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Bio-inspired asynchronous event-based vision sensors are currently introducing a paradigm
shift in visual information processing. These new sensors rely on a stimulus-driven
principle of light acquisition similar to biological retinas. They are event-driven and fully
asynchronous, thereby reducing redundancy and encoding exact times of input signal
changes, leading to a very precise temporal resolution. Approaches for higher-level
computer vision often rely on the reliable detection of features in visual frames, but similar
definitions of features for the novel dynamic and event-based visual input representation
of silicon retinas have so far been lacking. This article addresses the problem of learning
and recognizing features for event-based vision sensors, which capture properties of
truly spatiotemporal volumes of sparse visual event information. A novel computational
architecture for learning and encoding spatiotemporal features is introduced based on a
set of predictive recurrent reservoir networks, competing via winner-take-all selection.
Features are learned in an unsupervised manner from real-world input recorded with
event-based vision sensors. It is shown that the networks in the architecture learn distinct
and task-specific dynamic visual features, and can predict their trajectories over time.

Keywords: echo-state networks, spatiotemporal, feature extraction, recognition, silicon retinas

1. INTRODUCTION
Humans learn efficient strategies for visual perception tasks by
adapting to their environment through interaction, and recog-
nizing salient features. In contrast, most current computer vision
systems have no such learning capabilities. Despite the accumu-
lated evidence of visual feature learning in humans, little is known
about the mechanisms of visual learning (Wallis and Bülthoff,
1999). A fundamental question in the study of visual process-
ing is the problem of feature selection: which features of a scene
are extracted and represented by the visual cortex? Classical stud-
ies of feature selectivity of cortical neurons have linked neural
responses to properties of local patches within still images (Hubel
and Wiesel, 1962; Olshausen and Field, 1997). Conventional arti-
ficial vision systems rely on sampled acquisition that acquires
static snapshots of the scene at fixed time intervals. This regular
sampling of visual information imposes an artificial timing for
events detected in a natural scene. One of the main drawbacks of
representing a natural visual scene through a collection of snap-
shot images is the complete lack of dynamics and the high amount
of redundancy in the acquired data. Every pixel is sampled con-
tinuously, even if its output value remains unchanged. The output
of a pixel is then unnecessarily digitized, transmitted, stored,
and processed, even if it does not provide any new information
that was not available in preceding frames. This highly ineffi-
cient use of resources introduces severe limitations in computer

vision applications, since the largely redundant acquired infor-
mation lead to a waste of energy for acquisition, compression,
decompression and processing (Lichtsteiner et al., 2008).

Biological observations confirm that still images are largely
unknown to the visual system. Instead, biological sensory sys-
tems are massively parallel and data-driven (Gollisch and Meister,
2008). Biological retinas encode visual data asynchronously
through sparse firing spike trains, rather than as frames of pixel
values (Roska and Werblin, 2003). Current studies show that
the visual system effortlessly combines the various features of
visual stimuli to form coherent perceptual categories relying on
a surprisingly high temporal resolution: the temporal offsets of
on-bistratified retina cells responses show an average standard
deviation of 3.5 ms (Berry et al., 1997; Uzzell and Chichilnisky,
2004). Neurons in the visual cortex also precisely follow the tem-
poral dynamics of the stimuli up to a precision of 10 ms. In order
to bridge the gap between artificial machine vision and biolog-
ical visual perception, computational vision has taken inspira-
tion from fundamental studies of visual mechanisms in animals
(Hubel and Wiesel, 1962; Wallis and Rolls, 1997). One main focus
of these approaches have been various computational models of
simple and complex cells in the primary visual cortex (V1) Hubel
and Wiesel (1962); Fukushima (1980); Riesenhuber and Poggio
(1999), which are characterized by their preferred response to
localized oriented bars. Typically, this orientation-tuned response

www.frontiersin.org February 2015 | Volume 9 | Article 46 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2015.00046/abstract
http://community.frontiersin.org/people/u/173095
http://community.frontiersin.org/people/u/32893
http://community.frontiersin.org/people/u/114467
http://community.frontiersin.org/people/u/21160
http://community.frontiersin.org/people/u/94237
mailto:xavier.lagorce@upmc.fr
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Lagorce et al. Spatiotemporal features for asynchronous event-based data

of V1 cells has been modeled with Gabor Filters (Gabor, 1946),
which have been used as the first layer of feature extraction for
visual recognition tasks (Huang et al., 2004; Ilonen et al., 2007).
The most well-known example of biologically inspired, although
still frame-based model of object recognition is the HMAX model
(Riesenhuber and Poggio, 1999; Serre et al., 2006; Mutch et al.,
2010). It implements a feedforward neural network based on a
first layer of Gabor filters followed by different layers realizing
linear and non-linear operations modeled on primate cortex cells.
However, HMAX like other approaches implementing neural net-
works to perform visual tasks (Lin and Huang, 2005) are still
based on processing still images and therefore cannot capture key
visual information mediated by time.

