. Montagu, Weddel Sea, south hemisphere); ice floes 2 m to 100 m wide; image taken in October 2003 by the QuickBird-2 satellite; resolution ~2

. Hopen, Barents Sea, north hemisphere); ice floes 2 m to 150 m wide by the GeoEye-1 satellite; resolution ~1, 2009.

. Svalbard-area, Arctic Ocean, north hemisphere); ice floes 60 m to 5 km wide; image taken by the Landsat 7 satellite; resolution 30 m/pixel, 2001.

K. Sea, north hemisphere); ice floes 150 m to 5 km wide; image taken in by the Landsat 7 satellite; resolution 30 m/pixel, 2000.

R. 1. Hopkins, M. A. Frankenstein, S. Thorndike, and A. S. , Formation of an aggregate scale in Arctic sea ice, Journal of Geophysical Research, vol.39, issue.C1, p.1032, 2004.
DOI : 10.1029/2003JC001855

C. L. Hulbe, C. Ledoux, and K. Cruikshank, Propagation of long fractures in the Ronne Ice Shelf, Antarctica, investigated using a numerical model of fracture propagation, Journal of Glaciology, vol.56, issue.197, p.459, 2010.
DOI : 10.3189/002214310792447743

A. Herman, Molecular-dynamics simulation of clustering processes in sea-ice floes, Physical Review E, vol.84, issue.5, p.56104, 2011.
DOI : 10.1103/PhysRevE.84.056104

A. Chmel, V. Smirnov, and M. Astakhov, The fractality of sea-ice drift dynamics as revealed from the ???North Pole 32??? monitoring, Journal of Statistical Mechanics: Theory and Experiment, vol.2005, issue.02, p.2002, 2005.
DOI : 10.1088/1742-5468/2005/02/P02002

R. Korsnes, S. Souza, R. Donangelo, M. Paczuski, and K. Sneppen, Scaling in fracture and refreezing of sea ice, Physica A: Statistical Mechanics and its Applications, vol.331, issue.1-2, p.291, 2004.
DOI : 10.1016/S0378-4371(03)00627-7

A. Hafver, Classification of fracture patterns by heterogeneity and topology, EPL (Europhysics Letters), vol.105, issue.5, p.56004, 2014.
DOI : 10.1209/0295-5075/105/56004

M. Gherardi, S. Mandrà, B. Bassetti, and M. C. Lagomarsino, Evidence for soft bounds in Ubuntu package sizes and mammalian body masses, Proceedings of the National Academy of Sciences, vol.110, issue.52, pp.21054-21058, 2013.
DOI : 10.1073/pnas.1311124110

L. M. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, and G. B. West, Growth, innovation, scaling, and the pace of life in cities, Proc. Natl. Acad. Sci. USA, pp.7301-7306, 2007.
DOI : 10.1073/pnas.0610172104

A. Giometto, F. Altermatt, F. Carrara, A. Maritan, and A. Rinaldo, Scaling body size fluctuations, Proc. Natl. Acad. Sci. USA, pp.4646-4650, 2013.
DOI : 10.1073/pnas.1301552110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607007

N. Keulen, R. Heilbronner, H. Stünitz, A. Boullier, and H. Ito, Grain size distributions of fault rocks: A comparison between experimentally and naturally deformed granitoids, Journal of Structural Geology, vol.29, issue.8, pp.1282-1300, 2007.
DOI : 10.1016/j.jsg.2007.04.003

URL : https://hal.archives-ouvertes.fr/hal-00194259

J. F. Kok, A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle, Proc. Natl. Acad. Sci. USA, pp.1016-1021, 2011.
DOI : 10.1073/pnas.1014798108

O. 'brien, D. P. Greenberg, and R. , Steady-state size distributions for collisional populations:, Icarus, vol.164, issue.2, pp.334-345, 2003.
DOI : 10.1016/S0019-1035(03)00145-3

J. Weiss and D. Marsan, Scale properties of sea ice deformation and fracturing, Comptes Rendus Physique, vol.5, issue.7, pp.735-751, 2004.
DOI : 10.1016/j.crhy.2004.09.005

