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Plant traits related to attractiveness to pollinators (e.g. flowers and nectar) can be sensitive to abiotic
or biotic conditions. Soil nutrient availability, as well as interactions among insect-pollinated plants
species, can induce changes in flower and nectar production. However, further investigations are
needed to determine the impact of interactions between insect-pollinated species and abiotically
pollinated species on such floral traits, especially floral rewards. We carried out a pot experiment in
which three insect-pollinated plant species were grown in binary mixtures with four wind-pollinated
plant species, differing in their competitive ability. Along the flowering period, we measured floral
traits of the insect-pollinated species involved in attractiveness to pollinators (i.e. floral display size,
flower size, daily and total 1) flower production, 2) nectar volume, 3) amount of sucrose allocated to
nectar). Final plant biomass was measured to quantify competitive interactions. For two out of three
insect-pollinated species, we found that the presence of a wind-pollinated species can negatively
impact floral traits involved in attractiveness to pollinators. This effect was stronger with wind-
pollinated species that induced stronger competitive interactions. These results stress the importance
of studying the whole plant community (and not just the insect-pollinated plant community) when
working on plant-pollinator interactions.

A wide array of plant traits are sensitive to environmental conditions, either abiotic and biotic factors
and their interplay. Modifications of abiotic resources can induce positive to negative effects on plant
vegetative (e.g. plant biomass) and reproductive traits (e.g. flowers, fruits or seeds). For instance, some
studies showed that the addition of soil nutrients (e.g. nitrogen or phosphorous) can lead to an increase
in plant growth rates or biomass'™, as well as flower®>=%, fruit®®, pollen® or seed traits®®. On the other
hand some studies showed that a high level of nitrogen can lead to a decrease in root biomass* while
increasing plant growth and flower production’. Likewise, litter and compost addition or irrigation can
induce intricate plant responses. For instance, litter inputs can induce negative to positive effects on
biomass along years'? as well as species-specific response of floral traits'' just like water addition'?. The
effect of resources modifications can also be delayed according to plant life cycles®. These studies suggest
that plant response to resources availability can be plastic (the change in phenotype being proportional
to changes in environmental conditions) or adaptive with strategies mainly linked to plants’ life cycles.
Within plant communities, interactions among plant individuals, especially competition between roots
systems for water and nutrient acquisition, can lead to changes in the availability of such resources™
and to changes in allocation to vegetative or reproductive plant traits''4-1. Therefore, the composition
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of plant communities can have strong effects on individual plant traits through competitive interactions
for resources.

Variations in plant reproductive traits are especially important in animal-pollinated species because
they condition plant-pollinator interactions!”'. Indeed, in insect-pollinated plants, pollinators are
attracted to flowers and associated rewards. On the one hand, flowers, varying in their number, size,
color or smell, offer an advertising display that induces visits of various pollinators!”*. On the other
hand, floral rewards (e.g. nectar, pollen) tend to favor the repetition of visits as they are major compo-
nents of pollinators’ diet by supplying proteins, sugars and amino-acids'’. The quantity and quality of
such floral traits involved in pollinator attraction can have strong impacts on pollinator behavior. Indeed,
several studies have shown that plant species exhibiting a greater floral display size, (i.e. the total number
of opened flowers at a time) or producing numerous, large flowers and/or greater rewards (in quantity
or quality) are more visited by pollinators than other present plant species?®?*. Various experiments
showed that a greater pollinator attractiveness, subsequently to increased floral traits through resource
addition, can enhance pollinator visitation®®2¢ that may lead to better reproductive success®®. However,
to date, most studies linking changes in soil resources to floral traits and pollinator response considered
the impact of nutrient addition while interactions between plants, especially belowground competition,
could also be of great importance. In an experiment looking at different floral traits involved in attrac-
tiveness, Baude ef al.'' set up binary mixtures of insect-pollinated plant species and found that floral
traits of one focal species depended on the other species present in the mixtures. More precisely, the
total nectar sugar content of a focal species decreased when growing in presence of a stronger compet-
itor. Therefore, interactions between insect-pollinated species could influence floral traits involved in
pollinator attraction.

