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Characterizing the size and shape 
of sea ice floes
Marco Gherardi1,2 & Marco Cosentino Lagomarsino3,4

Monitoring drift ice in the Arctic and Antarctic regions directly and by remote sensing is important for 
the study of climate, but a unified modeling framework is lacking. Hence, interpretation of the data, 
as well as the decision of what to measure, represent a challenge for different fields of science. To 
address this point, we analyzed, using statistical physics tools, satellite images of sea ice from four 
different locations in both the northern and southern hemispheres, and measured the size and the 
elongation of ice floes (floating pieces of ice). We find that (i) floe size follows a distribution that can 
be characterized with good approximation by a single length scale δl, which we discuss in the 
framework of stochastic fragmentation models, and (ii) the deviation of their shape from circularity is 
reproduced with remarkable precision by a geometric model of coalescence by freezing, based on 
random Voronoi tessellations, with a single free parameter σ expressing the shape disorder. Although 
the physical interpretations remain open, this advocates the parameters δl and σ as two independent 
indicators of the environment in the polar regions, which are easily accessible by remote sensing.

Sea ice is an important constituent of our planet’s surface, covering almost %10  of the oceans. Ice con-
ditions are entangled with environmental changes and can be used to monitor them. In turn, the behav-
ior of ice has consequences on climate, wildlife, and people, deeply affecting many of the processes that 
take place in the polar regions. Perhaps the most dramatic transformation undergone by polar ice is 
fragmentation. Cracks are formed on a vast set of length scales, in salty as well as in fresh-water ice. The 
phenomenology ranges from the long “travelling” cracks in pack ice caused by winds1, to the fractures 
forming in the ice shelves due to glaciological stress fields2, down to the breaking of small floes due to 
collisions.

The measurement of morphological properties of ice floes could inform us on key properties regard-
ing the rheology of sea ice and help the reconstruction of the number of floes of a given scale starting 
from incomplete measurements or measurements at different scales (e.g., low-resolution satellite data). 
The rich spectrum of behaviors of sea ice and the available data have already attracted statistical mechan-
ics investigators3–5 A general classification of fracture patterns, especially for geological applications, has 
been proposed very recently6. Since many physical phenomena converge to fragment polar ice, a unified 
view of the process is not available, and not simple to produce. In this situation, the main questions 
are related to how to interpret the available data and what to extract from them. Ideally, one wants to 
extract from the complex satellite data simple but highly informative measures of sea-ice morphology. 
To this end, floe size is an easily-accessible observable, which in general has been fruitfully employed in 
the characterization of many complex systems7–9 as well as of simple ensembles of particles10–12 Shape is 
another, possibly independent, source of information, which may reveal geometric details of the under-
lying physical processes.

Here, we take an empirical approach to the question of defining useful observables regarding sea-ice 
morphological properties, and analyze data obtained from satellite images of sea ice detached from the 
shoreline, called drift ice, focusing on the size and shape of the individual floes that drift ice is composed 
of. Remote sensing makes the access to these data simple, by the exploitation of popular services such 
as Google Maps. Since floe diameters vary across several orders of magnitude, depending on season, 
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location, and weather, we ask whether common patterns emerge, and how they may be related to the 
physics of ice fragmentation.

Regarding ice-floe size, while some of the previous studies found evidence for scale-free distribu-
tions5,13 we find that characteristic lengths are present in our data. The distributions we obtain, from data 
measured in different locations and conditions, all follow the same finite-size scaling form, which only 
depends on a single length scale. Scaling is a significant concept, commonly found in critical phenom-
ena and self-organized criticality, but also in diverse fields including ecology14, biology9, and the theory 
of fracture15. One notable consequence of a scaling distribution is the possibility of characterizing the 
whole range of variability through the specification of a single parameter. We rationalize this observed 
empirical regularity by the use of simple stochastic models of fragmentation. Previous attempts, aimed at 
explaining full scale invariance16, concentrated on hierarchical fragmentation involving the stabilization 
of fragments17,18 random multiplicative cascades13, or the competition between fracture and healing5. 
We discuss a complementary approach based on a linear model whereby breaking is driven by external 
sources, whose action is supposed to be characterized by a single length scale, and assumed to be driven 
by a flat spectrum of perturbations. Importantly, we point out that all available models of crack propa-
gation in brittle solids yield the same results in terms of scaling, and thus, while the single length scale 
we uncover is an effective measure of the state of fragmented ice, its physical interpretation is elusive and 
needs to be probed by direct experiments.