This paper introduces an unsupervised system that allows
to extract visual spatiotemporal features from natural scenes.
It does not rely on still images, but on the precise timing of
spikes acquired by an asynchronous spike-based silicon retina
(Lichtsteiner et al., 2008). The development of asynchronous
event-based retinas has been initiated by the work of Mahowald
and Mead (Mead and Mahowald, 1988). Neuromorphic asyn-
chronous event-based retinas allow new insights into the capabil-
ities of perceptual models to use time as a source of information.
Currently available event-based vision sensors (Delbruck et al.,
2010; Posch et al., 2011) produce compressed digital data in the
form of time-stamped, localized events, thereby reducing latency
and increasing temporal dynamic range compared to conven-
tional imagers. Because pixel operation is now asynchronous and
pixel circuits can be designed to have extremely high tempo-
ral resolution, silicon retinas accomplish both the reduction of
over-sampling of highly redundant static information, as well as
eliminating under-sampling of very fast scene dynamics, which
in conventional cameras is caused by a fixed frame rate. Pixel
acquisition and readout times of milliseconds to microseconds are
achieved, resulting in temporal resolutions equivalent to conven-
tional sensors running at tens to hundreds of thousands of frames
per second, without the data overhead of conventional high-speed
imaging. The implications of this approach for machine vision
can hardly be overstated. Now, for the first time, the strict tem-
poral resolution vs. data rate tradeoff that limits all frame-based
vision acquisition can be overcome. Visual data acquisition simul-
taneously becomes fast and efficient. A recent review of these
sensors can be found in Delbruck et al. (2010) and Posch et al.
(2014).

Despite the efficiency of the sensor representation, it is far
from straightforward to port methods that have proven success-
ful in computer vision to the event-based vision domain. Much
of the recent success of computer vision comes from the defini-
tion of robust and invariant feature or interest point extractors
and descriptors (Lowe, 1999, 2004; Bay et al., 2008). Although
such methods have proven to be very useful for static image
classification, they require processing of the whole image, and
do not take temporal information into account. Dynamical fea-
tures for event data should instead recognize features only from
novel visual input, and recognize them as they appear in the
sparse input stream. This requires a model that can continu-
ously process spiking inputs, and maintain a representation of the
feature dynamics over time, even in the absence of input. Here

we present an architecture for feature learning and extraction
based on reservoir computing with recurrent neural networks
(Schrauwen et al., 2007), which integrate event input from neu-
romorphic sensors, and compete via a Winner-Take-All (WTA)
technique to specialize on distinct features by predicting their
temporal evolution.

A proof of concept for the performance of the architecture is
demonstrated in three experiments using natural recordings with
event-based vision sensors. In the first experiment, we present a
set of oriented bars to the camera in order to the show the capac-
ity of the model to extract simple features in an unsupervised
manner, using a big spatial receptive field to emphasize the graph-
ical visualization of the learnt features. In the second experiment,
the full capacity of the method is demonstrated by mapping the
field of view to several small receptive fields, and showing that the
model is still capable of reliably extracting features from the scene.
The last experiment applies the architecture to complex object
features. All experiments were conducted with real-world record-
ings from DVS cameras (Lichtsteiner et al., 2008), and thus are
subject to the standard noise distribution of such sensors.

2. MATERIALS AND METHODS
2.1. EVENT-BASED ASYNCHRONOUS SENSORS
In our experiments we used asynchronous event-based input sig-
nals from a Dynamic Vision Sensor (DVS) (Lichtsteiner et al.,
2008), which mimics the biological retina in silicon. It encodes
visual information using the Address-Event Representation
(AER), and has a spatial resolution of 128 × 128 pixels. The DVS
outputs an asynchronous stream of events that signal local rel-
ative luminance changes in the scene, at the time they occur.
Each pixel works independently for its receptive field, and cre-
ates events whenever the local luminance change since the time of
the last emitted event exceeds a given threshold �I on a logarith-
mic scale. The typical threshold is around 15% of relative contrast
variation. If the change is an increase /decrease then an ON/OFF
event is generated by the pixel (see Figure 1). This asynchronous
way of coding allows to convey the timing of the events with a

FIGURE 1 | Illustration of event-based encoding of visual signals.

Shown are the log-luminance measured by a pixel located at (x, y )T and the
asynchronous temporal contrast events signal generated by the DVS with
respect to the predefined threshold �I.
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high temporal resolution (∼ 1 μs). The “effective frame rate” of
such pixels is several kHz. We define an event occurring at time t
at the pixel (x, y)T as:

e(x, y, t) = |p| = 1, (1)

where p is the polarity of the event. p equals 1 (“ON”) when-
ever the event signals an intensity increase, or −1 (“OFF”) for
a decrease, but for the purposes of this article the polarity is
not used. This data-driven representation reduces redundancy in
the visual input, and maintains the encoding of exact times of
input signal changes, which allows very high temporal dynamics
of acquisition.

