
HAL Id: hal-01224434
https://hal.sorbonne-universite.fr/hal-01224434

Submitted on 1 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Pipeline ADC Properties for a Reduced-Code
Linearity Test Technique

Asma Laraba, Haralampos-G. Stratigopoulos, Salvador Mir, Hervé Naudet

To cite this version:
Asma Laraba, Haralampos-G. Stratigopoulos, Salvador Mir, Hervé Naudet. Exploiting Pipeline ADC
Properties for a Reduced-Code Linearity Test Technique. IEEE Transactions on Circuits and Systems
I: Regular Papers, 2015, 62 (10), pp.2391-2400. �10.1109/TCSI.2015.2469014�. �hal-01224434�

https://hal.sorbonne-universite.fr/hal-01224434
https://hal.archives-ouvertes.fr


1

Exploiting Pipeline ADC Properties for a
Reduced-Code Linearity Test Technique

Asma Laraba, Haralampos-G. Stratigopoulos, Member, IEEE, Salvador Mir, Member, IEEE, and Hervé Naudet

Abstract—Testing the static performances of high-resolution
Analog-to-Digital Converters (ADCs) consumes long test times
that are disproportionally high with respect to the test time
devoted to other types of circuits embedded in a modern System-
on-Chip (SoC). In this paper, we review the state-of-the-art
of reduced-code linearity test methods for pipeline ADCs and
we propose a new approach that increases the efficiency and
accuracy of the method. We show that by exploiting some
inherent properties in the architecture of pipeline ADCs we can
achieve significant static test time reduction while maintaining the
accuracy of the standard histogram test. The proposed method
is demonstrated on a 55nm 11-bit 2.5-bits/stage pipeline ADC.

Index Terms—Design-for-test, analog-to-digital converter test-
ing, static testing, linearity testing, pipeline analog-to-digital
converters, reduced code linearity testing, histogram testing.

I. INTRODUCTION

Differential Non Linearity (DNL) and Integral Non Lin-
earity (INL) are the two main static performances that are
measured during production testing of Analog-to-Digital Con-
verters (ADCs). In the standard testing scheme, a saturated
sine-wave or ramp is applied to the input of the ADC and the
number of occurrences of each code at the output is obtained
to construct the histogram, from which DNL and INL can be
readily calculated.

This standard static test approach requires the collection of
a large volume of data since each code needs to be traversed
many times to average noise. The volume of data increases
exponentially with the resolution of the ADC to a degree
where the static test time becomes prohibitively large for high-
resolution ADCs. Nowadays, the static test of high resolution
ADCs is addressed with the same standard approach used
for low-resolution ADCs. As a result, the static test time is
disproportionally high as compared to the silicon area that
the ADCs occupy on the die of a System-on-Chip (SoC) and
as compared with the test time of other types of mixed-signal
circuits in the SoC. According to published data from industry
[1], although mixed-signal circuits occupy an area less than 5%

A. Laraba was with Université Grenoble Alpes, CNRS, TIMA,
Grenoble, France. She is now with Xilinx, Dublin, Ireland (e-mail:
asma.laraba@xilinx.com).

H.-G. Stratigopoulos was with Université Grenoble Alpes, CNRS, TIMA,
Grenoble, France. He is now with Sorbonne Universités, UPMC Univ. Paris
06, CNRS, LIP6, France (e-mail: haralampos.stratigopoulos@lip6.fr).

S. Mir is with Université Grenoble Alpes, CNRS, TIMA, Grenoble, France
(e-mail: salvador.mir@imag.fr).

H. Naudet is with STMicroelectronics, Grenoble, France (e-mail:
herve.naudet@st.com).

Copyright c©2015 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending an email to pubs-permissions@ieee.org.

in a modern SoC, testing the mixed-signal functions takes up
to 30% of the total test time. Given that ADCs are among the
most commonly met mixed-signal circuits in SoCs and since
high static test times translate to high test costs, reducing the
static test time for ADCs is an area of industry focus and
innovation.

Many alternative test techniques aiming at reducing the
static test time for ADCs have been reported in the literature.
Techniques which permit measuring a pre-defined code width
with on-chip circuitry are proposed in [2]–[4]. Integrating a
ramp generator for on-chip histogram test has been investi-
gated in [5]–[11]. This is a promising approach since it can
eliminate the need to transfer a large volume of data off-chip to
the Automatic Test Equipment (ATE) and it can also alleviate
the problems related to noise and unstable electrical contacts.
However, ADC linearity test standards dictate that the test
stimulus must be at least two bits more linear than the ADC
itself [12], [13], thus a high-resolution ramp generator needs
to be designed which is extremely challenging. There are also
issues regarding the robustness of the built-in test circuitry
and memory storage. Instead, in [14], the entire ADC input
range is exercised by small-amplitude triangular waves that are
superimposed to a progressively increased DC level. In [15],
[16], methods are introduced based upon first identifying and
computationally removing the source non-linearity and then
accurately estimating the ADC static performances. In [17],
[18], an exponential waveform is employed in the analysis.
These last three approaches relax the requirements on the input
stimulus linearity, however, they do not reduce the test time.
In [19], a technique is proposed for deriving the INL of the
ADC from the outcome of the Fast Fourier Transform (FFT)
used in standard spectral testing. However, deducing the static
performances from a spectral test can only be applied in some
cases and cannot be generalized. Model-based ADC linearity
test techniques are proposed in [20], [21].