These results lead to the conclusion that floe size alone cannot be a fully informative measurement of 
sea-ice properties. For this reason, we widen the analysis of floe contours by considering also their 
shapes. Surprisingly, while particle size is widely considered in the literature—e.g., for classifying new 
fragmentation physics19—fragment shape is usually neglected. The distribution of anisotropies has been 
considered in different settings—such as the explosion of shells20 and road networks21—but apparently 
never for ice floes. We propose a simple measure of floe elongation, based on concepts from polymer 
physics, which measures the anisotropy of the individual floes from the eccentricity of the inertia tensor 
of their contours. Importantly, such a measure can in principle distinguish between isotropic and 
non-isotropic physical processes (e.g., lateral melting versus stress failure22). Another important feature 
of elongation is that it is independent of size, as we demonstrate directly with empirical data of sea ice. 
The distribution of floe elongations measured from satellite data leads us to propose a one-parameter 
model, describing the shapes of ice floes as the Voronoi cells of randomly-placed seeds. This simple 
geometric model predicts the observed distributions to a remarkable accuracy, and permits the identifi-
cation of a dimensionless parameter σ, describing the correlations between the positions of the ice seeds. 
Physically, a possible (but likely simplistic) interpretation for such a model is the process in which freez-
ing water around seed floes makes them enlarge and coalesce during the winter.

In brief, our results can be summarized as follows. (Ia) Ice-floe sizes follow a simple scaling form, 
hence the size distribution is characterized by a single length scale. (Ib) This feature is predicted by 
diverse models; therefore, size alone is only moderately informative about the physical processes at play. 
(II) Ice-floe shape asymmetries are reproduced by a novel geometric model, which should set a more 
stringent constraint on the possible relevant physical processes. (III) Points (Ia) and (II) suggest two 
independent scalar quantities—a characteristic length and a shape disorder parameter—that we advocate 
as useful for comparing ice-floe images taken in different regions and conditions.

Floe contours from remote sensing
We employed four data sets, composed of visible-light imagery taken by two different satellites in four 
different locations in the north and south hemispheres (see Fig. 1):

1.	 Montagu Island area (Weddel Sea, south hemisphere); ice floes 2 m to 100 m wide; image taken in 
October 2003 by the QuickBird-2 satellite; resolution ~2.5 m/pixel; retrieved from Google Maps23.

2.	 Hopen Island area (Barents Sea, north hemisphere); ice floes 2 m to 150 m wide; image taken in 
June 2009 by the GeoEye-1 satellite; resolution ~1.7 m/pixel; retrieved from Google Earth.

3.	 Svalbard area (Arctic Ocean, north hemisphere); ice floes 60 m to 5 km wide; image taken in June 
2001 by the Landsat 7 satellite; resolution 30 m/pixel; retrieved from the U.S. Geological Survey24.

4.	 Kara Sea (north hemisphere); ice floes 150 m to 5 km wide; image taken in March 2000 by the 
Landsat 7 satellite; resolution 30 m/pixel; retrieved from the U.S. Geological Survey24.

All images were segmented by the Potrace algorithm, and contour information for each detectable floe 
was gathered. More details about the satellite imagery and the data analysis can be found in the Methods 
section. We obtained approximately 27 000, 18 000, 16 000, and 7000 contours for the four images 
respectively. This data set is limited, but attempts to capture different locations and different seasons, 
primarily in the marginal ice zones. We regard it as a test case for our observations and methods. Larger 
sets would be needed for developing more realistic physical models.

First, we focus on the linear size of the floes. The segmentation procedure yields each contour ω as a 
closed polyline, identified by a set of ωn  nodes ω ∈i

2  with = , …, ωi n1 . To extract a linear measure-
ment of floe size, we consider the square root of the mean square distance of all contour points from the 
center of mass (an analog of the “radius of gyration” used in polymer physics). We weigh each point by 
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its distance from the preceding one, in order to compensate for the nodes being spaced unevenly along 
the contour. This defines a floe “size” l as

∑ ω ω ω ω= − ( − )
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Note that measuring the linear size via the perimeter as π/p , which is more sensitive to the roughness 
of the contours, does not affect heavily the results presented hereafter.