J. R. Banavar, J. Damuth, A. Maritan, and A. Rinaldo, Scaling in Ecosystems and the Linkage of Macroecological Laws, Physical Review Letters, vol.98, issue.6, p.68104, 2007.
DOI : 10.1103/PhysRevLett.98.068104

A. Shekhawat, S. Zapperi, and J. P. Sethna, From Damage Percolation to Crack Nucleation Through Finite Size Criticality, Physical Review Letters, vol.110, issue.18, p.185505, 2013.
DOI : 10.1103/PhysRevLett.110.185505

J. Weiss, Fracture and fragmentation of ice: a fractal analysis of scale invariance, Engineering Fracture Mechanics, vol.68, issue.17-18, pp.1975-2012, 2001.
DOI : 10.1016/S0013-7944(01)00034-0

P. Krapivsky, E. Ben-naim, and I. Grosse, Stable distributions in stochastic fragmentation, Journal of Physics A: Mathematical and General, vol.37, issue.8, p.2863, 2004.
DOI : 10.1088/0305-4470/37/8/002

T. Toyota, C. Haas, and T. Tamura, Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter, Deep Sea Research Part II: Topical Studies in Oceanography, vol.58, issue.9-10, pp.1182-1193, 2011.
DOI : 10.1016/j.dsr2.2010.10.034

G. Timár, J. Blömer, F. Kun, and H. J. Herrmann, New Universality Class for the Fragmentation of Plastic Materials, Physical Review Letters, vol.104, issue.9, p.95502, 2010.
DOI : 10.1103/PhysRevLett.104.095502

F. Kun, F. K. Wittel, H. J. Herrmann, B. H. Kroplin, and K. J. Maloy, Scaling Behavior of Fragment Shapes, Physical Review Letters, vol.96, issue.2, p.25504, 2006.
DOI : 10.1103/PhysRevLett.96.025504

E. Strano, V. Nicosia, V. Latora, S. Porta, and M. Barthélemy, Elementary processes governing the evolution of road networks, Scientific Reports, vol.39, issue.5, 2012.
DOI : 10.1038/srep00296

D. Dumont, A. Kohout, and L. Bertino, A wave-based model for the marginal ice zone including a floe breaking parameterization, Journal of Geophysical Research, vol.113, issue.19, p.4001, 2011.
DOI : 10.1029/2010JC006682

S. Bhattacharjee and F. Seno, A measure of data collapse for scaling, Journal of Physics A: Mathematical and General, vol.34, issue.33, pp.6375-6380, 2001.
DOI : 10.1088/0305-4470/34/33/302

S. Redner, Statistical Theory of Fragmentation, Proceedings of the NATO ASI on Disorder and Fracture, 1990.
DOI : 10.1007/978-1-4615-6864-3_3

J. A. Åström, Statistical models of brittle fragmentation, Advances in Physics, vol.1, issue.3-4, pp.247-278, 2006.
DOI : 10.1103/PhysRevLett.92.044301

E. Ben-naim and P. L. Krapivsky, Fragmentation with a steady source, Physics Letters A, vol.275, issue.1-2, p.48, 2000.
DOI : 10.1016/S0375-9601(00)00570-3

Z. Cheng and S. Redner, Scaling Theory of Fragmentation, Physical Review Letters, vol.60, issue.24, pp.2450-2453, 1988.
DOI : 10.1103/PhysRevLett.60.2450

J. Gilvarry, Fracture of Brittle Solids. I. Distribution Function for Fragment Size in Single Fracture (Theoretical), Journal of Applied Physics, vol.32, issue.3, p.391, 1961.
DOI : 10.1063/1.1736016

J. Fineberg and M. Marder, Instability in dynamic fracture, Physics Reports, vol.313, issue.1-2, pp.1-108, 1999.
DOI : 10.1016/S0370-1573(98)00085-4

J. A. Åström, F. Ouchterlony, R. P. Linna, and J. Timonen, Dimensions, Physical Review Letters, vol.92, issue.24, p.245506, 2004.
DOI : 10.1103/PhysRevLett.92.245506

P. Kekäläinen, J. A. Åström, and J. Timonen, Solution for the fragment-size distribution in a crack-branching model of fragmentation, Physical Review E, vol.76, issue.2, p.26112, 2007.
DOI : 10.1103/PhysRevE.76.026112