In this paper, we propose an efficient reduced-code linearity
test technique for pipeline ADCs. In general, reduced-code
testing can be applied to ADCs that, by virtue of their
operation, have groups of output codes which have the same
width. Examples of such ADCs include pipeline, Succes-
sive Approximation Register (SAR), logarithmic, sub-ranging,
cyclic, etc. Thus, instead of considering all the codes in the
testing procedure, we can consider measuring only one code
out of each group to extract the complete transfer characteristic
of the ADC, thus reducing significantly the static test time.
In other words, we exploit the inherent properties of the
ADC architecture to reduce the static test time. Performing
a successful reduced-code testing scheme requires fully un-



2

Stage 1 Stage 2 Stage k. . .
Vin V

1 V
2 k-1

V

n1 n2 nk

Digital logic

N

+ 2 n-1S/H

sub

ADC
sub
DAC

n bits

k-1
V kV

MDAC

-

Fig. 1. Architecture of a pipeline ADC.

OPAMP

f

f

f
f

1

1

2

2

Vref x D

C

C

Vin

Vout
+

-

MDAC

Output bits

f

s

D

-VrefVref 

+ - + -

/4 /4

EncoderEncoder

f
2

sub 

ADC

Fig. 2. MDAC implementation of an 1.5-bit stage.

derstanding the aspects of the ADC architecture. Published
work has so far consider SAR ADCs [22] and pipeline ADCs
[23]–[26]. SAR ADCs typically have lower conversion rate
and higher resolution as compared to pipeline ADCs. Reduced
code testing is useful for both architectures since static test
time is inversely proportional to the conversion rate and
proportional to the resolution.

The rest of the paper is organized as follows. In Section II,
we present the reduced-code testing principle and the state-of-
the-art focusing on pipeline ADCs. In Section III, we discuss
how the accuracy of the estimated static performances by
reduced-code testing is affected due to the presence of noise.
In Section IV, we explain the concepts and definitions that
set the grounds for developing a technique to cancel out the
noise. In Section V, we explain in detail the proposed method
to cancel out the noise and apply reduced-code testing with
confidence. In Section VI, we show experimental results ob-
tained on a 55nm 11 bit 2.5-bits/stage pipeline ADC designed
by STMicroelectronics. Finally, in Section VII, we conclude
the paper.

II. REDUCED-CODE TESTING PRINCIPLE AND
STATE-OF-THE-ART FOR PIPELINE ADCS

A. Overview of pipeline ADCs

A pipeline ADC consists of a cascade of stages, as shown
in Fig. 1 [27]. Each stage consists of a sample-and-hold (S/H)

11 12 2 2

1 2

- Vref + Vref

- Vref

+ Vref

Vin

Vout

VoutStage1

VoutStage2

-V
re

f/
4

V
re

f/
4

Fig. 3. Residue of the first and second stages of a 1.5-bit/stage pipeline
ADC.

circuit, a sub-ADC typically implemented with a flash ADC,
a sub-DAC, a subtractor, and an op-amp. The input signal
to each stage is first converted by the sub-ADC to a digital
code which is the output of the stage. The result of the
conversion is reconverted by the sub-DAC to an analog signal
and subsequently subtracted from the input signal. The result
of the subtraction (e.g. the residue) is amplified so as to use
the same reference voltage in all stages. The residue of the first
stage is sampled by the second stage and so forth. The S/H,
sub-DAC, substractor, and op-amp are typically implemented
as a switched-capacitor circuit, which is commonly referred to
as Multiplying Digital-to-Analog Converter (MDAC). As an
example, Fig. 2 shows the implementation of an 1.5-bit stage.
The digital logic assembles the digital codes of the cascaded
stages, performs the digital correction to reduce the accuracy
requirement of the flash ADCs (in particular, to moderate the
effect of comparators’ offset), and provides the digital output
of the ADC.

B. Underlying principle

Let us consider Fig. 3 which plots together the residues
of the first and the second stages of a 1.5-bit/stage pipeline
ADC. The number placed above the peak of a transition
indicates which of the two comparators of the sub-ADC is
being exercised (e.g. its threshold is crossed) at this transition.
Notice that each time a comparator is exercised, there is a
transition in the digital output of the stage. As it can be seen,
if we traverse the input dynamic range of the ADC, the two
comparators of the first stage are exercised once. The first,
second, and third segment of the first stage residue traverse
the output ranges [−Vref , Vref/2], [−Vref/2, Vref/2], and
[−Vref/2, Vref ], respectively. Therefore, for each segment of
the first stage residue, each of the two comparators of the
second stage is exercised once, that is, if we traverse the input
dynamic range of the ADC, then the two comparators of the