The measurement of l for all floes in the four data sets gives the four corresponding size density dis-
tributions ( )P l . Inspection of the curves indicates that a power-law regime is present in all data sets (with 
exponent ≈ −2), followed by a smooth cutoff for large floes. We found that these curves collapse rather 
well onto a single curve by a simple rescaling of the two axes (Fig. 2). This suggests that each curve is 
characterized by a single length scale. The small-size drop-offs visible in the plot are due to the under-
estimation of floes of small size, close to the resolution of the images, and are therefore not universal. 
Unfortunately, this purely technical feature makes it impossible to follow an accurate approach to data 
collapse, in the spirit of25; the rescaling has to be eyeballed. However, albeit of an empirical nature, the 
collapse is remarkable, considering that the data come from diverse locations and seasons, and involve 
broadly dissimilar scales.

Fragmentation theory for the size distribution
To rationalize the observed scaling behavior, we consider statistical models of fragmentation. We briefly 
review two classes of existing models; the first is a stochastic dynamics for the number of floes of a given 
size, the second is a deterministic geometric description of crack propagation in brittle fracture26,27. Then 
we introduce a third alternative model, and argue that the emergence of a single characteric length scale 
is compatible with all these scenarios.

Figure 1.  Data were produced by segmentation of satellite images from four locations, indicated by shaded 
areas in the left panel (1–Montagu, 2–Hopen, 3–Svalbard, 4–Kara). An edge detection algorithm yields 
the silhouette of each ice floe, provided it is larger than a few pixels. The right panel shows a portion 
(approximately 15 km wide) of a larger snapshot in data set 3 (light blue, original colors from red, green, and 
blue bands), merged with the detected contours (dark blue). (The map was drawn with matplotlib53.)
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In the first class of models, the physical aspects of the fragmentation process are summarized by a 
rate π ( )l  at which a floe of size l breaks down into two smaller objects. At a mean-field level description, 
each floe is supposed to experience the average environment, i.e. spatial fluctuations are neglected. We 
consider a system in which the fraction of floes having linear size l at time t is ( )P lt . The distribution P 
obeys the following rate equation28:

∫π π λ λ
λ
λ( ) = − ( ) ( ) + ( ) ( ) + ( ) ( )

∞

t
P l l P l P d s ld

d
2 1 ; 3t t

l
t

the first term is due to floes of size l breaking down into smaller floes, the second term is due to larger 
floes of size λ generating fragments of size l (in the 2 possible ways), the factor λ/1  has geometric origin 
(in its absence, the in-flow from larger floes would be rescaled by a factor proportional to their size); the 
last term ( )s l  is a generic source, which may represent for instance the generation of large floes by the 
fracture of ice fields.

When no source is present, ( ) =s l 0, the fragmentation dynamics (3) is known29 to produce a scaling 
size distribution φ( ) = ( / ( ))P l l s tt , where ( ) − /s t t: 1 2 is the decreasing typical floe size. If the breaking 
rate scales as the area of the floe, π ( ) ∼l l 2, then the scaling function, at large x, is φ ( ) = (− )−x x axexp2 2

, which reproduces the exponent −2 exposed in Fig. 2, and also predicts a universal exponential cutoff. 
An interpretation based on such a dynamical picture links the characteristic scale of floes to the time 
passed since the beginning of the fragmentation process, that is of the melting season. The data consid-
ered here were not sufficient to test these correlations and further investigations are needed.

The second class of available models is that of brittle fracture. Fragment size distributions are obtained 
by considering the propagation of cracks in the material. Older theories30 considered smooth cracks, 
while more recently it has been recognized that beyond a critical speed they can become unstable and 
branch31. Moreover branches attract each other and therefore merging of cracks has been included in the 
picture. A well-established theory32,33 yields a fragment size distribution dominated by a hierarchical 
process, whereby a number of cracks stem from a main fissure and then merge, the longer-lived cracks 
giving rise to the larger fragments. In this description, again, the distribution of the linear floe sizes l is 
a power law of exponent −2 cut off by an exponential in l 2. The upper cutoff represents the single length 
scale of the system.

