., Cederstroem, L., Shuai, Y., et al.
(2012). “Waveform driven plasticity in BiFeO3 memristive devices: model and
implementation,” in NIPS (Lake Tahoe, NV), 1709–1717.

Mead, C. (1989). Analog VLSI and Neural Systems. London: Addison-Wesley
Longman Publishing Co., Inc.

Mehta, M. R., Quirk, M. C., and Wilson, M. A. (2000). Experience-dependent
asymmetric shape of hippocampal receptive fields. Neuron 25, 707–715. doi:
10.1016/S0896-6273(00)81072-7

Min, R., Santello, M., and Nevian, T. (2012). The computational power of
astrocyte mediated synaptic plasticity. Front. Comput. Neurosci. 6:93. doi:
10.3389/fncom.2012.00093

Mitra, S., Fusi, S., and Indiveri, G. (2009). Real-time classification of complex pat-
terns using spike-based learning in neuromorphic VLSI. IEEE Trans. Biomed.
Circ. Syst. 3, 32–42. doi: 10.1109/TBCAS.2008.2005781

Moore, B. D., and Freeman, R. D. (2012). Development of orientation tuning
in simple cells of primary visual cortex. J. Neurophysiol. 107, 2506–2516. doi:
10.1152/jn.00719.2011

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological mod-
els of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478. doi:
10.1007/s00422-008-0233-1

Morrison, A., Mehring, C., and Geisel, T. (2005). Advancing the boundaries
of high-connectivity network simulation with distributed computing. Neural
Comput. 17, 1776–1801. doi: 10.1162/0899766054026648

Mostafa, H., Corradi, F., Stefanini, F., and Indiveri, G. (2014). “A hybrid ana-
log/digital spike-timing dependent plasticity learning circuit for neuromorphic
VLSI multi-neuron architectures,” in International Symposium on Circuits and
Systems (ISCAS) 2014 (IEEE) 854–857.

Nageswaran, J., Dutt, N., Krichmar, J., and Nicolau, A. (2007). A configurable
simulation environment for the efficient simulation of large-scale spiking
neural networks on graphics processors. Neural Netw. 22, 791–800. doi:
10.1016/j.neunet.2009.06.028

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2014).
Event-driven contrastive divergence for spiking neuromorphic systems. Front.
Neurosci. 7:272. doi: 10.3389/fnins.2013.00272

Neil, D., and Liu, S.-C. (2014). “Minitaur, an event-driven FPGA-based spiking
network accelerator,” in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 1–1.

Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian com-
putation emerges in generic cortical microcircuits through spike-timing-
dependent plasticity. PLoS Comput. Biol. 9:e1003037. doi: 10.1371/journal.pcbi.
1003037

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J.
Math. Biol. 15, 267–273. doi: 10.1007/BF00275687

Painkras, E., Plana, L., Garside, J., Temple, S., Galluppi, F., Patterson, C., et al.
(2013). “SpiNNaker : a 1W 18-core system-on-chip for massively-parallel neural
net simulation,” in The IEEE Journal of Solid State Circuits, VV, 8, 1–13.

Pawlak, V., Wickens, J. R., Kirkwood, A., and Kerr, J. N. D. (2010). Timing is not
everything: neuromodulation opens the STDP gate. Front. Synaptic Neurosci.
2:146. doi: 10.3389/fnsyn.2010.00146

Pfeil, T., Potjans, T. C., Schrader, S., Potjans, W., Schemmel, J., Diesmann, M., et al.
(2012). Is a 4-Bit synaptic weight resolution enough? constraints on enabling
spike-timing dependent plasticity in neuromorphic hardware. Front. Neurosci.
6:90. doi: 10.3389/fnins.2012.00090

Plana, L., Furber, S., Temple, S., Khan, M., Shi, Y., Wu, J., et al. (2007). A GALS
infrastructure for a massively parallel multiprocessor. IEEE Des. Test Comput.
24, 454–463. doi: 10.1109/MDT.2007.149

Plesser, H., Eppler, J., Morrison, A., Diesmann, M., and Gewaltig, M. (2007).
“Efficient parallel simulation of large-scale neuronal networks on clusters
of multiprocessor computers,” in Euro-Par 2007 Parallel Processing (Berlin;
Heidelberg: Springer), 672–681.