3

- Vref + Vref

+ Vref

Vin

Vout

VoutStage1

VoutStage2

- Vref

1 2 3 4 5  2 3 4 5  2 3 4 5 2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5 6 

1           2          3          4           5           6

-5
V

re
f/

8

-3
V

re
f/

8

-V
re

f/
8

V
re

f/
8

3
V

re
f/

8

5
V

re
f/

8

Fig. 4. Residue of the first and second stages of a 2.5-bit/stage pipeline
ADC.

code m

code  m + 1

code l

code  l + 1 Measure, copy, and paste

Transition of i-th 

comparator in k-th stage

Transition of i-th 
comparator in k-th stage

Fig. 5. Principle of reduced code testing of pipeline ADCs.

second stage are exercised three times each in total. Following
a similar argument, if we traverse the input dynamic range
of the ADC, then the two comparators of the third stage are
exercised seven times each.

In the case of a 2.5-bit stage, the sub-ADC consists of six
comparators and provides a 3-bit output. Fig. 4 plots together
the residues of the first two stages of a 2.5-bit/stage pipeline
ADC. As it can be seen, the six comparators in the first stage
are exercised once if we traverse the input dynamic range
of the ADC. In contrast, in the second stage, the first and
sixth comparators are exercised just once while the rest of the
comparators are exercised seven times each.

The bottom line of the above discussion is that a comparator
in a second or later pipeline stage is exercised several times.
This implies that in the ADC output there will be transitions
that are due to the same comparator. As an illustration, in
Fig. 5 we show two transitions in the ADC output that are

due to the i-th comparator in the k-th stage. An ADC output
code shares two adjacent transitions that involve two different
comparators. The DNL error, that is, the variation of the
width of the code from the ideal one Least Significant Bit
(LSB) width, is mainly due to the presence of different error
sources (i.e. finite op-amp gain, capacitor mismatch, op-amp
offset, sub-ADC comparators offset, etc.) in the first stages
of the pipeline since a stage in the pipeline dominates all
subsequent stages in terms of the error produced in the transfer
characteristic. Notice also that any error source in a stage that
produces a DNL error of an ADC output code will be seen
at the ADC output code transition that has been caused by
the comparators of that stage. In the example of Fig. 5, let us
assume that the i-th comparator in the k-th stage dominates
the comparators with which it shares codes µ, µ + 1, λ,
and λ + 1. This means that the width of these codes are
principally affected by the errors in the k-th stage where the
i-th comparator belongs to. Furthermore, it means that the
widths of the codes λ and λ + 1 are practically equal to
the widths of the codes µ and µ + 1, respectively. Thus, we
need to measure the width of either λ or µ and the width
of either λ + 1 or µ + 1. Extending this argument, let us
assume that we know the mapping between the transitions in
the ADC output and the comparators in the pipeline stage
that are being exercised to produce these transitions. If we
measure only the codes around a representative set of ADC
output transitions such that this set covers all comparators in
all stages and each comparator is represented once in this set,
then, by relying on the mapping, we can readily assign values
to the widths of unmeasured codes around the unselected
ADC output transitions. In other words, we measure a reduced
number of codes in the histogram and we fill in the rest of the
histogram automatically by relying on the information in the
extracted mapping.

C. Static test time reduction

Relying on a reduced number of code width measurements
to extract the complete transfer characteristic of the ADC
translates in static test time reduction. Specifically, the test
time is mainly governed by the transfer time of data from
the ADC under test to the memory of the ATE and from the
ATE to the workstation where the data will be processed for
constructing the histogram. The pure electrical test time is
rather negligible compared to the data transfer time. Thus, if
we measure X% of the codes, which compared to the standard
histogram technique translates into transferring only X% of
the data, then we drastically reduce the test time. Overall, we
expect to have a test time reduction slightly below (100-X)%
given that compared with the standard histogram technique we
have the extra step of deriving the mapping.

D. Large linearity errors in the first stages

In practice, to obtain good accuracy when large linearity
errors are present, it may be necessary to consider measuring
more than two codes around the transitions that involve
comparators which belong to the stages that are closer to the
front of the pipeline. To explain how we assign values to the



4

…

nl n2 nk

Vin V1 V2 Vk-1

Digital logic

Stage 1 Stage 2 Stage k

N

BIST engine

Mapping, code selection

Fig. 6. Monitoring of the digital outputs of the internal stages of the pipeline
aiming at a correct mapping between ADC output transitions and comparators.

widths of the unmeasured codes in this case, let us consider
that we measure the widths of m codes on the right and m
codes on the left of an ADC output transition that is due to the
i-th comparator in the k-th stage being exercised. Then, if an
ADC output transition is due to a comparator in the j-th stage
being exercised, where j > k, and this ADC output transition
has a distance of less than m steps from an ADC output
transition that is due to the i-th comparator in the k-th stage
being exercised, then the widths of the codes around this ADC
output transition will be overwritten by the corresponding
widths in the set of m code widths measured around the
ADC output transition that is due to the i-th comparator in
the k-th stage being exercised. The number of the codes to be
considered around each ADC output transition depends also
on the amount of errors that are present in the ADC which
is reflected on the minimum and maximum DNL and INL.
The larger the DNL and INL errors are and the more towards
the front of the pipeline the stage is, the larger this number is
recommended to be.

