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Abstract. Predicting streamflow hydrographs in ungauged

catchments is challenging, and accompanying the estimates

with realistic uncertainty bounds is an even more complex

task. In this paper, we present a method to transfer global

uncertainty estimates from gauged to ungauged catchments

and we test it over a set of 907 catchments located in France,

using two rainfall–runoff models. We evaluate the quality of

the uncertainty estimates based on three expected qualities:

reliability, sharpness, and overall skill. The robustness of the

method to the availability of information on gauged catch-

ments was also evaluated using a hydrometrical desert ap-

proach. Our results show that the method presents advanta-

geous perspectives, providing reliable and sharp uncertainty

bounds at ungauged locations in a majority of cases.

1 Introduction

1.1 Predicting streamflow in ungauged catchments

with uncertainty estimates

Predicting the entire runoff hydrograph in ungauged catch-

ments is a challenge that has attracted much attention during

the last decade. In this context, the use of suitable concep-

tual rainfall–runoff models has proved to be useful, and be-

cause traditional calibration approaches based on observed

discharge data cannot be applied to ungauged catchments,

other approaches are required. Various methods have been

proposed for the estimation of rainfall–runoff model param-

eters in ungauged catchments, as reported by the recent sum-

mary of the Prediction in Ungauged Basins (PUB) decade

(Blöschl et al., 2013; Hrachowitz et al., 2013; Parajka et al.,

2013).

The estimation of predictive uncertainty is deemed good

practice in any environmental modelling activity (Refsgaard

et al., 2007). In hydrological modelling, the topic has been

widely discussed for years, and no general agreement has yet

been reached on how to adequately quantify uncertainty. In

practice, various methodologies are currently used.

For gauged catchments, the methodologies include

Bayesian approaches (see e.g. the review by Liu and Gupta,

2007), informal methods related to the GLUE (generalised

likelihood uncertainty estimation) framework (Beven and

Freer, 2001), multi-model approaches (Duan et al., 2007; Ve-

lazquez et al., 2010) and other global uncertainty quantifica-

tion methods (Montanari and Brath, 2004; Solomatine and

Shrestha, 2009; Weerts et al., 2011; Ewen and O’Donnell,

2012). A comprehensive review of the topic can be found in

Matott et al. (2009) and Montanari (2011).

While many methods have been proposed for gauged

catchments, only a few have been proposed for the estimation

of predictive uncertainty on ungauged catchments. McIn-

tyre et al. (2005) presented a GLUE-type approach consist-

ing of transferring ensembles of parameter sets obtained on

donor (gauged) catchments to target (ungauged) catchments.

More recently, a framework based on constrained parame-

ter sets was applied in several studies (Yadav et al., 2007;

Zhang et al., 2008; Winsemius et al., 2009; Kapangaziwiri

et al., 2012). It is a two-step procedure. The first step con-

sists in estimating with uncertainty various summary met-

rics of the hydrograph, also called “signatures” of the catch-

ments, or gathering other “soft” or “hard” information at the

target ungauged catchment. The second step is the selec-
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tion of an ensemble of model parameter sets: “acceptable”

or “behavioural” parameter sets are those that yield suffi-

ciently close simulated summary metrics compared to the re-

gionalised metrics obtained during the first step. A Bayesian

approach can also be used (Bulygina et al., 2011, 2012).

The parameter sets are given a relative weight depending on

the proximity of their summary metrics compared to region-

alised metrics and depending on a priori information. The

reader can refer to Wagener and Montanari (2011) for a com-

prehensive description of both formal and informal methods

belonging to this framework.

One difficulty of the above-mentioned approaches lies in

the interpretation of the uncertainty bounds obtained from

the parameter ensemble predictions. As noted by McIntyre

et al. (2005) and Winsemius et al. (2009), the uncertainty

bounds cannot easily be interpreted as confidence intervals,

and therefore it remains difficult to use them in practice. In

addition, relying solely on an ensemble of model parameter

sets to quantify total predictive uncertainty is often insuffi-

cient when imperfect rainfall–runoff models are used.

A pragmatic alternative consists in addressing the param-

eter estimation and the global uncertainty estimation issues

separately. It has been argued by several authors (Monta-

nari and Brath, 2004; Andréassian et al., 2007; Ewen and

O’Donnell, 2012) that a posteriori characterisation of mod-

elling errors of a “best” or “optimal” simulation can yield

valid uncertainty bounds at gauged locations. In earlier stud-

ies, the terms “total uncertainty”, “global uncertainty” and

“post-processing” approach have been used interchangeably

to refer to this approach. The various sources of uncertainty

are indeed lumped into a unique error term with the goal of

estimating uncertainty bounds for model outputs.