Potjans, W., Diesmann, M., and Morrison, A. (2011). An imperfect dopamin-
ergic error signal can drive temporal-difference learning. PLoS Comput. Biol.
7:e1001133. doi: 10.1371/journal.pcbi.1001133

Rahimi Azghadi, M., Iannella, N., Al-Sarawi, S. F., Indiveri, G., and Abbott,
D. (2014). Spike-based synaptic plasticity in silicon: design, imple-
mentation, application, and challenges. Proc. IEEE 102, 717–737. doi:
10.1109/JPROC.2014.2314454

Savin, C., Joshi, P., and Triesch, J. (2010). Independent component analysis in
spiking neurons. PLoS Comput. Biol. 6:e1000757. doi: 10.1371/journal.pcbi.
1000757

Schemmel, J., Bruderle, D., Meier, K., and Ostendorf, B. (2007). “Modeling synap-
tic plasticity within networks of highly accelerated I&F neurons,” in 2007
IEEE International Symposium on Circuits and Systems (New Orleans, LA). doi:
10.1109/ISCAS.2007.378289

Sharp, T., and Furber, S. (2013). “Correctness and performance of the SpiNNaker
architecture,” in Neural Networks (IJCNN), The 2013 International Joint
Conference on (Dallas, TX), 1–8.

Sharp, T., Plana, L., Galluppi, F., and Furber, S. (2011). “Event-driven simula-
tion of arbitrary spiking neural networks on SpiNNaker,” in The International
Conference on Neural Information Processing (ICONIP), Volume 2011 (Shanghai:
Springer), 424–430. doi: 10.1007/978-3-642-24965-5/48

Sheik, S., Coath, M., Indiveri, G., Denham, S. L., Wennekers, T., and Chicca, E.
(2012). Emergent auditory feature tuning in a real-time neuromorphic VLSI
system. Front. Neurosci. 6:17. doi: 10.3389/fnins.2012.00017

Shouval, H., Intrator, N., and Cooper, L. N. (1997). BCM network develops orien-
tation selectivity and ocular dominance in natural scene environment. Vis. Res.
37, 3339–3342. doi: 10.1016/S0042-6989(97)00087-4

Sjöström, P. J., Turrigiano, G. G., and Nelson, S. B. (2001). Rate, timing, and coop-
erativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164.
doi: 10.1016/S0896-6273(01)00542-6

Song, S., and Abbott, L. F. (2001). Cortical development and remapping through
spike timing-dependent plasticity. Neuron 32, 339–350. doi: 10.1016/S0896-
6273(01)00451-2

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Stewart, T. C., Tripp, B., and Eliasmith, C. (2009). Python scripting in the nengo
simulator. Front. Neuroinformat. 3:7. doi: 10.3389/neuro.11.007.2009

Stromatias, E., Galluppi, F., Patterson, C., and Furber, S. (2013). “Power analysis of
large-scale, real-time neural networks on SpiNNaker,” in The International Joint
Conference on Neural Networks - ICJNN 2013 (Dallas, TX), 1570–1577.

Tapson, J. C., Cohen, G. K., Afshar, S., Stiefel, K. M., Buskila, Y., Wang, R. M.,
et al. (2013). Synthesis of neural networks for spatio-temporal spike pattern

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 8 | Article 429 | 16

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

recognition and processing. Front. Neurosci. 7:153. doi: 10.3389/fnins.2013.
00153

van Schaik, A., and Liu, S. (2005). “AER EAR: a matched silicon cochlea pair with
address event representation interface,” in IEEE International Symposium on
Circuits and Systems ISCAS (Kobe), 4213–4216.

Vogelstein, R. J., Tenore, F., Philipp, R., Adlerstein, M. S., Goldberg, D. H., and
Cauwenberghs, G. (2002). “Spike timing-dependent plasticity in the address
domain,” in Advances in Neural Information Processing Systems (Vancouver, CA),
1147–1154.