E. Importance of deriving an accurate mapping

In order to make the reduced-code testing technique suc-
cessful, we need to meet two objectives. First, we need to
ensure that an ADC output transition is mapped to the correct
comparator. This holds for all ADC output transitions, i.e.
those that are selected and those that are not selected and
their surrounding codes will be inferred later. Second, for a
comparator in a given stage we should avoid selecting an
output transition that involves in addition to this comparator a
comparator in one of the previous stages. The reason is that
the error of the previous stage will overshadow the error of the
target stage. If the above two objectives are not met, then the
accuracy of the technique degrades, resulting in an erroneous
characterization of the static performances of the ADC.

The possibility to apply reduced-code testing on pipeline
ADCs was first introduced in [23] where the mapping between
the ADC output transitions and the comparators that produce
these transitions is performed by considering the nominal
succession of ADC output transitions. In [24], it is explained
with several detailed examples that this mapping principle can
lead to erroneous estimation of static performances when the
error sources are more than just the comparator offset.

To meet the aforementioned two objectives, and to avoid
pitfalls such as those demonstrated in [24], it is proposed to

draw the mapping by monitoring the digital outputs of the
internal stages of the pipeline before they undergo digital
correction [24], [25], as shown in Fig. 6. The rationale is
that when a comparator threshold is crossed it necessarily
produces a transition in the digital output of the stage to
which it belongs to. A transition in the digital output of a
stage provides complete information about which comparator
has been exercised. Furthermore, a transition in the digital
output of a stage can be mapped to the resulting ADC output
transition by simply processing the outputs of the different
stages as is done by the digital logic block of the ADC.

F. Summary of reduced-code testing

In summary, the enhanced reduced-code testing technique
consists of the following steps:

1) Find the mapping between the ADC output transitions
and the comparators that are being exercised.

2) Select a set of ADC output transitions such that all
comparators in all stages are represented once in this
set.

3) Measure the widths of the codes around the selected
ADC output transitions.

4) Infer the widths of the codes around the ADC output
transitions that were not selected in step 2.

5) Calculate DNL and INL from the obtained code widths.
For an integrated solution, a digital Built-in Self-Test (BIST)

engine could be designed to perform steps 1-2 on-chip. The
information about the mapping and the selected codes to
be measured is transferred from the ADC under test to the
ATE where step 3 is performed. Data from steps 1-3 are
subsequently transferred to the workstation where steps 4-5 are
performed. If the on-chip resources permit it, steps 4-5 can also
be performed on-chip. Integrating a test stimulus generator to
perform step 3 will result in a full BIST implementation.

III. NOISE CONSIDERATIONS WHEN APPLYING
REDUCED-CODE TESTING

As explained in Section II, the most important step of
a reduced code testing scheme is guaranteeing an accurate
mapping between the transitions occurring at the output of
the internal stages and the corresponding ADC transitions.
However, due to the presence of noise in the transitions of
internal stages it is unlikely that an accurate mapping will be
obtained [26]. An example is shown with the measurement in
Fig. 7 which superimposes the digital outputs in decimal of
the internal stages of an 55nm 11-bit 2.5-bit/stage pipeline
ADC that is also used as our case study in Section VI.
This figure zooms in a small part of the whole dynamic
range of the pipeline ADC. As it can be seen, some of the
transitions are very noisy, which, in turn, will lead unavoidably
to inaccuracies in the mapping. This is shown with an example
in Fig. 7 where the intention is to calculate the ADC output
code that corresponds to the transition from 2 to 3 of the
fourth stage that is due to its third comparator being exercised.
As it can be seen, the outputs of the first, second, third,
and fourth stages to the right of this transition are 4, 2, 2,
and 3, respectively. However, due to the presence of noise,



5

1st stage

2nd stage

3rd stage

4th stage

5th stage

Vin

S
ta

g
e

s
 d

ig
it
a

l 
o

u
tp

u
t

1

2

3

4

5

6

ADCout = 4 *28 + 2 *26 + 2 *24 + 3*22 + 2 *20

or 3?

Fig. 7. The effect of noise on the transitions in the stage outputs.

the output of the fifth stage to the right of this transition
is toggling between 2 and 3. In other words, the mapping
between the ADC output and internal stage transitions cannot
be deterministically established due to noise. This will inad-
vertently result in an incorrect grouping of the ADC output
codes that have equal widths and, thereby, the estimation of
DNLs will be inaccurate. Furthermore, successively summing
up erroneous values of DNLs may result in a significant error
in INL estimation.

In Section IV, we will define the concepts of natural and
forced transitions and root codes. These concepts will be used
next to develop an enhanced reduced-code linearity testing
technique that is immune to noise.