As stated by Solomatine and Shrestha (2009),

The historical model residuals (errors) between the

model prediction ŷ and the observed data y are

the best available quantitative indicators of the dis-

crepancy between the model and the real-world

system or process, and they provide valuable in-

formation that can be used to assess the predictive

uncertainty.

Similarly, one could argue that the model residuals be-

tween the model’s prediction and the observed data at neigh-

bouring gauged locations are, perhaps, the best available in-

dicators of the discrepancy between the model and the real-

world system at the target ungauged location, under the con-

dition that the increased uncertainty introduced by the re-

gionalisation step compared to the calibration step is ade-

quately taken into account.

The only attempt to apply a global uncertainty estimation

approach at ungauged locations that we are aware of is the

one presented by Roscoe et al. (2012). They quantified uncer-

tainty for river stage prediction at ungauged locations by first

estimating the residual errors at ungauged locations based on

residual errors at gauged locations, and then applying quan-

tile regression to these estimated errors.

1.2 Scope of the paper

The aim of this paper is to provide an estimation of the global

uncertainty affecting runoff prediction at ungauged locations

when a rainfall–runoff model and a regionalisation scheme

are used.

To our knowledge, a framework based on residual errors

and global uncertainty quantification has not yet been exten-

sively tested in the context of prediction in ungauged catch-

ments. This paper contributes to the search for methods able

to provide uncertainty estimates when runoff predictions in

ungauged catchments are sought.

2 Data and methods

Our objective is not to develop a new parameter regionalisa-

tion approach. Therefore, we purposely chose to use ready-

to-use materials and methods and only focus on the uncer-

tainty quantification issue. This study can be considered as a

follow-up of the work by Oudin et al. (2008) on the compar-

ison of regionalisation approaches. We only provide here an

overview of the data set, the rainfall–runoff models and the

parameter calibration and regionalisation approach, since the

details can be found in Oudin et al. (2008).

2.1 Data set

A database of 907 French catchments was used. They rep-

resent various hydrological conditions, given the variabil-

ity in climate, topography and geology in France. This set

includes fast-responding Mediterranean catchments with in-

tense precipitation as well as larger, groundwater-dominated

catchments. Some characteristics of the data set are given in

Table 1. Catchments were selected to have limited snow in-

fluence, since no snowmelt module was used in the hydro-

logical modelling. Daily rainfall, runoff, and potential evap-

otranspiration (PE) data series over the 1995–2005 period

were available. Meteorological inputs originate from Météo-

France SAFRAN reanalysis (Vidal et al., 2010). PE was es-

timated using the temperature-based formula proposed by

Oudin et al. (2005). Hydrological data were extracted from

the HYDRO national archive (http://www.hydro.eaufrance.

fr).

2.2 Rainfall–runoff models

Two daily, continuous lumped rainfall–runoff models were

used.

– The GR4J rainfall–runoff model, an efficient and parsi-

monious daily lumped continuous rainfall–runoff model

described by Perrin et al. (2003).
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Table 1. Characteristics of the 907 catchments. P – precipitation, PE – potential evapotranspiration, Q – discharge.

Percentiles

0.05 0.25 0.50 0.75 0.95

Catchment area (km2) 27 73 149 356 1788

Mean annual precipitation (mm yr−1) 753 853 978 1176 1665

Mean annual potential evapotranspiration (mm yr−1) 549 631 659 700 772

Mean annual runoff (mm yr−1) 133 233 344 526 1041

Q/P ratio 0.17 0.27 0.34 0.45 0.68

P/PE ratio 1.06 1.25 1.47 1.83 2.9

Median elevation (m) 76 149 314 645 1183

– The TOPMO rainfall–runoff model, inspired by TOP-

MODEL (Beven and Kirkby, 1979). This version was

tested on large data sets and showed performance com-

parable to that of the GR4J model, while being quite

different (Michel et al., 2003; Oudin et al., 2008, 2010).

Using these two models rather than a single one makes it

possible to draw more general conclusions. The two models

use a soil moisture accounting procedure as well as routing

stores. However, they differ markedly in the formulation of

their functions. While the GR4J model uses two non-linear

stores and a unit-hydrograph, the TOPMO model uses a lin-

ear and an exponential store, and a pure time delay.

The GR4J and TOPMO models have four and six free pa-

rameters, respectively. On gauged catchments, parameter es-

timation is performed using a local gradient search proce-

dure, applied in combination with pre-screening of the pa-

rameter space (Mathevet, 2005; Perrin et al., 2008). This op-

timisation procedure has proved to be efficient in past ap-

plications for the conceptual models used here. As an objec-

tive function, we used the Nash and Sutcliffe (1970) criterion

computed on root square transformed flows (NSVQ). This

criterion was shown to yield a good compromise between

different objectives (Oudin et al., 2006).