2.2. GENERAL ARCHITECTURE
Figure 2 shows the general architecture of the feature selection
process. In the following we briefly describe the overall architec-
ture, with more detailed descriptions of the individual compo-
nents below. To capture the temporal dynamics of spatiotemporal
features, we use Echo-State Networks (ESN) (Jaeger, 2002) that
act as predictors of future outputs. To achieve unsupervised

learning of distinct features we use multiple ESNs that com-
pete for learning and detection via a WTA network. As the first
stage, the signal coming from the DVS retina is preprocessed,
by converting the DVS output into analog signals as required by
the ESNs’ structure. In the second stage, labeled ESN layer in
Figure 2, each ESN receives the converted output of the DVS to
predict its evolution one timesteamp in the future. The readout
of each ESN is trained for this task, and each network should
learn to predict different temporal dynamics. To achieve this, the
next layer of the architecture, labeled WTA with Predictability
minimization in Figure 2, implements a Winner-Take-All (WTA)
neural network, which selects the best predictor from the avail-
able set of predicting ESNs. Through competition, the WTA
inhibits poorly predicting ESNs to ensure that the best pre-
dictor has sufficient time to learn a particular spatiotemporal
sequence. This layer also contains a predictability minimization
process to promote orthogonality of predictions between the
different ESNs. The selected ESN is then trained to recognize
the spatiotemporal pattern, and learns to predict its temporal
evolution. The WTA competition ensures that each ESN special-
izes on an independent feature, thus preventing two ESNs from

FIGURE 2 | Architecture for unsupervised spatiotemporal feature

extraction. Spikes from the DVS are transformed by filtering into
analog input signals that are sent to a set of ESN networks. Each
ESN is trained to predict future input activations based on current and
past activities. The prediction is compared to the actual inputs, and the
output signal Sp

k , which is a representation of the ESN’s prediction
performance is fed into a Winner-Take-All (WTA) network. This WTA

selects the best predicting ESN and enables it to train on the present
input sequence. A predictability minimization process promotes
orthogonality of predictions between the different ESNs during the WTA
selection. The combination of temporal prediction and competition
through the WTA allows each ESN to specialize on the prediction of a
distinct dynamical feature, which thus leads to learning of a set of
different feature detectors.
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predicting the same pattern. Consequently, at any given time,
the winning network in the WTA layer indicates the detected
feature. Through random initialization of ESNs and WTA com-
petition, the architecture extracts distinct spatiotemporal features
from event-based input signals in a completely unsupervised
manner.

For the experiments described in this article, the architecture
has been fully implemented in software, using DVS recordings of
real-world stimuli as inputs. In particular, the visual inputs for all
experiments contain the typical noise for this kind of sensor, and
do not use idealized simulated data.

2.3. SIGNAL PRE-PROCESSING
The DVS retina has approximately 16K pixels in total. Directly
using each pixel as an input to the ESN reservoir would require a
network with 16K input neurons, and, in typical reservoir com-
puting setups, 10–100 times more hidden neurons. Since this is
a prohibitively large size for real-time simulation of neural net-
works on conventional current computers, a pre-processing stage
is introduced to downsample the dimensionality of the input.
Please note that this is not a fundamental requirement, since
especially future large-scale neuromorphic processors and other
dedicated hardware platform could potentially handle real-time
execution of such large networks (see Discussion), but this is
beyond the scope of our proof-of-principle study.

Figure 3 provides a more detailed view of the first layer of
the architecture, named layer (0) in Figure 2. To reduce the
input dimensionality of the DVS signal, the retina pixels are first
spatially resampled into cells C(xc, yc) of δx × δy pixels, each
integrating pixels around the center (xc, yc) according to:

C(xc, yc) =
{

(x, y) | x ∈ [xc − δx, xc + δx]
y ∈ [yc − δy, yc + δy]

}
. (2)

Next, the signals are quantized by introducing spatiotemporal
receptive fields RF(x0, y0, t1, t2), covering �x × �y subsampling
cells, which collect all events in a spatiotemporal volume in the
time interval [t1, t2] according to:

RF(x0, y0, t1, t2) = (3){
e(x, y, t)|t ∈ [t1, t2], (x, y) ∈ C(xc, yc),

|xc − x0| ≤ �x

|yc − y0| ≤ �y

}
.

Conversion of events into analog signals is achieved by filtering
with a causal exponential filter with time constant τ , defined
as G(t, ti) = e−(t − ti)/τ · H(t − ti), where H(t) is the Heaviside
function, which is 1 for t ≥ 0 and zero otherwise. This filter
is applied to all spikes coming from pixels (x, y) contained in a
receptive field RF(x0, y0, t0, t), yielding the analog output signal
A, which is fed into the ESNs:

A(x, y, t0, t) =
∑

e(xi, yi, ti) ∈ RF(x0, y0, t0, t)
xi = x, yi = y

G(t, ti) , (4)

where t0 is a chosen time origin.
The complete preprocessed input at time t fed into the ESN

layer is the vector formed by all outputs A(x, y, t0, t) of pixels con-
tained in RF(x0, y0, t0, t). For clarity, we will in the following only
consider a single receptive field denoted as A(t) :

A(t) =
⎛
⎜⎝

A(x1, y1, t0, t)
...