Natural plant communities always comprise species with a variety of pollination modes such as
animal-pollinated and abiotically pollinated plants, although the latter are almost never taken into account
in studies on plant-pollinator networks. However, the flower production of a particular insect-pollinated
species can be negatively impacted by competitive interactions induced by a wind-pollinated plant com-
petitor'>?”. To our knowledge, the consequences of interactions between insect- and wind-pollinated
species on floral traits involved in attractiveness to pollinators still need investigations, especially with
more focus on floral rewards.

The objectives of our study were to assess how allocation to several floral traits involved in attrac-
tiveness to pollinators (e.g. flower production, flower size and floral rewards) could be affected by the
presence of different wind-pollinated species. Especially we wanted to investigate the effect of different
intensities of competitive interactions. To do so, we set up a pot experiment in which we grew three
insect-pollinated plant species (Echium plantagineum, Lamium purpureum and Lotus corniculatus) in
binary mixtures with four wind-pollinated species (Agrostis capillaris, Chenopodium album, Holcus lana-
tus and Plantago lanceolata) so that insect-pollinated species were submitted to a panel of belowground
interactions for abiotic resources.

Our hypothesis were that (1) the presence of wind-pollinated competitors should have negative
impacts on floral traits of insect-pollinated species and (2) the magnitude of this effect should differ
according to different competition intensities induced by the presence of wind-pollinated species.

Results

Intensity of competitive interactions. Mean log response ratios (In RR?), estimators of compe-
tition intensity, are summed up in Table 1. As indicated by In RR values, the three insect-pollinated
focals were submitted to various intensities of competition. E. plantagineum and L. purpureum followed
the same pattern of response. For both species and whatever the biomass measurement (aboveground,
belowground or total biomass), In RR values (as well as focals’ biomass) were significantly higher in
presence of C. album, in opposition to mixtures with H. lanatus for which In RR had the lowest values
(P <0.024 for both species, Table 1, Supplementary Fig. S1 for biomass). Mixtures with C. album even
seemed to provide better growth conditions than monocultures of the two focal species with positive
values of In RR (Table 1). For intermediate levels of competition intensity, In RR values suggest a global
pattern where intensity of competition is stronger in mixtures with A. capillaris than with C. album but
weaker than with P. lanceolata, the second strongest competitor for L. purpureum and E. plantagineum
(except for In RR values calculated with belowground biomass of L. purpureum, Table 1). According to
these results, L. purpureum and E. plantagineum experienced the following panel of growing intensity
of competition:

C. album < monocultures < A. capillaris < P. lanceolata < H. lanatus

mixtures mixtures mixtures mixtures

The response of L. corniculatus didn’t follow the same pattern. Monocultures showed the highest In
RR values among all treatments (Table 1). In consequence, all wind-pollinated species induced negative
competitive interactions for this focal species ranging from weak effects in mixture with C. album to
strong effects in mixture with P. lanceolata or A. capillaris (Table 1).

As we are mainly interested in the effect of competition intensity induced by wind-pollinated species
rather than on competitor identity, the log response ratio (In RR) has been used as an explanatory varia-
ble in the following results. However, because In RR values were obtained from biomass measurements at
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In RR F value p-value
Monoculture ‘ Mixture g jguams ‘ Mixture p ju.ccolata ‘ Mixture 4. apittaris ‘ Mixture ¢ upum

E. plantagineum

Aboveground biomass 0 (4+/-0.01) —1.16 (+/-0.01) —0.86 (4-/-0.01) —0.60 (+/—0.01) 0.28 (4/-0.01) Fy,=54.31 0.001
Belowground biomass 0 (4/-0.04) —1.96 (4+/-0.03) —1.77 (+-/-0.03) —1.23 (+/-0.04) 0.39 (4/-0.04) Fy,0=120.73 0.001
Total biomass 0 (+/—0.02) —1.43 (+/-0.02) —1.15 (+/—0.02) —0.82 (4+/—0.02) 0.27 (+/—0.02) F,20=46.97 0.001
L. purpureum

Aboveground biomass 0 (4+/-0.02) —1.00 (+/-0.02) —0.81 (4/-0.02) —0.22 (+/-0.02) 0.44 (4/-0.02) Fy5=19.08 0.001
Belowground biomass 0 (4/-0.05) —1.32 (+/-0.04) —0.86 (4-/—0.04) —1.00 (4+/-0.04) —0.42 (4+/-0.04) F,5=3.55 0.024
Total biomass 0 (+/—0.03) —1.15 (+/—0.02) —0.88 (4/—0.03) —0.49 (+/—0.03) 0.19 (+/—0.02) Fyp0= 1274 0.001
L. corniculatus