2.3 Regionalisation approach

By definition, no discharge data are available for calibrating

parameter sets at ungauged locations. Therefore, other strate-

gies are needed to estimate the parameters of hydrological

models for prediction in ungauged catchments.

Oudin et al. (2008) assessed the relative performance of

three classical regionalisation schemes over a set of French

catchments: spatial proximity, physical similarity and regres-

sion. Several options within each regionalisation approach

were tested and compared. Based on their results, the follow-

ing choices were made here for the regionalisation approach,

as they offered the best regionalisation solution.

– Poorly modelled catchments were discarded as potential

donors: only catchments with a performance criterion

NSVQ in calibration above 0.7 were used as possible

donors.

– The spatial proximity approach was used. It consists

in transferring parameter sets from neighbouring catch-

ments to the target ungauged catchment. The proximity

of the catchments to the gauged catchments was quanti-

fied by the distances between catchment centroids.

– The output averaging option was chosen. It consists in

computing the mean of the streamflow simulations ob-

tained on the ungauged catchment with the set of pa-

rameters of the donor catchments.

– The number of neighbours was set to four and seven

catchments for GR4J and TOPMO, respectively, follow-

ing the work reported by Oudin et al. (2008).

3 Proposed approach: transfer of relative errors by

flow groups

3.1 Description of the method

Transferring calibrated model parameters from gauged

catchments to ungauged catchments is a well-established ap-

proach when parameters cannot be inferred from available

data. The method presented here extends the parameter trans-

fer approach to the domain of uncertainty estimation.

The main ideas underlying the proposed approach are

to (i) treat each donor as if it was ungauged (simulating

flow through the above described regionalisation approach),

(ii) characterise the empirical distribution of relative errors

(understood as the ratio between observed and simulated

flows, i.e. considering a multiplicative model error) for each

of these donors, and (iii) transfer global uncertainty estimates

to the ungauged catchment.

The methodology used to transfer global uncertainty esti-

mates can be described by the following steps, illustrated in

Fig. 1.

1. Selection of catchments

Here we consider a target ungauged catchment (TUC).

www.hydrol-earth-syst-sci.net/19/2535/2015/ Hydrol. Earth Syst. Sci., 19, 2535–2546, 2015
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Figure 1. Illustration of the proposed approach, in the case of n= 4 donors. Red catchments are first-level donors while green catchments are

second-level donors. For Step 2b, the simulated discharge variable (x axis) is split into 10 equal-size groups. In Step 3, white dots represent

the values of the upper and lower multiplicative coefficients for each group. See the text for the description of the four steps.

This catchment has n neighbouring gauged catchments,

called NGC1, NGC2, . . . , NGCn, which will be con-

sidered as donors for the TUC. For the ith catchment

NGCi , one can also select n neighbouring catchments

with the notation: NGCi1, NGCi2, . . . , NGCin, which

can be considered as donors for NGCi . Obviously, the

TUC catchment would be excluded from this set of

second-order donor catchments.
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2. Application of the parameter regionalisation scheme to

the donor catchments NGCi

a. Apply the parameter regionalisation scheme to ob-

tain a simulated discharge time series for each

NGCi using neighbours NGCij (with j between 1

and n).

b. Compute the relative errors of discharge reconstitu-

tion (i.e. the ratio between observed and simulated

discharges) by comparing simulated and observed

discharge series for catchment NGCi and create

10 groups of relative errors according to the magni-

tude of the simulated discharge. To ensure that each

group contains the same number of points, we split

the simulated discharge range into 10 subgroups of

equal size, using the deciles of the simulated dis-

charge distribution. Using several flow groups al-

lows taking into account the possible variability of

model error characteristics.

3. Computation of the multiplicative coefficients applica-

ble to simulated discharge

a. Put together all the relative errors from the donors

NGCij (with j between 1 and n) according to

the group they belong to; i.e. all relative errors of

groups k of the n donors are assembled into a mas-

ter group k. This is done for k between 1 and 10.

b. Compute the empirical quantiles of the relative er-

ror distribution within each master group k (with k

between 1 and 10). Since relative errors were com-

puted (i.e. ratio of simulated to observed discharge

values), each quantile of relative errors can be con-

sidered a multiplicative coefficient applicable to the

simulated discharge. These multiplicative coeffi-

cients will be used to obtain the prediction bounds.