IV. NATURAL TRANSITIONS, FORCED TRANSITIONS, AND
ROOT CODES

A. Natural and forced transitions

Since we will be monitoring the digital outputs of each
of the pipeline stages we need to list and label all possible
transitions. We classify them into two types: natural transitions
and forced transitions. Looking at the residue of the second
stage V outStage2 of a 1.5-bit/stage pipeline ADC shown in
Fig. 8, we can observe the six transitions corresponding to the
two comparators in the sub-ADC of this stage. As in Fig. 3,
we have indicated which of the two comparators is being ex-
ercised by placing the comparator’s number at the peak of the
corresponding transition. By looking at the sub-DAC output of
the second stage V dac2, we can also identify which of the two
comparators is being exercised each time. We have indicated
on the V dac2 curve the corresponding digital output around
each V dac2 transition. The first comparator is exercised three
times (e.g. transitions 00 → 01) and the second comparator
is exercised also three times (e.g. transitions 01 → 10). We
observe also that in addition to the transitions 00 → 01 and
01→ 10, there is another transition 10→ 00 occurring twice.

00 00

01 01 01

10 10 10

00

01

10

00

1 2 1 2 1 2

1 2

Fig. 8. Residues of the first two stages of a 1.5-bit/stage pipeline ADC
plotted together with the output of their sub-DAC.

This transition happens under the influence of transitions in the
residue of the first stage V outStage1. The residue of the first
stage becomes suddenly lower than the threshold of the second
comparator in the second stage and, thus, the digital output of
the second stage transitions from 10 to 00. We refer to these
transitions as forced transitions because the digital output of
the stage transitions due to a sudden change at its input which
is caused due to one of the comparators of the previous stages
being exercised. Conversely, when the digital output of the
stage transitions due to a smooth change at its input causing
one of the comparators in this stage to be exercised, we refer
to these transitions as natural transitions.

B. Root codes

For the discussion in this Section we use a behavioral model
of a 10-bit ADC that comprises four 2.5-bit stages and a last
2-bit stage. Let us consider the third comparator in the second
stage of this ADC.

Fig. 9 superimposes the output of the ADC (left y-axis
in decimal) on the digital output of the first and second
stages (right y-axis in decimal) as we traverse the whole input
dynamic range. From this plot we can identify the output codes
of the ADC that are associated with the transitions from 2 to
3 of the second stage that are due to the third comparator in
this stage being exercised. On the left y-axis of Fig. 9 we
show the ADC output codes on the right of these transitions.
As it can be seen from Fig. 9, the first ADC output code 112
corresponds to the case where the output of the first stage is
0, the second ADC output code 240 corresponds to the case
where the output of the first stage is 1, the third ADC output
code 368 corresponds to the case where the output of the first



6

S
ta

g
e

s
 d

ig
it
a

l 
o

u
tp

u
t 
(i
n

 d
e

c
im

a
l)

112

240

368

496

624

752

880

A
D

C
 o

u
tp

u
t 
(i
n

 d
e

c
im

a
l)

first stage
second stage
ADC output

0

2

4

6

Vin

Fig. 9. Transitions in the first and second stages and corresponding ADC
output codes.

stage is 2, and so forth. All these ADC output codes can be
derived from code 112 by adding a term that is obtained by
multiplying the value in decimal of the output of the first stage
with the weight of the first stage. In particular, considering that
for this specific ADC the weight of the first stage is equal to
27, we can write: 112 = 112 + 0 · 27; 240 = 112 + 1 · 27;
368 = 112 + 2 · 27; 496 = 112 + 3 · 27; 624 = 112 + 4 · 27;
752 = 112+5 · 27; 880 = 112+6 · 27. We refer to the output
code 112 as the right root code of the third comparator in the
second stage. Similarly, by looking at the ADC output codes
on the left of the transitions from 2 to 3 of the second stage that
are due to the third comparator in this stage being exercised,
we can define the left root code of the third comparator in the
second stage.

To generalize, let us divide the ADC stages into two groups.
The first group contains stages 1 to k−1 and the second group
contains stages k to N , where N is the total number of stages.
Let us also define a function f(x, compik, w) where:

• x refers to the rank of the stage in the pipeline,
• compik refers to i-th comparator of the k-th stage,
• w refers to the right side (e.g. w = R) or to the left

side (e.g. w = L) of the transition of the digital output
of the stage that is due to the comparator compik being
exercised.

We define f(x, compik, w) as follows: given that the i-th
comparator of the k-th stage is exercised producing a transition
in the digital output of the x-th stage, f(x, compik, w) is the
digital output of the x-th stage on the w side of this transition.
For example, f(1, comp32, R) refers to the digital output of the
first stage on the right of a transition that is due to the third
comparator of the second stage being exercised.