Aboveground biomass 0 (+-0.01) 0.03 (+/—0.01) —0.25 (+ —0.01) 0.06 (+/—0.01) 0.03 (4/-0.01) Fy,0=6.40 0.002
Belowground biomass 0 (4/-0.03) —0.47 (4+/-0.03) —0.74 (4-/-0.03) —1.02 (+/-0.02) —0.21 (4/-0.03) Fy5=16,75 0.001
Total biomass 0 (+ —0.02) —0.13 (4+/—0.02) —0.41 (+/—0.01) —0.26 (+/—0.02) —0.07 (+/—0.01) Fy20=6,39 0.002

Table 1. Mean In RR values (+/—standard error) per treatment for E. plantagineum, L. purpureum and
L. corniculatus in monocultures and mixtures with the wind-pollinated competitors. For each insect-
pollinated focal, p-values indicate significant differences between treatments (ANOVA, E. plantagineum
N=1125, L. purpureum N =1125, L. corniculatus N=1125).

the end of the experiment, we used In RR (calculated from total biomass, see in Methods) as an explana-
tory variable only for total floral traits (i.e. summed at the end of the experiment, see Flower traits, Nectar
traits and Data analysis sections in Methods). We kept the competitor identity as an explanatory variable
for daily floral traits see Flower traits, Nectar traits and Data analysis sections in Methods). Therefore,
in the following results, ‘competition intensity’ will equally refer to 1) In RR values, 2) the presence of
a particular competitor in the mixture with the focal species. An increase in competition intensity can
thus mean a decrease in In RR values or the presence of stronger competitors. For the sake of clarity, the
results for daily floral traits will be ordered along the above panel for the three focal species, even if the
pattern of response was different for L. corniculatus.

Flower traits. At the end of the experiment, a total of 807, 2053 and 1075 flowers were sampled for
E. plantagineum, L. purpureum, and L. corniculatus, respectively. For E. plantagineum and L. purpureum
there was a significant effect of competition leading to a decrease of floral display size, daily flower
production (not shown) and total flower production (total number of flower produced at the end of the
flowering period, see Methods) when competition intensity increased. Indeed, floral display size and
daily flower production tended to be greater in presence of C. album (even greater than in monocul-
tures; although not significant) while the presence of stronger competitors, such as H. lanatus, induced
a strong decrease in both traits (Fig. 1 for floral display size, the daily flower production followed the
same pattern). Likewise, for both species, the total flower production decrease as In RR values decrease,
suggesting lower total flower production in condition of stronger competitive interactions (P < 0.001
Supplementary information Fig. S2). For L. corniculatus, there was also a significant effect of the com-
petition treatment. Especially, floral display size and daily flower production were greater in presence of
C. album (Fig. 1 for floral display size, the daily flower production followed the same pattern). However,
both traits tended to be lower in monocultures (Fig. 1 for floral display size, the daily flower production
followed the same pattern). On the other hand, the total flower production decreased according to In
RR values (P < 0.001, Supplementary information Fig. S2). For all three species, there were significant
effects of the date (for the floral display size only, all P < 0.001) and of the interaction terms for both
floral display size and daily flower production (all P < 0.001).

For all three focal species, flower size was affected by the competition treatment (E. plantagineum:
Fy77,=7.35, P<0.001, L purpureum: F 9;s=8.96, P<0.001; L corniculatus: F, 535 = 4.69, P <0.001,
Supplementary information Fig. S3). Plants of E. plantagineum and L. purpureum produced smaller flow-
ers as competition intensifies. For L. corniculatus, monocultures and mixtures with C. album produced
the smallest flowers (see Supplementary information Fig. S3). For flower size, there was also a significant
effect of the date for all three species (all P <0.008).