4. Computation of the uncertainty bounds for the TUC

a. Apply the parameter regionalisation scheme to ob-

tain a simulated discharge time series for the TUC

using the parameter sets of the n neighbouring

gauged catchments NGC1, NGC2, . . . , NGCn.

b. Multiply the simulated discharge by the set of mul-

tiplicative coefficients obtained at Step 3b to obtain

the uncertainty bounds. The coefficients calculated

for the group k are used when the simulated dis-

charge belongs to the group k.

Note that we based our approach on multiplicative errors

and not on additive errors because using multiplicative co-

efficients yields prediction bounds for discharge that are al-

ways positive, whereas this might not always be the case with

additive errors.

Finally, we mention that the choice to use 10 groups re-

flects a trade-off between the number of points available to

obtain reasonable estimates of empirical quantiles computed

for each group and an adequate treatment of the variability

of the characteristics of errors with the magnitude of sim-

ulated discharge. A larger (lower) number of groups could

obviously be used if more (fewer) data are available (see dis-

cussion in Sect. 5.3) or based on the analysis of the statistical

properties of errors.

3.2 Why should donors be considered as ungauged?

The first step deserves a brief explanation. The choice to treat

donors as ungauged is related to the well-known fact that

the performance of rainfall–runoff models decreases when

they are applied at ungauged locations with a regionalisation

scheme, compared to when local data are available for pa-

rameter estimation. The quadratic efficiency criterion used

here is the C2M (Mathevet et al., 2006), a bounded version

of the Nash and Sutcliffe (1970) efficiency (NSE) criterion.

The criterion is based solely on the simulated discharges of

the deterministic rainfall–runoff model and is completely in-

dependent of the application of the uncertainty method. The

equations are

C2M=
NSE

2−NSE
, (1)

NSE= 1−

T∑
t=1

(
Qobs
t −Q

sim
t

)2
T∑
t=1

(
Qobs
t −µo

)2 , (2)

where T is the total number of time steps,Qobs
t andQsim

t are

the observed and simulated discharge, respectively, at time-

step t , and µo is the mean of the observed discharges. This

bounded version has the advantage of avoiding large negative

values which are difficult to interpret.

Figure 3 illustrates the general performance decrease for

both models on our catchment set when a regionalisation

scheme is used instead of a parameter estimation based on

local data. As a consequence, we should expect predictive

uncertainty at ungauged locations to be larger than predictive

uncertainty at gauged locations, i.e. when the rainfall–runoff

model is calibrated with observed discharge data. That is why

donors must be considered as ungauged. We will come back

to this important point in Sect. 5.

4 Quantitative evaluation of uncertainty bounds

We assessed the relevance of the 90 % uncertainty bounds by

focusing on three characteristics: reliability, sharpness and

overall skill. A general introduction to probabilistic evalua-

tion can be found in Gneiting et al. (2007), Wilks (2011), and

Franz and Hogue (2011) for a more hydrological perspective.

Reliability refers to the statistical consistency of the un-

certainty estimation with the observation, i.e. a 90 % predic-

tion interval is expected to contain approximately 90 % of the

www.hydrol-earth-syst-sci.net/19/2535/2015/ Hydrol. Earth Syst. Sci., 19, 2535–2546, 2015
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observations if prediction errors are adequately characterised

by the uncertainty estimation. To estimate reliability, we used

the coverage ratio (CR) index, computed as the percentage of

observations contained in the prediction intervals.

Sharpness refers to the concentration of predictive uncer-

tainty. The average width (AW) of the uncertainty bounds is

widely used to quantify sharpness:

AW=
1

T

T∑
t=1

(
Qu
t −Q

l
t

)
, (3)

where Ql
t and Qu

t are, respectively, the lower and upper

bounds of the prediction interval [Ql
t , Q

u
t ] at time-step t .

To ease comparison between catchments, we used the

width of the 90 % interval [Q5, Q95],

AWclim
=Q95−Q5, (4)

where Q5 and Q95 are the 5th and 95th percentiles of the

flow duration curve. This value characterises the natural vari-

ability of the flows for a given catchment and has the same

unit as the average width of the uncertainty bounds. It can be

viewed as the average width of the uncertainty bounds of a

climatological prediction, where the uncertainty bounds are

constant over time and defined by the interval [Q5, Q95]. A

graphical illustration is given in Fig. 2.

Comparing the two values AW and AWclim leads to the

following dimensionless criterion called the average width

index (AWI):

AWI= 1−
AW

AWclim
. (5)

It is positive if the uncertainty obtained by applying the

rainfall–runoff model and the methodology presented here

is reduced compared to the climatology, and negative other-

wise.

Uncertainty bounds that are as sharp as possible and rea-

sonably reliable are sought: sharp intervals that would con-

sistently miss the target would be misleading, while overly

large intervals that would successfully cover the observations

at the expense of sharpness would be of limited value for de-

cision making.