Additionally, we propose here a complementary formulation belonging to the first kind of models, 
which assumes that the empirical distributions could be the stationary states of processes happening at 
time scales much faster than the seasonal variations. The advantage of this description is that it provides 
a natural setting for the observation that the same scaling form agrees with empirical data taken in dif-
ferent periods of the year (compare e.g. data from the Svalbard area, taken in June, with those from the 
Kara Sea, taken in March).The steady state ( )∞P l  is obtained by setting the time derivative of ( )P lt  to 
zero in Eq. (3). Note that technically the presence of a source ( )s l  is necessary in order to have a steady 
state at all, since its absence would require an unbounded distribution ( )∞P l . Setting ∂ ( ) =P l 0t t  in (3) 
and taking the derivative with respect to l yields an ordinary differential equation whose solution is

Figure 2.  Size distributions of floes obtained from satellite images in four dissimilar conditions collapse well 
on the same curve. The rescalings on the x-axis were adjusted by eye from the cutoff points, and the 
normalization constants corrected accordingly. Circles, squares, triangles, and rhombi correspond to data 
sets 1, 2, 3, and 4, respectively. The dashed line shows a power law of exponent −2 as a reference. The drop-
off at small sizes is due to the finite resolution of the images; data in this region are discarded in Fig. 3.
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We consider the case where the source generates floes of a fixed size l with a rate ν, i.e. νδ( ) = ( − ).s l l l  
This includes the case of no source (ν = 0). The solution, away from =l l, is π( ) ∝ / ( )∞

−P l l l2 : the size 
dependence of the rate π ( )l  completely determines ( )∞P l .

In order to proceed, one has to specify π ( )l . We present here a generic argument for the scaling of 
π ( )l , which is suggested by the yearly process of sea-ice refreezing5,18 whence water interfaces between 
different floes are rejoined. We make the simplifying assumption that the only relevant scale is that of 
the coalesced fragments, δl. Supposing that a floe of linear size l, resulting from the coalescence of δ( / )l l 2 
smaller floes, breaks along the junction lines between them, then it can fracture in roughly δ( / )l lexp[ ]2  
different ways. If these are admitted to be independent then the breaking rate will be π π δ( ) = ( / ) ,l l lexp0

2  
where π0 is a constant. The form of the breakage rate resulting from this argument can be used in Eq. 
(4) to obtain a steady-state solution for the floe-size distribution. In particular, the steady state solution 
in the absence of source is
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where ( )Z l min  is a normalization constant. The divergence in =l 0 is not integrable, therefore a cutoff 
>l 0min  needs to exist. Physically, this cutoff can represent an elementary scale under which fragments 

cease to divide (this happens for instance in dust aerosols11), or under which melting becomes dominant. 
In the analysis of the satellite images considered here, the lower cutoff is not physical, but corresponds 
to the resolution of the images (pixel size), as can be seen in Fig. 1, where tiny floes are visible that are 
not revealed by the algorithm. The model—that is π ( )l , and therefore ( )∞P l —is then characterized 
essentially by the single scale δl (since the lower cutoff only affects the normalization).

It should be stressed that all models are necessarily simplified descriptions and neglect some of the 
phenomena caused by the very complex interaction between sea ice and the environment34. A most 
important one is melting due to the seasonal temperature variations. Lateral melting35 would be repre-
sented by a term ∂ ( )P ll  in (3), thus possibly breaking the scaling form of the stationary state. The regu-
larity observed can be then interpreted as a measure of the marginality of lateral ice melting as opposed 
to fracturing, in the regimes considered. Note that melting is supposed to become more relevant at 
smaller scales; our data suggest that higher-resolution images are necessary to this aim. Indeed, aerial 
photography suggests that a different behavior sets in at small sizes36,37 Moreover, the source term could 
introduce deviations from the source-free steady state, as expressed by (4), which could be detected by 
studying the size distribution in the marginal ice zone close to the fracturing pack ice22. Additionally, 
these “mean-field” descriptions disregard floe shape, as well as the isotropy of fissures20,38.