Nectar traits. There was no significant effect of the competition treatment on the daily concentration
of nectar per flower and the daily volume of nectar per flower for both E. plantagineum and L. cornicula-
tus (P> 0.05). L. purpureum, however, was significantly affected by the presence of stronger competitors
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Figure 1. Mean (4/—standard error) floral display size per plant of E. plantagineum, L. purpureum, and
L. corniculatus in mixture with the competitors. “Mono” refers to monocultures of the focal species. Wind-
pollinated species are ordered according to increasing intensity of competitive interactions (see Results).
Different letters indicate significant differences (i.e P <0.006 for E. plantagineum, P <0.001 for L. purpureum
and P <0.040 for L. corniculatus) after pairwise comparisons (Tukey*’) and adjustment of p-values (Holm

method®®).
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Figure 2. Linear regression between the total sucrose index (mg per plant) and mean In RR values per
plant calculated from total biomass (P < 0.001 with transformed data, for E. plantagineum (R?=0.44)
and L. purpureum (R2=0.57) only). The grey line corresponds to the estimated model while dots represent
the data. Ln RR values are associated to mixtures in the legend.

for both variables (F, 450 =2.53, P =0.04 for the daily concentration and F, ;¢,s=4.47, P=0.001 for the
daily nectar volume).

As the daily flower production was affected by the competition treatment, the daily sucrose index of
nectar (taking into account all produced flowers per day and not only sampled flowers, see Methods)
decreased in presence of strongest competitors for both E. plantagineum and L. purpureum (F, ;o4 =13.36,
P <0.001and F, ;3, = 5.52, P < 0.001 respectively). Therefore, the daily allocation of sucrose to nectar was
lower when competition intensified. The same pattern was clearly observed for the total allocation of
sucrose to nectar. Indeed, the total sucrose index at the end of the flowering period tended to decrease
with In RR values (E. plantagineum F, ,, = 57.04, P < 0.001, L. purpureum: F, ;3= 83.81, P < 0.001; Fig. 2,
see Methods). We found the same pattern for daily (E. plantagineum F, 199=9.38, P < 0.001; L. purpureum
Fyg00=8.05, P < 0.001) and total volume index (F | 4= 30,71, P < 0.001, F | 4;5=102,74 P < 0.001 respec-
tively). For L. corniculatus, the daily sucrose index and the daily volume index were significantly affected
by the competition treatment (F, 5= 3.48, P=0.009 and F, 5, = 3.47, P=0.009 respectively) with lower
values in monocultures. However both index of nectar were not affected by increasing competition inten-
sity (both P> 0.05, see Fig. 2 for total sucrose index). There were significant effects of the date for the
daily concentration of nectar (P <0.02 for E. plantagineum and L. purpureum) and the daily nectar
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volume (L. purpureum only P < 0.001). There was a significant effect of the interaction term (competi-
tion:date) for the daily nectar volume (for E. plantagineum and L. corniculatus, all P <0.01). For both
daily index, there were significant effects of the date (for L. purpureum only, P < 0.001) and of the inter-
action term (competition:date) (for E. plantagineum and L. corniculatus, all P <0.002).

Discussion

Literature data have mostly focused on the relations between plant attractiveness to pollinators and
abiotic conditions and suggest that response of attractiveness traits is complex and species-specific
as positive, neutral and negative effects have been reported for the effects of water or nutrient addi-
tion on flower productionp®”!"12, Because competitive interactions between plants can translate into
changes in resources availability between competitors'>?, we studied their impact on floral traits of three
insect-pollinated species. Moreover, we focused on wind-pollinated species as competitors in order to see
how species that do not interact with pollinators for their reproduction could alter attractiveness traits
of animal-pollinated focal species.

As expected, competition with wind-pollinated species affected plant biomasses and floral traits for
all three investigated insect-pollinated species. Especially, we found that the stronger the competitive
interaction was (i.e., high In RR values), the stronger the impact on floral traits.