To complete the assessment of the prediction bounds, we

used the interval score (Gneiting and Raftery, 2007). The in-

terval score (IS) accounts for both the width of an uncertainty

bound and the position of the observed value compared to the

uncertainty bound. The scoring rule of the interval score at

time-step t is defined as

St =


(
Qu
t −Q

l
t

)
if Ql

t ≤Q
obs
t ≤Q

u
t(

Qu
t −Q

l
t

)
+

2
1−β

(
Ql
t −Q

obs
t

)
if Qobs

t <Ql
t(

Qu
t −Q

l
t

)
+

2
1−β

(
Qobs
t −Q

u
t

)
if Qobs

t >Qu
t

, (6)

whereQobs
t is the value observed at time-step t and β is equal

to 90 % since a 90 % interval is sought here. See Fig. 2 for an

illustration of how S is computed.

Qu

Ql

Qobs
Q95 

Q5
AWclim

t

w

d

S = w + k x d

Figure 2. Illustration of the evaluation of the uncertainty bounds.

Q5 and Q95 are the 5th and 95th percentiles of the flow duration

curve. S is the interval score defined at one time step for the situa-

tion where the observed value is above the upper limit of the uncer-

tainty bound, with k equal to 20 because a 90 % interval is given.

See the text for further details.

IS is the average value of St over the time series:

IS=
1

T

T∑
t=1

St . (7)

To ease comparison between catchments and evaluate the

skill of the prediction bounds, we used the 90 % interval [Q5,

Q95] as a benchmark, similar to what we did for the sharp-

ness index. The climatological prediction gives uncertainty

bounds that are constant in time and defined by the inter-

val [Q5, Q95], where Q5 and Q95 are the 5th and 95th per-

centiles of the flow duration curve. Thus we computed the

interval skill score:

ISS= 1−
IS

ISclim
, (8)

where ISclim is the interval score obtained with the 90 % in-

terval [Q5, Q95]. Using skill scores is a very common ap-

proach in probabilistic forecasting. Dimensionless scores can

thus be obtained, in much the same way as the computation

of the well-known NSE criterion for assessing deterministic

performance.

The interval skill score (ISS) is positive when the predic-

tion bounds are more skilful than climatology, and negative

otherwise. The best value that can be achieved is equal to 1.

5 Results and discussion

5.1 Reliability, sharpness and overall skill

Figure 4 shows the distributions of the three criteria used to

evaluate the uncertainty bounds on the 907 catchments. Box-

plots (5th, 25th, 50th, 75th and 95th percentiles) are used to

summarise the variety of scores over the 907 catchments of

the data set.
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Figure 3. Impact of the regionalisation scheme on deterministic performance, as quantified by the bounded C2M efficiency criterion. Note

that in a very few cases, the performance obtained with the regionalisation scheme is better than the performance obtained with calibration.

This is possible because of the output averaging option used by the regionalisation scheme.
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Figure 4. Distributions of the three performance criteria. Boxplots (5th, 25th, 50th, 75th and 95th percentiles) summarise the variety of

scores over the 907 catchments of the data set.

5.1.1 Reliability

For both models, half of the catchments (from the lower quar-

tile to the upper quartile) have CR values between 80 and

95 %. The median values are equal to 89 and 90 % for GR4J

and TOPMO, respectively. Since a value of 90 % is expected

for 90 % prediction bounds, these results suggest that the pre-

diction bounds are in a majority of cases able to reflect the

magnitude of errors when predicting runoff hydrographs in

ungauged catchments, even though it is clear that the perfect

value of 90 % is not reached in most cases.

The CR values fall below 70 % for around 14 % of the

catchments with GR4J and 13 % with TOPMO, which in-

dicates cases where the proposed approach yields predictive

bounds that are clearly too narrow or biased (i.e. not well

centred on the observations). Note that we did not find any

guidance on how to properly evaluate the CR values in the

literature. The results presented here may be used as a bench-

mark to comparatively assess the ranges of values that would

be obtained in future studies.

5.1.2 Sharpness

Regarding sharpness, it can be seen that for GR4J, half of

the catchments (from the lower quartile to the upper quartile)

have AWI values between 39 and 67 %, while for TOPMO

corresponding values are equal to 38 and 65 %. The median

values are equal to 57 and 55 % for GR4J and TOPMO, re-

spectively. The higher the AWI values, the lower the predic-

tive uncertainty is. Since it would be utopic to expect that

no errors will be made when predicting runoff hydrographs

for ungauged catchments, we could consider here uncertainty

reduction values between 30 and 80 % as quite satisfactory,

even though we recognise that this statement is arbitrary

since there are no widely agreed values to base our analy-

sis on.
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Figure 5. Distributions of the three performance criteria, obtained in two cases, (i) when the donor catchments are treated as ungauged

(solid lines) and (ii) when the donor catchments are treated as gauged (dashed lines). Boxplots (5th, 25th, 50th, 75th and 95th percentiles)

summarise the variety of scores over the 907 catchments of the data set.