Summing up, the three models described above are compatible with the following scaling form for 
the fragment size distribution,

λ λ λ λ λ( ) ∝ ( ), ( ) = (− ), ( )−P F F exp 62 2

where the scaling variable is λ δ= /l l. This expression is in very satisfactory agreement with the empir-
ical data. Fig. 3 compares the theoretical prediction (5) with the empirical data from our four data sets. 
Some previous studies claimed power-law regimes with exponents possibly deviating from −236,39 
However, there is some debate around the numerical solidity, the interpretation, and the practical signif-
icance of this variability37. It is possible that some of the deviations from the scaling form (6) found in 
other studies came from the superposition of data having two or more length scales.

Characterization of floe shapes
The previous section has shown that the characteristic length δl may be subject to very different inter-
pretations, and even the question on whether the scenario is dynamic or stationary seems left open. In 
this section we propose an additional observable, based on the shape of the floes, which is, as we will 
show, independent of their size.

When considering contour data, the gyration radius used in the definition of l in Eq. (1) is only one 
of several scalar quantities that can be constructed starting from a tensorial object, called gyration tensor. 
The gyration tensor, in the simple case of a set of point particles with unit mass, is exactly the inertia 
tensor, describing the rotational degrees of freedom of the system (the points are supposed to have fixed 
relative positions). It provides a compact description of some properties related to the shape of contours 
and lattice walks, and is fruitfully employed for instance in polymer physics40–43 Here we use a slightly 
modified version, which takes into account the different “masses” corresponding to the different step 
lengths between the contour points ωi (see also the definition of l above). In a fixed coordinate system 
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( , )x y , the gyration tensor is a symmetric matrix αβQ , where α and β can take values corresponding to 
the two coordinates ,x y, defined as

∑ ω ω ω ω ω ω= − ( − )( − )
( )

αβ α α β β

=
−

ω

Q
p
1

7i

n

i i i i
1

1 c c

the center of mass ωc is defined as in (2), and p is the perimeter. In this form, Q is (an approximation 
of) the inertia tensor of a uniform mass distribution lying on the perimeter of the floe, and is therefore 
a proxy for symmetry properties related to its shape. The symmetric matrix Q has two real eigenvalues, 
q1 and q2, representing the moments of inertia with respect to the two principal axes of rotation. Notice 
that the square of the gyration radius is / = + =l q q Q4 Tr2

1 2 . A functionally independent object is 
the shape factor,

= , ≥ ,
( )

r
q

q
q q

8
2 1

2
1 2

which expresses the elongation of the object. Specifically, it is the inverse of the ratio between the area 
of the inertia ellipsoid of the floe (which approximates its surface) and that of the smallest circle that 
contains it. For a spherically symmetrical floe (and for all regular polygons) it takes its minimal value 
=r 12 , while = ∞r 2  for a segment. Its square root r is the aspect ratio, i.e., the ratio between the lengths 

of the longer and the shorter axis.
We have measured r 2 for all contours in the four data sets. The empirical distribution functions 

(shown in Fig. 4) are peaked around = . ∼ .r 1 5 1 72 , with a fast rise after =r 12  and a slow drop-off at 
large elongations. These histograms are smooth and unimodal, suggesting the existence of a single dom-
inant mechanism underlying their emergence.

To interpret and characterize these data, we introduce a simple stochastic geometric model, whose 
only parameter is linked to the distribution of seed locations. Specifically, the seeds are placed ran-
domly following what is known as a “simple point process” in probability; the actual implementation 
is described below. To fix the ideas, this model may be interpreted as describing the refreezing of floes 
during winter as the coalescence of radially growing ice floes started from randomly-located seeds, but its 
formulation is purely geometric and one cannot exclude that it may be derived from alternative physical 
interpretations. Once the seeds are fixed, the shapes of the resulting floes are obtained as the cells of the 
Voronoi tessellation generated by the seeds44. A Voronoi tessellation is a partitioning of the plane into 
regions (cells), based on the distances from a set of special points (seeds). Each point in the plane (minus 
a set of zero measure) is associated to its closest seed. A cell is the set of all points associated with a given 
seed. In other words, floes are the domains of proximity of the freezing seeds.