Differences in biomass allocation patterns, especially belowground, can suggest different competitive
abilities in plants®. Indices of competition, such as the log response ratio (In RR) are frequently used
as they are good tools for summarizing and interpreting competitive interactions between plant spe-
cies®®. Here, the In RR values obtained for each mixture indicate that the wind-pollinated competitors
exposed the insect-pollinated focals to different competition intensities. These In RR values also sug-
gest that the two annual species of our experiment, L. purpureum and E. plantagineum, faced a similar
panel of growing intensity of competition, with C. album being a weaker competitor, A. capillaris an
average competitor and P. lanceolata and H. lanatus being stronger competitors. Measures of competi-
tors’ biomass grown in mixtures with L. purpureum or E. plantagineum could explain these differences.
Indeed, in these mixtures, plants of H. lanatus produced the greatest biomass among the four competitor
species. Even though greater biomasses, especially greater root systems, are not always associated with
greater competitive abilities®’, larger root systems can be related to greater soil space occupation® and/
or greater resource uptake® thus limiting access to resources for neighbouring plants. Likewise larger
individual plants can induce stronger effects on target plants than smaller ones®?. Here, H. lanatus is a
strong competitor (so, with high competitive abilities) because its presence (its biomass) probably led
to a strong limitation of the biomass production of the two focal species (lower In RR values) through
strong space occupation and/or greater nutrient depletion. In contrast, C. album individuals tended to
have a positive effect on the biomass of these two focals species. Facilitative interactions between plants
can be observed through modifications of soil components (e.g. moisture, nutrients)** or enhancement
of seedling establishment. However here, the positive effect of C. album may probably be due to low
biomass production rather than facilitation. This may have favoured greater space/nutrient exploitation
by the two focal species, and thus higher allocation to biomass than in the other treatments (includ-
ing focals monocultures). So in this study, we consider that the competitive abilities of plant species
are more a consequence of their biomass production (even if biomass production can also result from
higher competitive abilities). In the case of L. corniculatus, response patterns were different. Mixture with
C. album appart, H. lanatus behaved as an intermediate competitor in spite of its important biomass
production (especially root biomass). Moreover, even though the range of In RR values was narrower for
this species (compared to L. purpureum for example), all wind-pollinated species had a small negative
effect on L. corniculatus, compared to monocultures, and the strongest competitors were P. lanceolata and
A. capillaris. However, biomass measurements indicate that only L. corniculatus belowground biomass
was altered by the presence of a competitor and aboveground biomass was unaffected (see Supplementary
information Fig. S1). Some characteristics of L. corniculatus could have mediated this different response
to competition compared to the two other species. First, L. corniculatus is a legume species and, although
we did not quantify them, L. corniculatus roots showed nodules, indicating that nitrogen fixation did
occur in our experiment. L. corniculatus could thus have accessed to the atmospheric N pool** so that
it was only slightly affected by competition compared to the two other species. Furthermore, L. cornic-
ulatus has a perennial life cycle that can induce a different timing of response to competition as well as
different allocation patterns compared to plants having annual life cycles*®. Initially, the experimental
design contained a second perennial plant, Mimulus guttatus DC. (synonym Erythranthe guttata (Fisch.
ex DC.) G.L. Nesom; see Supplementary Table S1), that might have provided elements to disentangle the
respective roles of perennial life cycle and nitrogen fixation in L. corniculatus. Unfortunately, only 15 out
of 75 Mimulus guttatus plants flowered, and half of the flowers (25/49 total flowers) were produced by
only two plants. As a consequence we decided not to include this species in this work.

Moreover, we should keep in mind that these conclusions rely on final harvests of biomass when
some studies suggest regular harvest along experiments to better assess the dynamics of competitive
interactions®.

Most of the floral traits measured in this experiment were affected by the competition treatment.
Higher conditions of competition (lower In RR values induced by the presence of H. lanatus) had the
greatest impact on E. plantagineum and L. purpureum, by reducing flower and reward traits. To date,
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studies that have looked for links between attractiveness traits and environmental conditions have mostly
focused on the effects of abiotic conditions and showed a sensitivity of attractiveness traits to nutrients
and water availability>®*12 or litter and compost additions to soil'"?. If modifications of abiotic condi-
tions can alter species attractiveness to pollinators, it is not surprising that biotic interactions such as
competition, that mediate abiotic resources availability, have similar effects'. Flower and nectar pro-
duction can be relatively costly for a single plant*’-*° so that allocation to reproductive structures might
be modified in a context of competition with limited access to nutrients. Here, the lowest In RR values,
calculated from mixtures in presence of H. lanatus, suggest that this species may have reduced the avail-
ability of soil resources to E. plantagineum and L. purpureum and thus daily as well as total allocation
of plants to floral traits. Overall, this could be responsible for lower resources allocation to reproductive
traits. Conversely, C. album, led to higher flower and nectar production than in monocultures. A greater
resources availability or space, due to the reduced biomass of the competitor might have led to better
growing conditions for the insect-pollinated species, resulting in better resource acquisition (as con-
firmed by higher In RR values) and increased allocation to reproductive structures.