Note that negative values are seen for 7 % of the catch-

ments with both GR4J and TOPMO, which indicates cases

where the approach yields prediction intervals whose aver-

age width is larger than the width of the [Q5, Q95] interval

(Q5 and Q95 are the 5th and 95th percentiles of the flow du-

ration curve).

5.1.3 Overall skill

Finally, Fig. 4c shows that the predictive skill for both mod-

els is positive for most catchments. For both models, half of

the catchments (from the lower quartile to the upper quartile)

have ISS values between 40 and 70 %. The median values are

equal to 61 and 59 % for GR4J and TOPMO, respectively.

While it might be argued that the unconditional climatology

is not a very challenging benchmark, we consider that it is

still a positive and reassuring result.

5.2 Do we need to treat the donor catchments as

ungauged?

As mentioned earlier, a critical step of the proposed approach

is to apply the regionalisation scheme to obtain a simulated

discharge time series for each donor catchment (Step 2a). To

assess the impact of this methodological choice, we applied

the methodology described earlier to transfer uncertainty es-

timates, but this time the donor catchments are treated as

gauged.

Similar to Fig. 4, Fig. 5 shows the distributions of the three

criteria obtained in the two cases: whether or not the donor

catchments are treated as ungauged. We can observe a drop

in reliability for both models, whereas sharpness increases.

This is because the relative errors are smaller when the donor

catchments are treated as gauged, yielding narrower but less

reliable prediction bounds for the target catchment. Interest-

ingly, this results in skill scores that are quite similar: im-

provements in terms of sharpness compensate decreases in

terms of reliability.

Note that reliability is generally considered as a prevailing

characteristic over sharpness, since it reflects the ability of

the uncertainty method to adequately reflect the magnitude

of errors we might expect at locations for which prediction is

done. Therefore, the benefit of treating the donor catchments

as ungauged clearly appears in Fig. 5a, illustrating the theo-

retical argument presented in the methodological section.

5.3 Do we need to use groups of relative errors?

Another critical step of the proposed approach is to use

10 groups of relative errors. The groups are defined accord-

ing to the magnitude of the simulated discharge (Step 2b).

This was done to take into account the fact that the character-

istics of errors usually change according to the magnitude of

the simulated discharge. To assess the impact of this method-

ological choice, we again applied the methodology described

earlier to transfer global uncertainty estimates, but this time

using only one group instead of 10.

Figure 6 shows the distributions of the three criteria ob-

tained in the following two cases: whether 10 groups or only

one group of relative errors are used. For both models, relia-

bility slightly increases when going from 10 groups to a sin-

gle group, whereas both sharpness and skill decrease. It ap-

pears that improvements in terms of reliability are not suffi-

cient to compensate for decreases in terms of sharpness when

overall skill is considered. This can be understood by the

fact that considering a single group instead of a few groups

widens the uncertainty bounds on average, since the errors

are generally heteroscedastic.

Obviously, although it appears that a single group is not

enough to account for the variability of properties of relative

errors, 10 groups may not provide significant performance

gains and a compromise may be sought. The visual inspec-

Hydrol. Earth Syst. Sci., 19, 2535–2546, 2015 www.hydrol-earth-syst-sci.net/19/2535/2015/
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Figure 6. Distributions of the three performance criteria, obtained in two cases: (i) when 10 groups of relative errors are used (solid lines)

and (ii) when only one group is used (dashed lines). Boxplots (5th, 25th, 50th, 75th and 95th percentiles) summarise the variety of scores

over the 907 catchments of the data set.

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●● ●●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●●
●●

●
●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

● ●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●
● ●

●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●●

●
●●

●

●

● ●● ●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

0

25

50

75

100

0

25

50

75

100
G

R
4J

T
O
P
M
O

−1.0 −0.5 0.0 0.5 1.0

C2M

C
R

 %

(a) Reliability

●

●●
●
●

● ●
●

●

●

●

●●

● ●

●

●
●

●

●

●

●

● ●
●

●

● ●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

● ●
●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●●

●

●

● ●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
● ●

●

●
●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

● ●
●

●
●
●●
●

●
●

●

●
●

●●
●

●

●
●

●

●
●●

●
● ●

●

●

●

●

● ●●
●

●
●●●● ●

●
●● ●

●

● ●●

●● ●

●
●

●
●

●

●

●
●
●●

●

●

●
●

●
● ● ●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●

● ●
●

●
● ●

●
●

●

●

●

● ●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●
●

●●

●

●

●

●
●

●

●
●

●●

●

●

● ●●

●

●

●
●

●

●

●●
● ●

●

● ●● ●
●

●
●

●

● ●

●

●

●

●●
●

●

●
●

●

●
●
●

●

●●● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●
●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
● ●●