Wang, R., Cohen, G., Stiefel, K. M., Hamilton, T. J., Tapson, J., and van Schaik, A.
(2013). An FPGA implementation of a polychronous spiking neural network
with delay adaptation. Front. Neurosci. 7:14. doi: 10.3389/fnins.2013.00014

Wong, T., Preissl, R., Datta, P., Flickner, M., Singh, R., Esser, S., et al. (2013). 10ˆ14.
Technical report, IBM.

Zamarreño Ramos, C., Camuñas Mesa, L. A., Pérez-Carrasco, J. A., Masquelier, T.,
Serrano-Gotarredona, T., and Linares-Barranco, B. (2011). On spike-timing-
dependent-plasticity, memristive devices, and building a self-learning visual
cortex. Front. Neurosci 5:26. doi: 10.3389/fnins.2011.00026

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 11 July 2014; accepted: 07 December 2014; published online: 20 January
2015.
Citation: Galluppi F, Lagorce X, Stromatias E, Pfeiffer M, Plana LA, Furber SB and
Benosman RB (2015) A framework for plasticity implementation on the SpiNNaker
neural architecture. Front. Neurosci. 8:429. doi: 10.3389/fnins.2014.00429
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2015 Galluppi, Lagorce, Stromatias, Pfeiffer, Plana, Furber and
Benosman. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) or licensor are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

www.frontiersin.org January 2015 | Volume 8 | Article 429 | 17

http://dx.doi.org/10.3389/fnins.2014.00429
http://dx.doi.org/10.3389/fnins.2014.00429
http://dx.doi.org/10.3389/fnins.2014.00429
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

APPENDIX: PSEUDO CODE
This appendix presents pseudo code describing the implementation of the common framework and of the rules proposed in this paper.
We refer to DTCM for the memory locally available to each ARM core, and to SDRAM as the off-die memory shared by all cores in a
chip.

A COMMON CODE
The infrastructure for the framework is common for all the learning rules introduced, leaving users free to implement their plasticity
rules starting from:

• spike windows containing a compressed form of spike timings for the post-synaptic neurons (stored in DTCM).
• the whole synaptic matrix, indexed by pre-synaptic neuron (stored in SDRAM). Each row contains all the synaptic information

needed by the post-synaptic neurons modeled by the neural core for a particular pre-synaptic neuron.
• spike windows containing a compressed form of spike timings for the pre-synaptic neurons (stored at the beginning of each pre-

synaptic row in the synaptic matrix).
• additional data needed can be passed through means of shared portions of SDRAM and initialized during the timer callback.

The DMA controller is managing access to SDRAM, relieving the ARM cores of this task and enabling them to perform computation
while the memory is fetched or written in parallel. When a core needs to access SDRAM it issues a request to the DMA controller and
continues its work. Whenever the requested access is completed a DMA done interrupt is generated, triggering a DMA done callback.

Synaptic data is indexed by pre-synaptic neuron in SDRAM; each row contains the information about all the core-local post-
synaptic neurons each pre-neuron is connected to. Each iteration of the DMA pipeline calls itself on the next portion of the synaptic
matrix if there is still data to compute.

Algorithm 1 | DMA Pipeline.

Data: Local copy of synaptic row data: synaptic_row
Result: Starts the weight update process; requests the next synaptic row
if there is still synaptic data to process then

Increment the synaptic_matrix_index;
Issue a DMA request for synaptic row at address synaptic_matrix_index;
Call the weight update process on synaptic_row;

else
Terminate the DMA pipeline process;

end
Cleanup local variables for the next plasticity phase;

The Packet Received callback is called whenever a MC packet (containing a post spike) is received, and is used to updated the
post-spike window. The mapping software ensures that every spike emitted by the neural core reaches the correspondent plasticity
core.

Algorithm 2 | Packet Received callback.

Data: Incoming spike (routing key) from the twin neural core
Result: Spike window for the current phase
Retrieve the spike window for the post-synaptic neuron (DTCM);
Retrieve the time position for the spike;
Update the spike window;

The Timer callback is called every millisecond, and initiates the plasticity process every 128 ms in our implementation. The maxi-
mum axonal delay is reintroduced here, to ensure that all the necessary information from the previous phase is present. When initiating
the plasticity process rule-specific variables (e.g., traces) can be computed; therefore the timer callback is dependent of each plasticity
rule, and described in the next Sections for the three rules implemented.