In the case of L. corniculatus, while In RR values suggest stronger competition (albeit limited) in pres-
ence of wind-pollinated species compared to monoculture, some floral traits were lowest in monoculture
and in mixtures with P. lanceolata (which is the strongest competitor for L. corniculatus based on In RR
values) compared to the other mixtures. This suggests that, in contrast to the two other insect-pollinated
species, allocation to reproduction was not related to biomass allocation. In Wurst & Van Beersum*,
monocultures of L. corniculatus can have higher biomass and produce more flowers than in mixture
with H. lanatus, which is not in accordance with the observed pattern here. Considering the cost of N,
fixation suggested in some studies (in term of C allocation to symbiont*!), plants in monocultures in our
experiment might have allocated less photosynthetates to floral traits leading to the observed decrease
in monocultures. However, the study of floral traits per unit of biomass (total floral traits divided by the
final biomass) revealed that L. corniculatus might have a more adaptive response to competition while
the two other focal species might have a ‘purely’ plastic response to resource availability. Indeed, for
L. corniculatus, floral traits per unit of biomass tend to be higher when competition intensity increases,
showing a possible strategy to better attract pollinator in condition of competition. However, as we only
have biomass data at the end of the experiment (and a final biomass can not only be considered as a
sum of biomass like for total produced flowers, for instance), we believe that further investigations are
needed to conclude on these effects.

Here we focused on flower and nectar production while other attractiveness traits could also be
affected by competitive interactions. For example, plant pigments or volatile compounds involved in
flower colours** and scents, relative amounts of different sugars or amino-acids content in nectar'>** and
pollen quantity and or quality®, are all sensitive to resource variations, and could be affected by competi-
tive interactions. Even though we observed a negative impact of competition on some floral traits involved
in attractiveness to pollinators, the response of floral traits can be complex and species-specific>!12
Moreover, we interpret our results in a context of exploitative competition through soil resources deple-
tion while other competitive mechanisms (e.g. interference through allelochemicals)!*? could conjointly
influence plant response. As In RR values did not differ among total or belowground biomass and root
competition is often stronger than shoot competition (especially with grass competitors*), our results are
mainly interpreted in a context of belowground competition. However further investigations are needed
to better assess the overall impact of plant competition (aboveground as well as belowground) on floral
traits involved in attractiveness to pollinators.

Variations in attractiveness traits are known to strongly impact pollinator visitation patterns and on a
larger scale pollination service. Indeed, greater plant attractiveness can enhance the frequency or number
of flower visits: most pollinators are preferentially attracted to plants producing numerous, large flowers
and/or greater rewards (in quality or quantity)***>%. Larger floral display size can also influence the
abundance of visiting pollinators*®. Likewise, the pattern of pollinator visits per plant can be correlated
to the total nectar production per plant?. However, many flowering plants are pollen limited, therefore
an increase in pollination intensity (e.g. a greater pollen deposit on stigmas) can enhance plant fecundity
(i.e. greater fruit and/or seed set)*®. As a consequence, our results suggest that a decrease in floral traits
involved in pollinator attractiveness due to plant competition could have negative impacts on pollina-
tor visits, reducing plant reproductive success. However further experiments are needed to test such
hypothesis. Nevertheless, this study emphasises the importance of 1) taking into account species other
than insect-pollinated ones in plant-pollinator network studies, and 2) linking above ground and below
ground interactions to better understand plant-pollinator networks. This is in concordance with some
research initiated on the impact of soil micro-organisms on pollinator visits through variations of floral
traits**°. Given our results, future research is needed on plant-soil or plant-plant interactions that may
lead to modifications of floral traits involved in attractiveness to pollinators.

Methods

Our objectives were to study how attractiveness traits of insect-pollinated plants are affected by the
presence of neighbouring wind-pollinated plant species. To do so, we set up a greenhouse experiment in
which we grew seven plant species in binary mixtures in pots.
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Plant species. Seven plant species (3 insect-pollinated plants and 4 wind-pollinated plants) with close
ecological preferences (based on Ellenberg index for British Plants®) were selected: Echium plantagineum
L., Lamium purpureum L., and Lotus corniculatus L., for insect-pollinated focals and Agrostis capillaris
L., Chenopodium album L., Holcus lanatus L. and Plantago lanceolata L. for wind-pollinated competitors
(for plant species description, see Supplementary Table S1).