● ●

●
●

●

●●

●

●

●

●
● ●

●● ●● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●
●

●

●

●

●

●

●

●

●●
●● ●

●
●

●●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●
● ●

●

●

● ●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

● ●●
●

●

●
●

● ● ●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●
●

● ●
●●

●
●
●●●●● ●
●
●

●

●

●
●

●

●●

●●
● ●●

●

● ●

●●

●

● ●●

●

● ●
●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●

●

●
●●

● ●

● ●

●

● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●
●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●●●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●●
●

●
●

●

●

●● ●
●

●

●●● ●●
●●

●●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●●

●●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●
●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●●

●●

●

●

●

●

●

● ●
●

●

●
●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

−100

−50

0

50

100

−100

−50

0

50

100

G
R

4J
T
O
P
M
O

−1.0 −0.5 0.0 0.5 1.0

C2M

AW
I %

(b) Sharpness

●

●

●
● ●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●
●

●

●●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●●●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●

●●

●

●

●

●●

●
●

●
● ●

●

●

●

●

● ●

●●
●

●

●

●
●

●
●

●●

●

●

●

●●●
●

●
●●
●

●

● ●
●

●

●

●

●
●

●
●

● ●● ● ●●

●

●

● ●

●●
●

●
● ●
●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●
●●

●

●

●
●

●
●

● ●

●

●
● ●

●

●

●

●●

●

●

●

●

●

● ●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

● ●

●

●

●

●

●

●
●
●

●
●

● ●

●

●
●●

●
●

●

●

●
●
●

●

●
●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●● ●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

● ●●
●
●

● ●
●●

●
●

●

●

●

●
● ●
●

●

●

●

●
●●

●●
●

●●

●

●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●● ●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●
●
●
● ●●

● ●●

● ●

●

●
● ●

●

●

●
● ●●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●● ●

●

●

●●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●
●

●
● ●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●●
●
●●

●

●

●

●

●●

●

●

●

●
● ●●

●

●
●
●

●
●

●

●

●

●●

● ●

●

● ●

●
●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●●
●

●
●

●●●

●

● ●

●

●●●
●

●●
●

●

●●

●
●

●
●●
●
●

●
●

●
●

● ●
●

●

●●

●
●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

● ●
●●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●
●

● ●●●
●

●

●●

●
●

●
●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●
●

●
●

●

●●
●

●
●

●

●

●

● ●

●
●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●●●
● ●

●

●
●

●

●

●
●

●

●

●
●●●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●
● ●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

−100

−50

0

50

100

−100

−50

0

50

100

G
R

4J
T
O
P
M
O

−1.0 −0.5 0.0 0.5 1.0

C2M

IS
S 

%

(c) Skill

Figure 7. Impact of deterministic performance, as quantified by the bounded C2M quadratic criterion, on the three performance criteria for

the 907 catchments. Note that for easier visualisation, the lower limits of the AWI (b) and ISS (c) values are set to −100 % but lower AWI

values are obtained in seven cases for both models, and lower ISS values are obtained in 18 and 22 cases for GR4J and TOPMO, respectively.

tion of scatter plots between relative errors and simulated dis-

charge reveals that the shapes can be very different between

catchments, hence potentially requiring different numbers of

groups. Moreover, the simulation objectives, e.g. simulating

intermediate or extreme flows, may also be considered when

choosing the number of flow groups. Hence it appears that

the number of groups may need further trial-and-error tests

in specific applications to obtain the best compromise.

Although our tests reveal that the number of groups is a

sensitive setting of the method, further research would be

needed to evaluate whether different numbers of groups can

be advised for specific objectives or conditions.

5.4 How does the performance of the rainfall–runoff

models relate to the characteristics of uncertainty

bounds?

To gain insights into the possible relationships between the

performance of the deterministic rainfall–runoff simulations

and the characteristics of the uncertainty bounds at ungauged

locations, the three criteria used to characterise the uncer-

tainty bounds are plotted in Fig. 7 as a function of a quadratic

efficiency criterion for the 907 catchments, the C2M defined

in Eq. (1).

A trend appears between deterministic performance and

characteristics of the prediction bounds at ungauged loca-

tions, for the two rainfall–runoff models. The reliability in-
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Table 2. Mean C2M values over the 907 catchments of the data set, with calibration (CAL), regionalisation (REGIO), and with the hydro-

metrical desert (HD) defined by increasing distance (10, 20, 50, 100 and 200 km).