The simplest point process is arguably the Poisson point process, whose realizations are sets of ran-
dom independent points. We employ the following generalization, aimed at introducing repulsive corre-
lation between points in an easily controllable way. Refer to Fig.  5. Fix an integer n (n2 will be the 
number of seeds) and consider a rectangular region = , × , / ⊂n n[0 ] [0 3 2]n

2S R , with periodic 
boundary conditions. Let c{ }i , i= 1, …, n2, be the points of a regular triangular lattice embedded in n , 

Figure 3.  Empirical floe sizes in the four data sets are well described by a statistical model of fragmentation, 
characterized by a single crossover scale (δl in the text), indicated by the arrows. The dashed lines are the 
steady states (5) for the four corresponding characteristic lengths; the lower cutoffs lmin on the distributions 
have been fixed to the positions of the maxima in Fig. 2, and data below those thresholds have been 
discarded.
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with lattice spacing =a 1. It realizes a regular triangulation of the torus. The seed positions x{ }i , 
= , …,i n1 2, are random variables defined as

σξ ξ= + , ∼ ( , ), ( ), x c 0 1 9i i i i
x y

where the noise terms ξi
x and ξi

y are independent identically-distributed Gaussian random variables with 
zero mean and unit variance. The quantity σ then expresses the departure from perfect order. The perfect 
lattice is realized for σ = 0, in which case the Voronoi cells are all regular hexagons with shape factor 
=r 12 ; the opposite limit σ → ∞ recovers the Poisson point process.
Simulating the model for several values of σ allowed us to choose, for each data set, the value of σ 

that best fitted the empirical distribution of shape factors. Fig.  6 displays the theoretical distributions 
obtained by simulation, and shows that, as expected, σ → ∞ converges to the random Poisson-Voronoi 
case, while a delta-shaped distribution centered at =r 12  is approached for σ → 0. The agreement 
between this geometric model and the empirical data is impressive (Fig. 4 and inset of Fig. 6), suggesting 
that the phenomenology encoded in the elongation of ice-floe shapes can be completely characterized by 
a single parameter, measured by the average shape factor, or, equivalently, by σ. We therefore propose σ 
as a measure of the “characteristic disorder” in the distribution of the ice floe seeds.

The solidity of such a measure is supported by the following observations. (i) Results are not sensitive 
to the number of seeds (in the simulations reported in the figures, we sampled 103 realizations with 
≈n 102 5 points for each σ, but the results are indistinguishable from those at ≈n 1002 ). (ii) Choosing 

a specific lattice (for instance square or hexagonal) and probability distribution of ξ i does not affect the 
agreement with the empirical data, apart from slight readjustments of the fitted values of σ. (iii) 
Surprisingly, and importantly, the shape factor of a single floe is uncorrelated to its size, as shown by the 
scatterplots in Fig. 7 for two data sets with very different characteristic lengths (the other two are simi-
lar). This last observation indicates that the shape properties are decoupled from the size distribution, 
and justifies the description of the floe shaping mechanism as a Voronoi tessellation for a wide range of 
length scales.

Discussion and Conclusions
The sea ice system is complex, and several processes are at play, influencing each other. Further data 
analysis and modeling may attempt to assess, for instance, the relevance of melt pond formation on the 
thinning surface, which enhances fracturing, or of the development of pressure ridges. Our data are 
relatively limited, and leave the physical interpretations open, but the regularities observed in the floe 
shapes express important constraints that any realistic theory should satisfy. The main result of this work 
is the introduction of two novel independent scalar observables, or “order parameters” for ice floes, 
summarizing the properties of the distribution of sizes and of shape anisotropies respectively. Regarding 
floe size, data and different models of fracture suggest a scenario where the spectrum of the different 
forces at play is reducible, to a good approximation, to a single dominant scale, δl. This parameter con-
tains all the information concerning the complex environment, including the ocean, the winds, and the 

Figure 4.  The shape factors measuring the elongation of the floes are reproduced by random Voronoi 
tessellations. The plots show the shape factor distributions for data and for Voronoi tessellations where the 
underlying point process (describing the locations of the freezing seeds) has disorder parameter σ. Symbols 
are the empirical data (Svalbard ∆, Kara ◊, Montagu , Hopen ), dashed lines are obtained by simulations 
of the random Voronoi model. The insets show the snapshots of three realizations, corresponding to the 
best-fitting values of σ.
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ice floes themselves, relevant to construct the length distribution. Both geometric and mean-field models 
of fracture and fragmentation can account for the empirical size distribution δ( ) ∝ (− / )−P l l l lexp2 2 2 . 