The weight update process is initiated whenever the next row from the synaptic matrix has been retrieved from SDRAM and is
locally available to a core. Similarly to the timer callback, this function is specific to each plasticity rule implemented and is therefore
described in the following Sections.

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 8 | Article 429 | 18

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

B STDP

Algorithm 3 | Timer callback.

Data: Time tick
Compute phase index from time tick;
if mod(time tick,plasticity_update_time) == max_delay then

Compute post-synaptic traces from the post-spike window of the previous phase (DTCM);
Start DMA pipeline process;

else
do nothing;

end

Algorithm 4 | STDP weight update process.

Data: local copy of a synaptic row for pre-neuron i
Result: updated synaptic row
Compute the pre-synaptic trace from the pre-spike window bitmap (SDRAM);
/* potentiation */
for j in size_row do

while there are post-spikes for neuron j do

Increment �wij using the pre_trace value at time t
j
post

end
end
/* depotentiation */
while there are pre-spikes for neuron i do

for j in size_row do
Decrement �wij using the post_trace value at time ti

pre

end
end
for j in size_row do

Apply �wij to the synapse;
end
Cleanup spike window;
Initiate a DMA write-back of the synaptic row (DTCM→ SDRAM)

C BCM

Algorithm 5 | Timer callback.

Data: Time tick
Compute phase index from time tick;
if mod(time tick,plasticity_update_time) == max_delay then

Compute post-synaptic rates from the spike window of the previous phase (DTCM);
Start DMA pipeline process;

else
do nothing;

end

www.frontiersin.org January 2015 | Volume 8 | Article 429 | 19

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Galluppi et al. A framework for plasticity on SpiNNaker

Algorithm 6 | BCM weight update process.

Data: local copy of a synaptic row for pre-neuron i
Result: updated synaptic row
Compute the pre-synaptic rate from the pre-spike window;
for j in size_row do

Compute �wij using Eq. 4;
end
Cleanup spike window;
Initiate a DMA write-back of the synaptic row (DTCM→ SDRAM);

D VOLTAGE-GATED STDP

Algorithm 7 | Timer callback.

Data: Time tick
Compute phase index from time tick;
if mod(time tick,plasticity_update_time) == max_delay then

Compute C(t) traces from the spike window of the previous phase (DTCM);
Retrieve voltage threshold checks from a shared portion of SDRAM;
Start DMA pipeline process;

else
do nothing;

end

Algorithm 8 | Voltage-gated STDP weight update process.

Data: local copy of a synaptic row for pre-neuron i
Result: updated synaptic row
while there are pre-spikes for neuron i do

for j in size_row do
if V(ti

pre) and C(ti
pre) satisfy Eq. 6 then

increment �wij ←+a;

else if V(ti
pre) and C(ti

pre) satisfy Eq. 7 then
decrement �wij ←−b;

else
do nothing;

/* relax to one of the bistable states */
if w satisfies Eq. 8 then

relax toward wmax;
else

relax toward wmin;
end

end
end
Cleanup spike window;
Initiate a DMA write-back of the synaptic row (DTCM→ SDRAM);

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 8 | Article 429 | 20

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

	A framework for plasticity implementation on the SpiNNaker neural architecture
	Introduction
	Learning in Spiking Platforms
	A Novel Framework for Plasticity Implementation on SpiNNaker
	The Deferred Event Driven Model
	The Dedicated Plasticity Core Approach

	STDP
	Methods: Implementation of STDP on the Plasticity Core
	Results: Pre-post Pairing using a Teacher Signal
	Results: Balanced Excitation

	BCM
	Methods: Implementation of BCM on the Plasticity Core
	Results: Emergence of Orientation Selectivity with BCM

	Voltage-gated STDP
	Methods: Implementation of Voltage-gated STDP on the Plasticity Core
	Results: Learning Temporal Patterns

	Performance Analysis and Discussion
	Discussion
	Acknowledgments
	Supplementary Material
	References
	Appendix: Pseudo Code