CAL REGIO HD-10 HD-20 HD-50 HD-100 HD-200

GR4J 0.67 0.51 0.49 0.46 0.43 0.41 0.35

TOPMO 0.59 0.47 0.46 0.44 0.41 0.39 0.34

dex exhibits greater variability compared to the sharpness in-

dex, and the stronger link is seen for the skill score. Relia-

bility is relatively less affected by the poor deterministic per-

formance of the simulation at an ungauged location because

there are cases where poor performance at neighbouring lo-

cations leads (through the transfer of relative errors) to wide

prediction bounds that are able to cover the observed values.

We can also observe that skill scores and C2M scores are

strongly related, which indicates that when the transfer of

model parameters performs well, the transfer of global un-

certainty estimates also performs well.

5.5 How does the method perform in data-sparse

conditions?

The results presented so far were obtained with a dense net-

work of gauging stations. To investigate the impact of the

network density on our results, we applied a demanding test

called the hydrometrical desert. It consists in excluding po-

tential donors that are closer to the target ungauged catch-

ment than a given threshold. For example, a threshold dis-

tance of 100 km means that the closest donor catchment must

be at least 100 km away from the ungauged target catchment.

This test results in a notable decrease of deterministic per-

formance, as shown in Table 2, where the mean of the C2M

efficiency criterion over the 907 catchments is reported for

both models. Note that this is a more demanding test than a

decrease of network density, because catchments retain the

possibility of still having close donors in this case.

Figure 8 shows the distributions of the three criteria ob-

tained by applying the hydrometrical desert with threshold

values of 10, 20, 50, 100 and 200 km, respectively. A clear

decrease appears with increasing distances. While we should

expect that the sharpness of the uncertainty bounds decreases

because of larger errors, and that this situation leads to a

decrease of skill, the results in terms of reliability reveal

the limitation of the method. With increasing distances, the

method becomes less able to transfer the appropriate magni-

tude of the larger errors.

6 Conclusions

Runoff hydrograph prediction in ungauged catchments is no-

toriously difficult, and attempting to estimate the predictive

uncertainty in that context is a further challenge. We have

proposed a method allowing the transfer of global uncer-
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Figure 8. Impact of the hydrometrical desert on the distributions

of the three performance criteria. Potential donor catchments are

not retained as donors when their distance to the target catchment

is below 10, 20, 50, 100 and 200 km. Boxplots (5th, 25th, 50th,

75th and 95th percentiles) summarise the variety of scores over the

907 catchments of the data set.

tainty estimates from gauged to ungauged catchments. The

method extends the parameter transfer approach to the do-

main of global uncertainty estimation.

We evaluated the approach over a large set of 907 catch-

ments by assessing three expected qualities of the uncertainty

estimate: reliability, sharpness and overall skill. We applied

two different rainfall–runoff models (GR4J and TOPMO)

to ensure that the results presented are not model-specific.

These results demonstrate that the method is generally able
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to reflect model errors at ungauged locations and provide rea-

sonable reliability.

Nonetheless, the following limitations to the study can be

mentioned.

1. Although the approach seems promising on average on

the large catchment set we used, it is not able to ad-

equately quantify the predictive uncertainty for some

catchments and it failed in some cases.

2. The method might not perform well in in regions with

sparser gauging networks than the one used here, as re-

vealed by the application of a demanding test called the

hydrometrical desert.

3. We only tested the 90 % prediction intervals, whereas

the method could be applied to obtain other prediction

intervals. We made this choice to keep the article as sim-

ple as possible, but further work could be done in that

direction.

4. We also noted that the number of flow groups used in

the approach may be a sensitive setting of the method,

and further research would be needed to provide more

detailed guidance on this point depending on the struc-

ture of the model errors and the modelling objectives.

It is worth stressing that although we used a transfer based

on spatial proximity, the approach presented in this article is

not only independent of the rainfall–runoff model but also of

the regionalisation scheme used to obtain deterministic pre-

diction at ungauged locations. Any other similarity measure

could be a basis for transferring residual errors, including

physically based similarity measures. Accordingly, the re-

gionalisation settings, including the output averaging option,

could be adapted if deemed more appropriate.

Since we believe that uncertainty quantification has to be

considered in any modelling study, further work should be

devoted to the search for similarity measures that not only

perform well in allowing the transfer of parameter sets from

donor to target catchments, but also allow transferring mod-

elling error characteristics.

Last, we would like to stress that the results presented in

this study are expressed in terms of dimensionless measures.

As such, they can provide a basis for future comparisons

when prediction in ungauged catchments with uncertainty es-

timates is performed.
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