This shows that independent measurements linking floe size to environmental history, conditions, and 
perturbations are needed to gain most physical insight. Different models assign different interpretations 
to the length scale δl, which is the only distinguishing feature of our four data sets as long as floe size is 
concerned. Note that the assumption of stationarity corresponds to considering long times; this is real-
ized in practice if the dynamics of fracture is faster than the seasonal variation of parameters. The scale 
δl is probably affected by the annual changes in temperature and by other environmental conditions, and 
it seems reasonable to expect it to vary on time scales longer than the one driving equation (3). A sys-
tematic study of the variations of δl in a given location could give important clues on the changing cli-
mate and environment. Possibly, the characteristic length could provide an indicator of ice thickness18, 
which is an important parameter in the interactions between ice and ocean waves22. While several frac-
ture theory and fragmentation scenarios may account for the fact that floe sizes have ubiquitous 

Figure 5.  Illustration of the random tessellation model, which describes the shapes of ice floes as the 
Voronoi cells of freezing seeds. Seeds’ locations (here with =n 162  seeds) are obtained by perturbing a 
regular triangular lattice by Gaussian random displacements with variance σ2 (arrows in the drawing, σξi in 
the text); σ = .0 1 in the left panel, σ = .0 5 in the right panel. The thin lines are the Voronoi cells of the 
triangular lattice, the thick lines are those of the seeds, i.e., the shapes of the floes. The rectangular region 
depicted is wrapped around a torus in order to eliminate boundary effects.

Figure 6.  A one-parameter random Voronoi model interpolates between perfect order (a delta-shaped 
distribution centered in =r 12 ) and Poisson-Voronoi random tessellation. Curves “a” to “f ” are obtained by 
the model with increasing values of the shape disorder σ; the curve “g” is obtained by the Poisson-Voronoi 
model. The inset shows how the average shape factor (corresponding to the curves in the main panel and to 
empirical data) is related to the inverse of the shape disorder σ/1  (red line).
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characteristics, we cannot exclude that other physical processes are relevant to establish this. For exam-
ple, the wave field on the surface of the ocean, might be determinant for setting the single length scale 
controlling the floe size distribution. Additionally, the emergent characteristic length is likely affected by 
multiple important factors such as season (growth vs melting), location (marginal vs consolidated) and 
ice age and type (saline recently formed vs fresher older ice).

Considering shape elongation, we find that, as in the case of floe size, a single parameter fully char-
acterizes the distribution in the whole available range of variability. However, differently from size, we 
found no universal scaling function accounting for the shape anisotropy data. On the other hand, we 
showed how a simple geometric model of ice accretion and coalescence (related to random Voronoi 
tessellations) realizes a one-parameter family of distributions fully capturing the shape fluctuations of ice 
floes, condensing once again the statistics of the elongations to a single dimensionless parameter, the 
shape disorder σ. The remarkable agreement between model and data validates the interpretation of σ 
as a physically relevant observable. The precise identification of the physical processes responsible for 
shaping the observed distributions is a difficult task, and remains an open question. Floe elongation 
distributions may be sensitive to the specific conditions mentioned above (season, location, ice age and 
type), and future systematic data-analysis studies may be able to assess these features.

It would be interesting to study the shape of ice fragments in other systems, both geological (e.g., the 
CO2 ice layer on Mars45) and in the laboratory16. The parameter σ is possibly related to the packing 
properties of ice just before the freezing season3. In line with the stationary model for floe size, the ran-
dom Voronoi tessellation model suggests that shape anisotropies might be the product of fracturing 
mechanisms facilitating separation along the junctions between coalesced floes. Plausibly, more regular 
lattices in the model (lower values of σ) correspond to closer packing, and thus to stronger interaction 
between the floes. Curiously, random Voronoi tessellations are used as a phenomenological protocol for 
generating realistically-looking fracture patterns in computer graphics46.