Experimental set-up. In March 2012, seedlings of all species were planted in plastic pots (14cm
@; 1.5L, Puteaux SA, France) in sandy soil (pH=6). The soil was taken from a grassland site
(CEREEP-Ecotron Ile-de-France, St Pierre-lés-Nemours, France) and was sieved (<4mm) to remove
rocks and plant material. Six plant individuals were placed in each pot to form two-species mixtures
with three individuals of one insect-pollinated species in alternation with three individuals of one
wind-pollinated species. We also set up control monocultures with six individuals of the same spe-
cies (insect-pollinated or wind-pollinated). Each mixture was replicated 5 times, making a total of 95
pots (5 x 3 monocultures of insect-pollinated species, 5 x 4 monocultures of wind-pollinated species,
5 x 4 x 3 binary mixtures). Pots were randomly placed in a greenhouse (CEREEP-Ecotron Ile-de-France,
St Pierre-lés-Nemours, France) and their position was changed each week. Plants were watered daily by
sub-irrigation (flood floors, DIMAC SAS, France). Air temperature in the greenhouse followed outdoor
conditions but was maintained above 18°C when low temperatures occurred. Photoperiod was initially
set at 12-hours per day through natural light and sodium lamps when necessary (i.e. when solar irra-
diation was under 200 watt/m?*/hour; HS2000 Hortilux Schréder, The Netherlands). It was adjusted to
16-hours per day to allow for the blooming of L. corniculatus, a long-day flowering species. Because we
were mainly interested by belowground competition in this study, we took special care to check that plant
foliage did not overlap between individuals all along the experiment. When plant foliage did overlap
(especially in mixtures with L. corniculatus) plant supports were put in to separate plant individuals and
thus limit aboveground competition (i.e. for light).

Floral traits of insect-pollinated species involved in attractiveness to pollinators.
Flower traits. 'The flower traits measured every day were the number of newly opened flowers, plant’s
floral display size and the size of the newly opened flowers. To assess the daily flower production (newly
opened flowers per day and per plant), floral buds ready to opened were marked the evening before
each sampling date, on all individuals of every insect-pollinated plant species. Buds actually opened on
a sampling date were counted. Floral display size was calculated as the total number of opened flowers
per day and per plant. Among the newly opened flowers (less than 14h-old), up to three flowers per plant
were randomly selected to measure flower size and nectar traits (see below). Flower size measurement
consisted in measuring corolla size (mm) with a digital caliper (Digit-Cal MK IV, Brown&Sharpe, USA)
from the bottom to the tip of the corolla for E. plantagineum or to the tip of the keel for L. corniculatus.
For L. purpureum, flower size was measured as the length of the corolla tube only (from the bottom of
the corolla to the bottom of the upper lip of the corolla) in order to avoid errors due to strong variability
in the opening angle of corolla’s upper lip (personal observations).

For all plants, the total number of produced flowers at the end of the flowering period was calculated
by summing the daily flower production over the whole flowering period.