A(xM, yM, t0, t)

⎞
⎟⎠ (5)

2.4. ESN LAYER—INPUT PREDICTION
This layer (Figure 2-(1)) computes the prediction of input sig-
nals for N different ESNs (Jaeger, 2002). The kth ESN is defined
by its internal state sk, and the three weight matrices Wk

out (for
output or readout weights), Wk

in (for input weights), Wk
back (for

feedback weights), and the recurrent weights Wk
r . These weight

matrices are initialized randomly for each ESN and encoded as 64
bit floating-point numbers. The internal state sk of the ESN and
its output (outk) are iteratively updated, and evolve according to :

FIGURE 3 | Illustration of signal pre-processing to convert DVS

events into equivalent analog input for ESNs. In order to reduce
the number of input channels to the system and reduce
computational load, the input from retina pixels is first spatially

subsampled into cells C(xc , yc ). Each set of ESNs then receives input
from a particular receptive field RF (x, y, t1, t2). To compute the
equivalent analog input, an exponential kernel finally is applied to each
event contained in the receptive field.
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sk(tn) = f
(

Wk
r · sk(tn − 1) + Wk

in · A(tn)

+Wk
back · outk(tn − 1)

)
, (6)

outk(tn) = f out
(

Wk
out · sk(tn)

)
. (7)

In our experiments, the logistic function is used as the non-
linearity f for the internal state evolution, and a linear readout
is used as f out. Every ESN is trained to predict its future input
at one timestep ahead (i.e., at tn + dt), thus the output of the
ESN according to Equation 7 creates a prediction Âk(tn + dt) =
outk(tn), which should match A(tn + dt). As is usual for ESNs,
only the readout weights Wk

out are adapted, the recurrent and
other weights are kept at their random initial values which are
drawn from uniform distributions.

As suggested in Jaeger and Haas (2004), training of the read-
out weights Wk

out can be achieved with a standard recursive
least squares algorithm (here a version described in Farhang-
Boroujeny (2013) was used). This algorithm recursively adapts
Wk

out so as to minimize a weighted linear least squares cost
function, computed from the prediction error:

ε
p
k (tn) = |Âk(tn) − A(tn)|. (8)

This method is well-suited for online learning, since the coeffi-
cients of Wk

out can be updated as soon as new data arrives.
The output of the ESN layer into the subsequent WTA layer

is a similarity measure S
p
k(tn) for each ESN, which indicates the

quality of each prediction for the currently observed input:

S
p
k(tn) =

∑
i

∣∣∣A(tn)i . Âk(tn)i

∣∣∣
∑

i

∣∣A(tn)i

∣∣ .∑i

∣∣∣Â(tn)i

∣∣∣ , (9)

where i is summing over all components of A(tn) and Â(tn), which
have been properly normalized to take on values between 0 and 1.

2.5. WINNER-TAKE-ALL SELECTION
Based on the indicators of prediction quality S

p
k(tn) computed

by the ESN layer, the third layer of the model (Figure 2-(2))
selects the best predictor among the N ESNs through a WTA
mechanism. The WTA network consists of a set of N neurons
{n1, . . . , nN} plus an inhibitory neuron, which is recurrently and
bi-directionally connected with the excitatory neurons, as detailed
in Coultrip et al. (1992), Douglas et al. (1994), Liu and Oster
(2006), and Oster et al. (2009). The task of the WTA is to select
from the pool of ESNs the one whose prediction best matches
the actual dynamics of the present input, and which thus has the
highest similarity S

p
k(tn), as computed by layer (1) in Figure 2.

Inputs to the WTA neurons are generated from the S
p
k values

using non-leaky Integrate-and-Fire (IF) neurons, which trans-
form the analog values into spike trains. To make the WTA
network more robust to the variations in the similarity measure, a
sigmoid function is applied to the S

p
k values to compute the input

current fed to the IF neurons:

gIF(S
p
k) = Gmin + Gmax − Gmin

1 + exp( − (S
p
k − x0)/λ)

. (10)

Gmin and Gmax define the interval in which the output firing rates
of the IF neurons are taking values. They are set experimentally
to achieve spike rates spanning from 5 kHz to 15 kHz. λ sets the
selectivity of the sigmoid which is an increasing function of λ (λ
has been experimentally tuned to 5.0e−5 in our experiments). The
value of the offset x0, which is subtracted from the S

p
k is managed

by a proportional controller. Its input reference is set such that
x0 approaches the value of S

p
k output by the selected best predic-

tor. This ensures that whatever the current state of the system is,
the sigmoid gIF is always centered on the current value of interest,
giving the best selectivity possible to detect changes in the best
predictor. The update period of this controller is set to 0.5 ms.
The index of the spiking neuron from the WTA network then
corresponds to the best predictor W(t) satisfying :

W(t) = argmax
k ∈ {1,...,N}

gIF(S
p
k(t)) . (11)

The obtained index W(t) is used to drive the learning process
of the ESN layer. Only the ESN selected by the WTA network
(ESN with index W(t)) is trained on the input signal. This adap-
tive WTA achieves good performance in the selection of the best
predictor even if the similarity measurement has a large variance
(this happens for instance if the system is exposed to a set of very
different stimuli).

This setup of the WTA architecture always generates outputs,
even if no input is present. This potential inefficiency can be
avoided by adding another output layer, which computes a gat-
ing function that depends on the global input activity. Using this
mechanism, output neurons driven by the output of the WTA will
only fire if in addition the input activity is bigger than a defined
threshold. The threshold can be either defined on the average
event rate, or the average value of A(tn).