By definition, every time the i-th comparator in the k-
th stage is exercised, the digital output of the k-th stage
transitions from a value equal to f(k, compik, L) = i− 1 to a
value equal to f(k, compik, R) = i. Furthermore, every time
the same comparator is exercised in a stage, the residue of this
stage, which is the analog input to the following stages, always
transitions between the same two values. This implies that

every time the i-th comparator in the k-th stage is exercised,
the digital output of the x-th stage, x = k + 1, · · · , N , is
always equal to the value f(x, compik, L) before the transition
and equal to the value f(x, compik, R) after the transition.

We define:

Li
k = [f(k, compik, L), f(k + 1, compik, L),

· · · , f(N, compik, L)] (1)

Ri
k = [f(k, compik, R), f(k + 1, compik, R),

· · · , f(N, compik, R)]. (2)

If we sum up the elements of Li
k respecting the weight

of each stage, then we obtain the left root code of the i-th
comparator in the k-th stage. If we sum up the elements of
Ri

k respecting the weight of each stage, then we obtain the
right root code of the i-th comparator in the k-th stage.

V. OBTAINING THE MAPPING FOR ACCURATE
REDUCED-CODE TESTING

A. Cancelling out the effect of noise

In Section IV-B, we have shown that the ADC output
codes corresponding to the same comparator can be expressed
as a function of the root code of this comparator and the
contributions of the stages preceding the stage where this
comparator belongs to. This property can be used to cancel
out the effect of noise when performing the mapping between
the ADC output transitions and the comparators.

We first apply a ramp and we observe the type of the
transitions at the digital output of each stage. For each natural
transition that is due to the i-th comparator in the k-th stage
being exercised, we obtain Li

k and Ri
k from Eq. (1) and (2).

If n is the number of natural transitions, then we have at
hand n values of each element f(x, compik, L) of Li

k and n
values of each element f(x, compik, R) of Ri

k, x = k, · · · , N .
Due to the presence of noise, these n extracted values are not
necessarily the same for x = k + 1, · · · , N . In other words,
the left and right root codes calculated starting from different
natural transitions may not be the same.

For x = k+1, · · · , N , let µx,L
compi

k

and µx,R
compi

k

be the values
of f(x, compik, L) and f(x, compik, R), respectively, that are
most frequently met in the n values that we have at hand. In
this way, we obtain the noise-free Li

k and Ri
k as follows:

Li
k = [i− 1, µk+1,L

compi
k

, · · · , µN,L
compi

k

] (3)

Ri
k = [i, µk+1,R

compi
k

, · · · , µN,R
compi

k

]. (4)

From the noise free Li
k and Ri

k we can calculate the noise-
free left and right root codes of the i-th comparator in the k-th
stage.

Fig. 10 shows an example with five ADC output codes (e.g.
µ, λ, ε, γ, and δ) that are on the left of an ADC output
transition that is due to a comparator in the second stage
being exercised. The ADC output codes are expressed in terms
of the weights of the stages multiplied by coefficients that
correspond to the values in decimal of the digital outputs of



7

µ= a1L *2w1 + bL *2w2 + cL *2w3 +…+  (kL -1) *2wk 

λ= a2L *2w1 + bL *2w2 +  (cL +1) *2w3 +…+  (kL +2)  *2wk

ε= a3L *2w1 + bL *2w2 + cL *2w3 +…+   kL *2wk

γ= a4L *2w1 + bL *2w2 +  cL *2w3 +…+   kL *2wk

δ= a4L *2w1 + bL *2w2 + (cL +1) *2w3 +…+   kL *2wk

Majority voting scheme

Fig. 10. Majority voting scheme to extract noise-free root codes.

the stages. The coefficients of the first stage (e.g. a1L, a2L,
a3L, a4L, a5L) will change depending on the position of the
ADC output code in the dynamic range. The coefficient of the
second stage is constant (e.g. bL) for all ADC output codes. As
for the coefficients of the stages 2 to k, they are not necessarily
constant due to noise. To extract the noise free values of the
coefficients, we simply apply a majority voting scheme. Thus,
cL is chosen for the third stage and kL is chosen for the k-th
stage since they are the most frequently met values.

It should be noticed that the number of natural transitions
that are due to a specific comparator being exercised varies
depending on the number of the stage the comparator belongs
to. For example, for an 11-bit, 2.5 bit/stage ADC, for one
sweep of the input ramp covering the whole input dynamic
range, the number of natural transitions varies from 1 if
the comparator is in the first stage to more than 500 if
the comparator is in the fifth stage. Given that the noise
becomes evident in the transitions of the last stages in the
pipeline, as shown in Fig. 7, for these stages we will have a
sufficiently large number of samples to apply majority voting
with confidence and obtain the noise-free Li

k and Ri
k and,

subsequently, the noise-free left and right root codes.

B. Obtaining the mapping

As it will be explained in this Section, in order to obtain
the mapping, we only need (a) the noise-free Li

k and Ri
k for

each of the comparators and (b) the value of the digital output
of each stage at the beginning of the dynamic range, denoted
by Outk,start, and at the end of the dynamic range, denoted
by Outk,end, where k denotes the number of the stage, k =
1, · · · , N .
Outk,start and Outk,end are straightforward to obtain. In

decimal, Outk,start = 0 for each stage and Outk,start =
2B − 2 , where B is the number of output bits of the k-th
stage, unless considerable offsets are present in the ADC. For
example, B = 2 for an 1.5-bit stage, B = 3 for a 2.5-bit stage,
etc. In the following, we will assume that Outk,start = 0 and
Outk,end = 2B − 2.

