R. Waser and M. Aono, Nanoionics-based resistive switching memories, Nature Mater, vol.6, pp.833-840, 2007.
DOI : 10.1142/9789814287005_0016

A. Sawa, Resistive switching in transition metal oxides, Materials Today, vol.11, issue.6, pp.28-36, 2008.
DOI : 10.1016/S1369-7021(08)70119-6

S. D. Ha and S. Ramanathan, Adaptive oxide electronics: A review, Journal of Applied Physics, vol.110, issue.7, p.71101, 2011.
DOI : 10.1063/1.3640806

R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials, vol.18, issue.25-26, pp.2632-2663, 2009.
DOI : 10.1002/adma.200900375

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature, vol.4, issue.7191, pp.80-83, 2008.
DOI : 10.1038/nature06932

M. J. Rozenberg, Resistive switching, Scholarpedia, vol.6, issue.4, p.11414, 2011.
DOI : 10.4249/scholarpedia.11414

URL : https://hal.archives-ouvertes.fr/hal-01099303

G. S. Snider, Spike-timing-dependent learning in memristive nanodevices, 2008 IEEE International Symposium on Nanoscale Architectures, pp.12-13, 1109.
DOI : 10.1109/NANOARCH.2008.4585796

S. Jo, Nanoscale Memristor Device as Synapse in Neuromorphic Systems, Nano Letters, vol.10, issue.4, pp.1297-1301, 2010.
DOI : 10.1021/nl904092h

T. Ohno, Short-term plasticity and long-term potentiation mimicked in single inorganic synapses, Nature Materials, vol.96, issue.8, pp.591-595, 2011.
DOI : 10.1038/nmat3054

M. Ziegler, An Electronic Version of Pavlov's Dog, Advanced Functional Materials, vol.7, issue.13, pp.2744-2749, 2012.
DOI : 10.1002/adfm.201200244

J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, A correlated nickelate synaptic transistor, Nature Communications, vol.111, pp.2676-2686, 2013.
DOI : 10.1038/ncomms3676

K. Seo, Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device, Nanotechnology, vol.22, issue.25, p.245023, 2011.
DOI : 10.1088/0957-4484/22/25/254023

T. Chang, S. Jo, and W. Lu, Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor, ACS Nano, vol.5, issue.9, pp.7669-7676, 2011.
DOI : 10.1021/nn202983n

D. Kuzum, G. D. Jeyasingh, B. Lee, and H. S. Philip-wong, Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing, Nano Letters, vol.12, issue.5, pp.2179-2186, 2012.
DOI : 10.1021/nl201040y

A. Moradpour, Resistive Switching Phenomena in LixCoO2 Thin Films, Advanced Materials, vol.1, issue.36, pp.4141-4145, 2011.
DOI : 10.1002/adma.201101800

URL : https://hal.archives-ouvertes.fr/hal-01099303

H. Markram, A. Gupta, A. Uziel, Y. Wang, and M. Tsodyks, Information Processing with Frequency-Dependent Synaptic Connections, Neurobiology of Learning and Memory, vol.70, issue.1-2, pp.101-112, 1998.
DOI : 10.1006/nlme.1998.3841

I. Valov, Nanobatteries in redox-based resistive switches require extension of memristor theory, Nature Communications, vol.97, pp.10-1038, 1771.
DOI : 10.1038/ncomms2784

N. Ghenzy, Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol, Journal of Applied Physics, vol.111, issue.8, p.84512, 2012.
DOI : 10.1063/1.4705283

R. Dittmann, Scaling potential of local redox processes in memristive SrTiO 3 thin film devices, Proc. IEEE, pp.1979-1990, 2012.

C. H. Huang, Manipulated Transformation of Filamentary and Homogeneous Resistive Switching on ZnO Thin Film Memristor with Controllable Multistate, ACS Applied Materials & Interfaces, vol.5, issue.13, pp.6017-6023, 2013.
DOI : 10.1021/am4007287

X. Zhu, Direct observation of lithium-ion transport under an electrical field in Li x CoO 2 nanograins, Sci. Rep, vol.3, p.1084, 2013.

N. Ariel, G. Ceder, D. R. Sadoway, and E. A. Fitzgerald, Electrochemically controlled transport of lithium through ultrathin SiO2, Journal of Applied Physics, vol.98, issue.2, p.23516, 2005.
DOI : 10.1063/1.1989431

S. Tappertzhofen, Generic Relevance of Counter Charges for Cation-Based Nanoscale Resistive Switching Memories, ACS Nano, vol.7, issue.7, p.6396, 2013.
DOI : 10.1021/nn4026614

M. Ménétrier, I. Saadoune, S. Levasseur, and C. Delmas, The insulator-metal transition upon lithium deintercalation from LiCoO 2 : electronic properties and 7

J. N. Reimers and J. Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in Li[sub x]CoO[sub 2], Journal of The Electrochemical Society, vol.139, issue.8, p.2091, 1992.
DOI : 10.1149/1.2221184

S. Lupi, A microscopic view on the Mott transition in chromium-doped V2O3, Nature Communications, vol.84, issue.8, pp.105-115, 2010.
DOI : 10.1038/ncomms1109

M. Nishizawa, S. Yamamura, T. Itoh, and I. Uchida, Irreversible conductivity change of Li 1-x CoO 2 on electrochemical lithium insertion/extraction, desirable for battery applications, Chem. Commun, vol.16, pp.1631-1632, 1998.

S. Levasseur, M. Ménétrier, E. Suard, and C. Delmas, Evidence for structural defects in non-stoichiometric HT-LiCoO2: electrochemical, electronic properties and 7Li NMR studies, Solid State Ionics, vol.128, issue.1-4, pp.11-24, 2000.
DOI : 10.1016/S0167-2738(99)00335-5

B. L. Weeks, M. W. Vaughn, and J. J. Deyoreo, Direct Imaging of Meniscus Formation in Atomic Force Microscopy Using Environmental Scanning Electron Microscopy, Langmuir, vol.21, issue.18, pp.8096-8098, 2005.
DOI : 10.1021/la0512087

Y. Li, B. W. Maynor, J. Liu, and A. Electrochemical, Electrochemical AFM ???Dip-Pen??? Nanolithography, Journal of the American Chemical Society, vol.123, issue.9, pp.2105-2106, 2001.
DOI : 10.1021/ja005654m

O. Schneegans, Na x CoO 2 : A new opportunity for rewritable media?, J. Am. Chem. Soc, vol.108, p.9882, 2007.

M. H. Lee and C. S. Hwang, Resistive switching memory: observations with scanning probe microscopy, Nanoscale, vol.69, issue.470, pp.490-502, 2011.
DOI : 10.1039/C0NR00580K