2.6. PREDICTABILITY MINIMIZATION
The third layer implements, in addition to the WTA selec-
tion, a predictability minimization algorithm, which ensures
that each ESN specializes in predicting different features in the
input. It implements a criterion suggested by Barlow (1989) and
Schmidhuber (1991) to evaluate the relevance of the prediction
of each ESN: an ESN’s prediction is considered relevant if it
is not redundant given the other ESNs’ predictions. This pre-
dictability minimization step promotes orthogonality of predic-
tions between the individual ESNs, and encourages a maximally
sparse representation of the learned input classes, thereby achiev-
ing good coverage of the presented input space. For each ESN k,
an estimator Ŵk of the WTA output is used, which receives only
the similarity measures S

p
k′ of the other ESNs as input. For a con-

sistent framework of estimators and predictors, we chose to use
ESNs (named PM1, . . . , PMN in Figure 2) to implement the Ŵk

estimator. This also allows taking into account the highly dynamic
information contained in the input data recorded with the DVS.
Training of the ESNs follows the same principles as described in
Section 2.4.
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If the estimator Ŵk and the WTA output agree, i.e., Ŵk(tn) =
W(tn), then this means that the kth ESN is not currently learning
a new feature, because the same information can also be deduced
from the output of the other ESNs. In this case, the correspond-
ing neuron of the WTA is inhibited to prevent this ESN from
learning the currently presented input patter. The inhibition also
causes the output of the WTA to stop responding to the input,
thus promoting another one.

3. RESULTS
3.1. EXPERIMENTAL SETUP
The experiments presented in this article were performed with the
setup shown in Figure 4A. It consists of a DVS retina observing
a treadmill, on which moving bars with 9 different orientations
move across the field of view of the DVS at constant speed.
For the experiments, the recurrent connectivity matrix Wr for
each ESN was initialized randomly, and rescaled to have spectral
radius 0.7, which fulfills the Echo State Property (Jaeger, 2002).
The other weight matrices were randomly chosen from a uni-
form distribution in [−0.4; 0.4] for Win, [−0.02, 0.02] for Wback

and [−0.01, 0.01] for Wout. The pre-processing uses exponential
kernels with a time constant of 10 ms.

3.2. SINGLE RECEPTIVE FIELD
The first experiment uses 8 ESNs, each composed of 15 ana-
log neurons, randomly connected in the reservoir. Only one
RF, consisting of 17 × 17 cells C(xc, yc) spanning 5 × 5 pixel is
used as input to each ESN. Figure 4B shows the different pre-
dictions of the ESNs in response to an input signal. The WTA
succeeds in selecting the best predicting network for the current
input. Figure 4C shows for each stimulus the best predictions and
the associated ESN. As expected, the results confirm that every

FIGURE 4 | Experimental recording setup. (A) A DVS records patterns
moving on a treadmill. (B) Current input pattern (top) and predictions of the
different ESNs at a given time. The best predictor is highlighted in red. (C)

Results of ESN training. The left column shows a snapshot from each of
the nine different patterns. The plots to the right show different predictions
for different time steps in the future, obtained from the ESN which is
specialized in the given pattern. The time difference between the five
predicted patterns is 0.01 s.

network has specialized in the prediction of the temporal evolu-
tion of a specific oriented moving pattern. Since natural scenes
contain many independent features, which are likely to occur in
larger numbers than the number of available ESNs, we tested here
the performance of an architecture with only 8 ESNs for 9 dif-
ferent patterns of moving oriented bars. The results indicate that
some of the ESNs tend to learn more than one dynamic feature,
so that the system can represent all input features as accurately
as possible. In order to select the most appropriate number of
predictors, additional control mechanisms could be employed.
An example of this is the response of ESN1, which is the best
predictor both for pattern 8 and 9 (Figure 4C).

Figure 5 shows the output of the same system for three suc-
cessive testing presentations of the stimulus. We can see that each
ESN is responding to a specific orientation of the bars. Moreover,
the process is repeatable over the three presentations with a dif-
ference in the temporal span of the responses. This is due to the
increase of the translation speed of the bars during the record-
ing to show that the networks effectively respond to the bar’s
orientations independently of their speed.

Figure 6 shows the prediction error of each ESN during several
presentations of the stimulus. The output of the WTA network
is shown below each curve, indicating when a particular ESN
is selected as the best predictor. An ESN is correctly selected
whenever its prediction error is the lowest. Periods in which all
prediction errors are close to zero correspond to periods without
input (shown as gray regions in the figure). This is a result of the
approximate linearity of the ESNs and their low spectral radius:
when only weak input is fed into the network, the ESNs read-
out output also approaches zero, which results in a low prediction
error for times when no stimulus is presented (the only input to
the networks then is background noise from the DVS pixels).