By looking at the digital output of any stage as we traverse
the input dynamic range (for example, see Fig. 9), we observe
that it starts at Outk,start and it ends at Outk,end with natural
or forced transitions occurring in between. Fig. 11(a) shows
the typical digital output of a first 2.5-bit stage. It starts at
Out1,start = 0, ramping up to Out1,end = 6, with the natural
transitions of its six comparators occurring in between. Notice
that any transition in the digital output of a first stage is a
natural transition.

In contrast, a transition in the digital output of a second
or later stage could be either natural or forced. As shown in
the example of Fig. 9, the digital output of a second 2.5-bit
stage starts at Out2,start = 0 and ends at Out2,end = 6,
with both natural and forced transitions occurring in between.
The forced transitions are due to the natural transitions of the
first stage and the natural transitions occur between every two
successive forced transitions. The first forced transition of the
second stage is due to the first natural transition of the first
stage. The value of the digital output of the second stage to
the left and to the right of its first forced transition are given
by f(2, comp11, L) and f(2, comp11, R), respectively, as shown
in Fig. 11(b). The second forced transition of the second stage
due to the second natural transition of the first stage is a tran-
sition from f(2, comp21, L) to f(2, comp21, R), the third forced
transition of the second stage due to the third natural transition
of the first stage is a transition from f(2, comp31, L) to
f(2, comp31, R), and so forth. The digital output values of the
second stage between Out2,start and f(2, comp21, L), between
f(2, compi1, R) and f(2, compi+1

1 , L), for 2 ≤ i ≤ 5, and
finally between f(2, comp61, R) and Out2,end, will be obtained
by simply incrementing Out2,start by 1 until f(2, comp21, L),
incrementing f(2, compi1, R) by 1 until f(2, compi+1

1 , L), for
2 ≤ i ≤ 5, and finally incrementing f(2, comp61, R) by 1 until
Out2,end. Between these values the comparators of the second
stage are exercised one after the other, incrementing the digital
output of the stage by 1.

Similarly, the digital output of the third stage can be
reconstructed from the digital output of the second stage
based solely on Out3,start, Out3,end, f(3, compi2, L),
f(3, compi2, R), f(3, compi1, L), and f(3, compi1, R).
f(3, compi2, L) and f(3, compi2, R) are used to account for
the forced transitions of the third stage due to the natural
transitions of the second stage while f(3, compi1, L) and
f(3, compi1, R) are used to account for the forced transitions
of the third stage due to the natural transitions of the first
stage.

It turns out that we can reconstruct the digital output of any
stage from the digital outputs of the preceding stages in the
pipeline based on the elements of the noise-free Li

k and Ri
k

and Outk,start and Outk,end. In this way, with a single sweep
of the input dynamic range, we can identify the transitions in
digital outputs of each stage and, then, juxtapose them with
the ADC digital output to find the mapping. An algorithm
based on nested for loops can be used for this purpose, starting
from the first stage down to the last stage of the ADC, and
recording the required mapping information in the course of
the algorithm.



8

0

2
3

1

(a)
4

5
6

6

0
1

5

1

6

1

66

0 0

5

1

6

6

0
1

5

1

6

1

66

0 0

5

1

6

(b)

(c)

2
1

f(2,comp ,R)=11
1

f(2,comp ,R)=1

4
1

f(2,comp ,R)=0

5
1

f(2,comp ,R)=1 6
1

f(2,comp ,R)=1

6
1f(2,comp ,L)=6

5
1

f(2,comp ,L)=5

4
1

f(2,comp ,L)=63
1

f(2,comp ,L)=6
2
1

f(2,comp ,L)=5

3
1

f(2,comp ,R)=0

1
1f(2,comp ,L)=6

Fig. 11. Reconstructing the digital output of the second stage using Li
1(2) and Ri

1(2).

VI. EXPERIMENTAL RESULTS

Our case study is a 55nm 11-bit pipeline ADC with dig-
ital correction provided by STMicrolectronics. The ADC is
composed of four 2.5-bit stages and a last 3-bit stage. For
this specific ADC, we had access to the digital output of the
internal stages (in total 15 bits) before digital correction is
applied. Thus, we extracted the digital outputs of the internal
stages off-chip and we did the data processing in Matlab R©.
The reduced-code testing technique with and without noise
cancellation is compared to the standard histogram technique.