T. D. Williams, L. G. Bennetts, V. A. Squire, D. Dumont, and L. Bertino, Wave???ice interactions in the marginal ice zone. Part 1: Theoretical foundations, Ocean Modelling, vol.71, pp.81-91, 2013.
DOI : 10.1016/j.ocemod.2013.05.010

S. Nihashi, K. I. Ohshima, M. O. Jeffries, and T. Kawamura, Sea-ice melting processes inferred from ice???upper ocean relationships in the Ross Sea, Antarctica, Journal of Geophysical Research, vol.84, issue.C2, p.2002, 2005.
DOI : 10.1029/2003JC002235

T. Toyota, S. Takatsuji, and M. Nakayama, Characteristics of sea ice floe size distribution in the seasonal ice zone, Geophysical Research Letters, vol.109, issue.C9, p.2616, 2006.
DOI : 10.1029/2005GL024556

A. Herman, Sea-ice floe-size distribution in the context of spontaneous scaling emergence in stochastic systems, Physical Review E, vol.81, issue.6, p.66123, 2010.
DOI : 10.1103/PhysRevE.81.066123

F. P. Dos-santos, R. Donangelo, and S. R. Souza, Schematic models for fragmentation of brittle solids in one and two dimensions, Physica A: Statistical Mechanics and its Applications, vol.374, issue.2, pp.680-690, 2007.
DOI : 10.1016/j.physa.2006.08.058

J. Inoue, M. Wakatsuchi, and Y. Fujiyoshi, Ice floe distribution in the Sea of Okhotsk in the period when sea-ice extent is advancing, Geophysical Research Letters, vol.24, issue.C9, p.31, 2004.
DOI : 10.1029/2004GL020809

P. Lin, Static conformation and dynamics of single DNA molecules confined in nanoslits, Physical Review E, vol.76, issue.1, p.11806, 2007.
DOI : 10.1103/PhysRevE.76.011806

S. Caracciolo, M. Gherardi, M. Papinutto, and A. Pelissetto, Geometrical properties of two-dimensional interacting self-avoiding walks at the ??-point, Journal of Physics A: Mathematical and Theoretical, vol.44, issue.11, p.115004, 2011.
DOI : 10.1088/1751-8113/44/11/115004

URL : https://hal.archives-ouvertes.fr/in2p3-00563805

M. Gherardi, Exact Sampling of Self-avoiding Paths via Discrete Schramm-Loewner Evolution, Journal of Statistical Physics, vol.120, issue.2, p.1115, 2010.
DOI : 10.1007/s10955-010-0031-8

M. Gherardi, Theta-point polymers in the plane and Schramm-Loewner evolution, Physical Review E, vol.88, issue.3, p.32128, 2013.
DOI : 10.1103/PhysRevE.88.032128

A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 1992.

G. Portyankina, A. Pommerol, K. Aye, C. J. Hansen, and N. Thomas, Polygonal cracks in the seasonal semi-translucent CO2 ice layer in Martian polar areas, J. Geophys. Res. Planet, vol.117, p.2006, 2012.

S. Raghavachary, Fracture generation on polygonal meshes using Voronoi polygons, ACM SIGGRAPH 2002 conference abstracts and applications on , SIGGRAPH '02, pp.187-187, 2002.
DOI : 10.1145/1242073.1242200

D. L. Feltham, Granular flow in the marginal ice zone, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.363, issue.1832, pp.1677-1700, 2005.
DOI : 10.1098/rsta.2005.1601

. Digitalglobe, Inc QuickBird Imagery Products http://glcf.umd.edu/library/guide/QuickBird_Product_Guide.pdf (Date of access, p.20, 2015.

. Digitalglobe, Inc GeoEye-1 data sheet https://www.digitalglobe.com/sites/default/files/DG_GeoEye1.pdf (Date of access, p.20, 2015.

P. Selinger, Potrace: a polygon-based tracing algorithm, 2011.

D. K. Perovich, W. B. Tucker, and K. A. Ligett, Aerial observations of the evolution of ice surface conditions during summer, Journal of Geophysical Research, vol.89, issue.481, p.8048, 2002.
DOI : 10.1029/2000JC000449

J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, vol.9, issue.3, p.90, 2007.
DOI : 10.1109/MCSE.2007.55