3.3. MULTIPLE RECEPTIVE FIELDS
In the second experiment, the field of view of the DVS is split into
3 × 3 smaller RFs of identical size (9 × 9 cells of 3 × 3 pixels), as

FIGURE 5 | Output of the WTA network during repeated presentation

of a series of nine input patterns. Red lines indicate when an ESN was
selected by the WTA network. Dashed vertical lines mark time points when
the input presented to the DVS changed from one pattern to another (the 9
patterns are shown on top of the figure). Shaded areas indicate times when
no stimulation was present. Every ESN learns to respond to only a small
subset of input patterns (typically exactly one pattern). This response is
reproducible over different stimulus presentations.
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FIGURE 6 | Prediction error of the 8 ESNs during several presentations

of the input stimulus. Red lines below each plot shows the output of the
WTA neuron corresponding to each ESN, thus indicating times when each

ESN was selected as the best predictor. We can observe that ESNs are
correctly selected when their prediction error is minimal amongst all the
networks.

shown in Figure 7. This shows the full intended behavior of the
system as a local spatiotemporal feature detector, in which dif-
ferent features can be assigned to small receptive fields covering
the entire field of view of the sensor (instead of being covered by
only one big one RF like in Figure 4). For each RF 8 ESNs are
used as feature detectors. In the learning phase, they are trained
only with the input to the central RF. Subsequently, their weights
are copied and the ESNs are used independently for all 9 RFs.
Thus, all RFs have ESNs with identical weights (and so detects the
same features), but receive different inputs and therefore evolve
independently. Figure 7A shows different snapshots of the DVS
recording for an oriented bar moving across the field of view. The
output of the predictors for each RF is shown in Figure 7B, while
Figure 7C indicates for each RF the index of the ESN selected.

The figure also shows that ESN predictors are only selected when
there is substantial input activity in the RF. As in the previ-
ous experiment, dynamic feature selection is reproducible and
exhibits precise timing, as shown in Figure 8. Here, only the 3
RFs on the middle line of the input space are shown. Because the
input stimulus moves horizontally, the outputs of the WTA cir-
cuits are similar, with a little time delay. Using multiple smaller
RFs instead of one is also a potential solution to represent more
features with a finite set of ESN. The feature descriptor is then a
combination of the outputs of all available ESNs, which need to
be processed by another layer. This is however, beyond the scope
of the present paper.

Choosing the right number of ESNs for the feature detection
architecture is not always straightforward, and depends on the
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FIGURE 7 | Predictions of the ESNs when the camera’s field of view is

divided into multiple receptive fields (RFs). (A) Output of the DVS for a bar
moving across the field of view. (B) Predictions of ESNs processing different

RFs (indicated by red boxes). (C) Index of the best predicting ESN in every RF
at the timepoints of the snapshots. Indices are only shown if the input
activity in the RF exceeds a given threshold.

FIGURE 8 | Spike output for the WTA neurons corresponding to the

eight ESNs for each of the 3 central RFs (see Figure 7) during the

presentation of a series of 9 moving bars with different orientations (see

snapshots on top). Dots indicate the times of output spikes for 5 repeated
stimulus presentations, which are drawn on different coordinates along the
y-axis, but grouped by WTA neuron. Each ESN, depending on its index in the
RF, is associated with a color used to represent the dots corresponding to its

output. The results show a highly reproducible response of the feature
detectors for different trials, and also similar time delays for different stimulus
presentations. Because the input stimulus moves horizontally, the outputs of
the WTA circuits are similar, with a little time delay. Note that only one ESN
can be active at any given time in each RF. Apparent simultaneous spikes
from multiple WTA neurons are due to the scaling of time in the horizontal
axis of the figure.

number of distinct features present in a scene. In Figure 5 it was
shown that when the number of ESNs is smaller than the num-
ber of features, an ESN can learn multiple features instead of
one. Figure 9A shows the number of steps in which each ESN
is trained if 8 ESNs are trained on 9 different input patterns. It
is shown that all networks are trained for a similar number of
epochs. When instead the number of ESNs exceeds the number
of features, we find that only the minimum necessary number of
predictors is selected, and the remaining ESNs are still available to
learn new features, should there be distinct future visual inputs.
Figure 9B a clear specialization of ESNs, if 20 networks are used
to encode the same 9 features that were used in Figure 9A. Only 9

out the 20 ESNs show increased activation during the stimulation
presentations.

3.4. COMPLEX INPUT STIMULUS
In the last experiment, the ability of the architecture to repre-
sent more complex features was tested. Instead of using oriented
bars, we now present digits (from 1 to 9) to the camera, with
a single receptive field covering the whole stimulus. Nine ESNs
were used in the system, which matches the number of distinct
patterns. To make them visible for DVS recordings, the nine
digits were animated, by hand, with a random jittering move-
ment around a central spatial position. This was intended to
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FIGURE 9 | Number of learning samples per reservoir for two

different architectures applied to the same input. Every step where
training of the ESN readout was activated is counted as a learning
sample. (A) Learning samples for 8 ESNs trained on 9 different input
patterns. (B) Learning samples for 20 ESNs trained on the same 9

input patterns. The results show that when the pool of ESNs is bigger
that the number of features present in the input, only a necessary
subset of ESNs from the pool is used to learn these features. The
remaining ESNs are not trained, and can be used to learn new features
from future inputs.