These results could have implications for the rheology of sea ice (a description of ice in the marginal 
ice zone as a non-Newtonian fluid has been attempted by some authors47). A potential practical applica-
tion of such results could be the reconstruction of the number of floes of a given scale starting from 
incomplete measurements or measurements at different scales. For instance, consider the situation where 
one has access to satellite data at low resolution (large l min), which include only large floes, beyond the 
crossover scale. Then the full curve can be reconstructed, by fits against the scaling form, and the num-
ber of smaller floes can be indirectly evaluated.

Data and methods
Data sets.  We give here more details about the satellite imagery used. Each data set is composed of a 
single satellite image. Image 1 (Montagu Island) was taken by the QuickBird 2 satellite on October 16, 
2003; catalog ID: 1010010002631B0048; we used the top right quadrant of the image covering an area of 
~100 km2, available in high resolution through Google Maps. Image 2 (Hopen Island) was taken by the 
GeoEye 1 satellite on June 13, 2009; catalog ID: 1050410001E3700048; We used a small portion of around 
×10 10 km2 in the north-east sector of the image, available in high resolution through the Google Earth 

application. Spectral bands and exact resolutions for images 1 and 2 could not be determined; if one 
assumes, as is likely, that Google services use multispectral (red+ green+ blue) images then the pixel 
resolutions are .:2 5 m for image 149 and 1.7 m for image 250. Images constituting sets 3 (Svalbard; taken 
on June 5, 2001; catalog ID: LE72100042001156AGS0024) and 4 (Kara Sea; taken on March 17, 2000; 
catalog ID: LE71670112000077SGS0224) were taken by the Landsat 7 satellite, with the “Enhanced 

Figure 7.  Elongation and size of floes are uncorrelated. The scatterplots are obtained from empirical 
contours in the Montagu (blue cluster on the left) and Svalbard (orange cluster on the right) data sets. 
Lighter colors correspond to higher density of points.
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Thematic Mapper Plus” instrument; bands 1,2, and 3, corresponding to wavelengths in the red, green, 
and blue visible light respectively, were merged; the pixel resolution is 30 m. Both images have an approx-
imate spatial extent of ×170 180 km2. Only the quadrants with less than %10  cloud coverage were 
selected.

Segmentation method.  All images were first made monochromatic by application of a threshold 
on pixel intensity. This threshold is gauged by sight, but we tested that its precise value does not have a 
relevant impact on the results, as long as it lies between the average ice value and the average background 
value. Then the contours of single ice floes were extracted (Fig.  1) using the Potrace algorithm51. The 
main steps of the algorithm are as follows. (I) The bitmap is decomposed into paths, separating black 
and white regions. Square lattices (as the pixels in an image) present an ambiguity in the definition of 
clusters, when two contours meet perpendicularly at a vertex; we used the prescription of connecting 
preferentially black components in these cases. (II) After despeckling (discarding paths enclosing only 1 
or 2 pixels), paths on the square lattice are converted into polygons, following a parameter-free optimi-
zation phase (details are in the documentation51). The full algorithm includes a further step—based on 
aesthetic principles—aimed at detecting sharp corners and smoothing out the others, which we skipped.

Remarks on the cutoffs.  Figure  1 shows a non-negligible area of unsegmented ice, mainly due to 
two components. (I) Very small floes, below the despeckling threshold; this is due to the pixel resolution, 
as discussed above, and is exposed by the quick drop-offs of the curves in Fig.  3. (II) Darker regions, 
below the intensity threshold; this is a more serious limitation, as it reduces systematically the estimate 
of the distributions at low sizes. It is probably responsible for the slight deviations from power law that 
are visible in some of the curves in Fig. 3.

While pixel size imposes a cutoff on the minimum floe-size detectable, image size has an influence 
on the statistics of large objects. Underestimation of the number of large floes can be quantified52; for 
instance, a circular floe of 5 km in diameter at least partially covered by a Landsat ×170 180 km2 snap-
shot has a %10  probability of being segmented incompletely. Notice that such a small change would be 
undetectable in the logarithmic plots in Fig. 2 and Fig. 3. We manually removed all partially covered floes 
from the data sets.
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