Nectar traits. For each plant, nectar volume and nectar sugar content were measured on up to three
newly opened flowers, after flower size measurements (see above). This ensured that nectar traits were
measured on flowers of the same age to limit variations due to flower age®2. Nectar was sampled using
microcapillary tubes (0.5pL or 1uL; Minicaps end to end, Hirschmann laborgeraete, Germany) and
nectar volume was calculated by measuring the length of liquid in the microcapillary tube with a digi-
tal caliper (Digit-Cal MK IV, Brown&Sharpe, USA) (pL.flower~'.day~!). Daily sugar concentration was
determined with hand-held refractometers (Eclipse 45-81 and Eclipse 45-82, Bellingham+Stanley Ltd.,
UK) calibrated using sucrose solutions (30% and 50% brix). Because nectar not only contains sucrose
but also other sugars, our concentration measurements correspond to sucrose equivalent. However, for
the sake of brevity, we will only use in the following the term sucrose in reference to “sucrose equiva-
lent”. When nectar volumes were too small to be measured by the refractometer (<0.5.L), samples were
diluted in Milli-Q water before measurement. If concentration measurements could not be done right
after sampling, microcapillary tubes were stored in a refrigerator at 4°C and measured within the next
two hours. Because only up to three flowers per plant were sampled, we decided to calculate volume
and sucrose indices taking into account the number of flowers produced per plant?’. The daily volume
index per plant was assessed by multiplying the average nectar volume per flower per day with the
number of flower produced per plant per day. The daily amount of sucrose allocated to nectar per plant
was estimated by multiplying the average concentration of sucrose in nectar per flower per day by the
average volume of nectar per flower per day. This daily amount was multiplied by the number of flowers
produced per plant per day, giving a daily sucrose index per plant. All daily floral traits (per flower or
at the plant scale) can give information on the plant allocation to reproduction all along the flowering
period. However, in order to have a global assessment of reward production and plant energy allocation,
daily indices were summed along the whole flowering period as total indices!!.
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Plant traits. At the end of the flowering period of each insect-pollinated plant species (on the 3™ of May
2012 for L. purpureum and on the 2" of June 2012 for E. plantagineum and L. corniculatus), above- and
belowground biomass of all individuals was harvested. Concerning belowground biomass, we took care
of separating root systems of each species. Plant biomasses were oven-dried (65°C, 48h) and weighted
(g-plant™).

Competitive interactions. In order to estimate the intensity of competitive interactions between each
focal insect-pollinated plant and its wind-pollinated competitors we calculated the log response-ratio (In
RR) as an index of competition?. This index is defined as:

control

InRR = ln[ Pinix ]

where P, is the biomass of a focal plant when grown in mixtures and P, is the biomass of a focal
plants in monoculture pots. In order to have a good assessment of the In RR as well as a variance, In RR
values for each treatment were calculated as means of all possible combinations of each focal plant in a
mixture divided by each focal plant in a monoculture. Because three focal plants were present in mix-
tures, we considered monocultures as ‘mixtures’ of 3 focal plants with 3 ‘competitor’ plants of the same
species. Values of this index are symmetrical around zero with positive values indicating that focals grow
better in mixture (i.e. focals are better competitors) and negative values indicating that focals’ growth
is negatively affected by competitor (i.e. focals are lower competitors). Ln RR values were calculated
from aboveground and belowground biomass but only In RR calculated from total biomass were used
to study the effect of competition on final floral traits as it is a better integrator of competition within
both compartments.

Data analysis. All statistical analyses were performed using R 3.1%. Linear mixed-effects models were
fitted to all measured traits (nlme R package®*), with the exception of floral display size and total flower
production that were fitted to generalized mixed-effect models with Poisson probability distribution and
log link function (Ime4 R package®). As In RR values are calculated from final biomass here, this may be
relevant to study the response of total floral traits (values summed all along the flowering period for each
plant to obtain a total value per plant) to competition but not for daily floral traits as competition can
be dynamic along plant lifespan®. As a consequence models were fitted with two different explanatory
variables: In RR values calculated from total biomass as a fixed effect for total floral traits (i.e. total flower
production, total sucrose index, total volume index) and wind-pollinated species identity as a fixed effect
for daily floral traits (i.e. floral display size, flower size, daily sucrose concentration in nectar, daily nectar
volume, daily volume index, daily amount of sucrose in nectar, daily sucrose index). The date was also
set as a fixed effect for daily floral traits to take into account the effect of plant age. In all models, pots
and date (for the repeated measures on plants) were set as random effects. For linear mixed models, data
were transformed using log (e.g. floral traits involving nectar volume), square or square root (e.g. flower
size, floral traits involving sucrose concentration) transformations, when necessary. Daily data were then
analysed through analysis of covariance (ANCOVA). For total data, whose values were summed all along
the flowering period for each plant to obtain a total value per plant, analyses of variance (ANOVA) were
performed on these total values. When significant differences were detected, post-hoc comparisons were
performed (Tukey all-pair comparisons, Holm method for p-value adjustment were used®, multcomp
R package®). For the date effect or the interaction term, only significant effects are reported. Because
generalized mixed-effect models (glmer, floral display size and total flower production) do not provide
p-values, pairwise comparisons with Holm method for p-value adjustment were used®.
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