FIGURE 10 | Learning of more complex feature detectors, showing the

output of the system when presented with stimuli composed of

digits from 1 to 9. Each snapshot on the top left shows the analog
input to the ESN, obtained by filtering the DVS events. The top right
shows the prediction of the best ESN, as selected by the WTA circuit.
Below, the current predictions of all nine ESNs used in the experiment
are shown. A white square around the prediction indicates the ESN that

was selected by the WTA. The snapshots show the progression of
learning, starting with an untrained network in (A), which only produces
random predictions. (B–D) show the output of the same networks after
the presentation of patterns “1,” “2,” and “3,” (respectively). A white
mark underneath an ESN prediction indicates that this ESN has learned a
feature. Finally (E) shows its output after the end of the learning process
where all networks have learnt an input stimulus.

simulate what would be seen by the retina when the eye follows
microsaccadic movements. Because the jitter is random, the input
stimulus mainly contains spatial information. This experiment
allows us to test the robustness of the proposed method to sev-
eral spatiotemporal patterns, including the degenerate case where
only one spatial information is relevant for the feature. Some
snapshots of the system’s output are shown in Figure 10.

In the first stage of the experiment, the system is presented with
visual stimuli of the digits 1–9, in this order. The images at the top
of the plot shows the input to the receptive field at the time of the
vertical dotted lines. Each number is presented for 5 s, followed
by a pause of 3 s, in which no input is presented. In Figure 11
the learning phase is marked by a gray shaded background. Next,
two test sequences are presented to the DVS: The Test 1 sequence

is composed of the random sequence “1 3 5 7 9 2 4 6 8,” using
the same presentation and pause times as in the learning phase.
The Test 2 sequence is composed of another random sequence “9
8 7 6 5 4 3 2 1,” this time without pauses between digit presen-
tations (which still last for 5 s). These sequences are represented
as the ground truth for the experiment by blue horizontal lines
in Figure 11. For clarity, we re-ordered the ESNs such that the
ESN index corresponds to the digit it represents. Successful learn-
ing means that the blue lines should align as much as possible
with the red dots, representing the output of the WTA network.
Occasional deviations are due to noise.

Figure 11 shows that each ESN manages to learn complex fea-
tures, and reliably recognizes them when the respective feature is
presented again. This was achieved with raw, noisy DVS inputs,
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FIGURE 11 | Learning complex features from DVS inputs. The DVS
records digits from 1 to 9, each animated with random jitter simulating
the effect of microsaccades in the biological eye. Blue horizontal lines
show the ground truth, indicating when each number was present in
the input, and thus when a specific ESN should fire. The corresponding
pattern presented to the camera at that time is represented on top of
the figure. Red dots show time points where each ESN is selected by
the WTA network. The gray shaded area marks the learning phase, in

which every digit from 1 to 9 was presented once to the system.
Subsequently, two series of tests are shown: First, in the period
marked as Test 1, the 9 digits are presented in random order, but with
short pauses between stimulus presentations. Then, in the period
marked as Test 2, the digits are presented again in a different random
order, but without pauses in between. The results show that also for
complex features like digits, every ESN can learn to specialize and
represent a distinct feature.

and fully random jitter of the digits during presentation. The
experiment shows that complex features can be extracted and
recognized also in the absence of characteristic spatiotemporal
structure in input patterns.

4. DISCUSSION
This article presents a new architecture for extracting spatiotem-
poral visual features from the signal of an asynchronous event-
based silicon retina. The spatiotemporal signal feeds into the
system through a layer of ESN, which compute predictions of
future inputs. An unsupervised learning process leads to special-
ization of ESNs to different features via WTA competition, which
selects only the best predictors of the present input pattern for
training. Whenever an already learned pattern is presented again,
the system can efficiently and reliably detect it. Experimental
results confirm the suitability of the feature extraction method
for a variety of input patterns. The spatiotemporal feature extrac-
tion leads to robust and reproducible detection, which is a key
requirement for its use in higher-level visual recognition and clas-
sification. A central characteristic of the presented technique, in
contrast to conventional computer vision methods, is that it does
not depend on the concept of representing visual inputs as whole
image frames. Instead, the method works efficiently on event-
based sparse and asynchronous input streams, which maintain
the temporal dynamics of the scene due to the highly precise
asynchronous time sampling ability of the silicon retina. Thus,
also the extracted spatiotemporal features contain richer dynamic
information, in addition to recognizing spatial characteristics.

Central to the definition of spatiotemporal features in our
architecture is the presence of multiple models for prediction,
which compete already during learning, such that specializa-
tion can occur. Similar concepts are used by various well-known
machine learning frameworks, most notably the mixture-of-
experts architecture (Jacobs et al., 1991; Jordan and Jacobs, 1994;
Yuksel et al., 2012), in which a gating function creates a soft
division of the input space for multiple local “expert” models.
The output of the whole network is then a combination of the
expert predictions, weighted according to their responsibility for
the present input. These architectures have been extended in
brain-inspired architectures for reinforcement learning and con-
trol (Haruno et al., 2001; Doya et al., 2002; Uchibe and Doya,
2004), where multiple forward models and controllers are learned
simultaneously, and the prediction performance of the forward
model determines the selection of the most appropriate local
controller. Mixture-of-experts architectures are closely related to
learning mixture models with the EM algorithm (Dempster et al.,
1977; Jordan and Jacobs, 1994), where the E-step computes a
soft assignment of data points to models. Nessler et al. (2009)
and Nessler et al. (2013) have proven that this can be imple-
mented in spiking neural networks, using a soft WTA circuit
to compute the E-step, and an STDP learning rule to imple-
ment the M-step. Compared to these related architectures, our
new model advances in three important aspects: Firstly, whereas
EM and mixture-of-experts address static input distributions, we
here extend this to multiple feature predictors for spatiotempo-
ral sequences. Secondly, our architecture allows online learning
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of independent features, which contrasts with batch methods
like PCA or ICA that operate on the full dataset after its col-
lection. Thirdly, our neural network architecture is specifically
designed to work with spiking inputs and for implementation
with spiking neurons, thus maintaining the precise dynamics of
event-based vision sensors. Other spiking neural network archi-
tectures for processing DVS inputs such as spiking ConvNets
(Farabet et al., 2012; Camuñas-Mesa et al., 2014), and spiking
Deep-belief networks (O’Connor et al., 2013) do not explicitly
model the dynamics of the features extracted within the networks,
but instead rely on different conversion mechanisms from ana-
log to spiking neural networks, without taking sensor dynamics
into account. The features they extract are thus characterizing
a current snapshot of the input, and do not take its future tra-
jectory into account like the ESN predictors of the presented
model, but nevertheless are very useful for fast recognition. This
is also true for approaches that directly classify spatiotemporal
spike patterns, see e.g., (Sheik et al., 2013; Tapson et al., 2013).
Spiking network models that represent spatiotemporal dynamics
by emulating Hidden Markov Models have recently been intro-
duced (Corneil et al., 2014; Kappel et al., 2014). Compared to our
approach, these networks do not directly learn dynamic input fea-
tures, but rather identify hidden states to determine the position
within longer sequences.

The combination of visual sensing with bio-inspired artificial
retinas and event-based visual feature extraction, as presented in
this article, opens new perspectives for apprehending the mech-
anisms of visual information encoding in the brain. It is clear
that the traditional views of visually selective neurons as static
image filters for receptive fields, e.g., as Gabor-like orientation
filters, which are central to many classical vision models like
HMAX or Neocognitron (Fukushima, 1980; Serre et al., 2002),
fails to explain how these neurons deal with the highly dynamic
and sparse spike inputs from biological retinas. In the presented
approach, features are naturally learned and adapted to the task.
In Figure 9 it was shown that if the number of available ESNs
exceeds the number of features necessary to describe a scene, only
the minimum necessary number of networks are trained. This has
the desirable effect that whenever a new scene with new features is
encountered, the previously unused ESNs can be trained to pre-
dict novel stimulus features. This behavior has several benefits:
firstly, the number of ESNs does not have to be precisely tuned,
but can be set to the highest acceptable number, and only the
minimum number of networks is actually recruited and trained as
feature detectors by the system. Alternatively, one could employ a
different strategy in which new networks are recruited to the pool,
whenever all current ESNs have specialized on features. Secondly,
training of feature detectors works completely unsupervised, so
no higher-level controller is needed to identify what the elemen-
tary features for a scene should be. Although the precesence of
a supervisor is not necessary, having such information available
would still be beneficial. For instance, another processing layer
could use the outputs of the WTA to control the survival of each
network. If such processing layer determines that a particular
network does not provide enough interesting information, the
supervisor could decide to reset and release the associated ESN,
so that it can detect more relevant features.

The presented method has great potential for use in event-
based vision applications, such as fluid and high-speed recogni-
tion of objects and sequences, e.g., in object and gesture recogni-
tion (O’Connor et al., 2013; Lee et al., 2014), or for high-speed
robotics (Conradt et al., 2009; Mueggler et al., 2014).

The presented architecture is almost entirely based on compu-
tation with spikes. Inputs come in the form of AER events from
DVS silicon retinas, providing an event-based representation of
the visual scene. The WTA circuit for choosing between feature
extractors is also working with spikes, and produces spike out-
puts, which indicate the identity of the detected feature. The only
component of the system which does not entirely use spikes is
the layer of ESNs that predict the visual input, but this restriction
could be lifted by replacing ESNs with their spiking counter-
parts, called Liquid State Machines (LSMs) (Maass et al., 2002),
which are computationally at least equivalent to ESNs (Maass
and Markram, 2004; Büsing et al., 2010). The reasons why we
have chosen to use ESNs for this proof-of-principle study are
the added difficulty of tuning LSMs, due to the larger number
of free parameters for spiking neuron models, delays, or time
constants, in addition to the higher computational complexity
involved in the simulation of spiking neural networks on conven-
tional machines, which makes it hard to simulate multiple LSMs
in real-time. Overall, we expect the improvement due to using
fully spike-based feature detectors and predictors to be rather
minor, since the ESNs can be efficiently simulated at time steps of
1 ms, which is also the time interval at which the silicon retina is
sending events through the USB bus. However, a fully spike-based
architecture does have great advantages in terms of efficiency and
real-time executing if it can be implemented entirely on config-
urable neuromorphic platforms with online learning capabilities
(Indiveri et al., 2006; Galluppi et al., 2014; Rahimi Azghadi et al.,
2014), which is the topic of ongoing research.
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