The first step in our experiment consists of verifying the
three main properties, stemming directly from the architec-
ture of pipeline ADCs, on which the reduced-code testing
technique relies upon. The first property states that the ADC
codes related to the same comparator have equal DNLs. Let
us consider Fig. 12 which superimposes the digital output of
the complete ADC on the digital output of the second stage as
we traverse the whole input dynamic range. As an example,
the intersection points between the dashed vertical lines and
the digital output of the complete ADC correspond to the
codes that are mapped to the transitions that involve the fourth
comparator in the second stage (e.g. transition from 3 to 4).
The codes on the right of these transitions are shown on the
left y-axis of Fig. 12. The first transition is mapped to code
282, the second transition is mapped to code 539, the third
transition is mapped to code 795, etc. Next, the DNL of all the
codes was calculated using the standard histogram technique,
as shown in Fig. 13. By the circles we point to the DNL of the
codes shown in Fig. 12. Values are, from left to right, 0.46,
0.44, 0.45, 0.48, 0.43, 0.44, 0.43. As can be observed, they
are very close to each other which confirms the first principle
of the technique. Thus, instead of measuring the DNL of all
these seven codes, we can choose to measure the DNL of just
one code and then use this DNL value for the rest of the codes.

The second property states that the largest DNL errors occur
around the output transitions that involve the comparators in
the stages that are towards the front of the pipeline. As an
example, Fig. 14 shows the digital output of the first stage
superimposed on the digital output of the complete ADC. The
six codes shown on the left y-axis of Fig. 14 are the codes
on the right of the ADC output transitions that correspond to
the transitions of the first stage. In Fig. 13, these codes are
indicated with squares. As it can be observed, these codes
present the minimum and maximum DNL errors. This second
principle tells us that for a given comparator we should avoid
selecting a representative ADC output transition that involves
in addition to this comparator a comparator in one of the
previous stages. It also tells us that we should give priority
to the first stages in the step where we extract the unmeasured
code widths from the measured ones.

The third property states that the ADC output codes cor-
responding to the same comparator can be expressed as a
function of the noise-free root codes of this comparator and
the contributions of the stages preceding the stage where this
comparator belongs to. Fig. 15 superimposes the digital output
of the complete ADC on the digital output of the first and
second stages as we traverse the whole input dynamic range.
As an example, the intersection points between the dashed
vertical lines and the digital output of the complete ADC
correspond to the codes that are mapped to the transitions that
involve the third comparator in the second stage (e.g. transition
from 2 to 3). The codes on the right of these transitions are
shown on the left y-axis of Fig. 15. The first transition is
mapped to code 232, the second transition is mapped to code
488, the third transition is mapped to code 745, etc. Let us
consider these codes and subtract from them the corresponding
value in decimal of the first stage multiplied by the weight
of the first stage, in order to find the right root code. The



9

S
ta

g
e

s
 d

ig
it
a

l 
o

u
tp

u
t 
(i
n

 d
e

c
im

a
l)

A
D

C
 o

u
tp

u
t 
(i
n

 d
e

c
im

a
l)

0

2

4

6

282

539

795

1050

1307

1563

1819

Vin

second stage
ADC output

Fig. 12. Searching for the codes that are mapped to the fourth comparator
in the second stage.

Fig. 13. DNL obtained with the standard histogram technique. The circles
point to the codes that are mapped to the fourth comparator in the second
stage, while the squares point to the codes that are mapped to the comparators
of the first stage.

subtractions give: 1768− 6 ∗ 28 = 232; 1513− 5 ∗ 28 = 233;
1257−4∗28 = 233; 1000−3∗28 = 232; 745−2∗28 = 233;
488 − 1 ∗ 28 = 232; 232 − 0 ∗ 28 = 232. As expected, the
right root code is toggling due to the presence of noise. In
this example, it is toggling between two values (e.g. 232 and
233). By applying the majority voting scheme, we choose 232
as the right root code of the third comparator of the second
stage since it is met more frequently. This means that the codes
that should be grouped together as having the same DNLs are
not 232, 488, 745, 1000, 1257, 1513 and 1768 as it would have
been suggested without using the noise cancelling scheme, but
232, 488, 744, 1000, 1256, 1512 and 1768. These are the codes
that are mapped to this comparator recalculated based on the
same root code (e.g. 232) by adding the different contributions
of the first stage.

After having verified the three principles of the reduced-

S
ta

g
e

s
 d

ig
it
a

l 
o

u
tp

u
t 
(i
n

 d
e

c
im

a
l)

A
D

C
 o

u
tp

u
t 
(i
n

 d
e

c
im

a
l)

0

2

4

6

428

667

935

1146

1393

1662

Vin

first stage
ADC output

Fig. 14. Searching for the codes that are mapped to the comparators of the
first stage.

first stage
second stage
ADC output

S
ta

g
e

s
 d

ig
it
a

l 
o

u
tp

u
t 
(i
n

 d
e

c
im

a
l)

A
D

C
 o

u
tp

u
t 
(i
n

 d
e

c
im

a
l)

0

2

4

6

Vin

232

488

745

1000

1257

1513

1768

Fig. 15. Root codes example.

code testing technique, we calculated the DNL and INL based
on a reduced set of codes. We considered 8 codes around
each of the six ADC output transitions representing the six
comparators of the first stage, 6 codes around each of the six
ADC output transitions representing the six comparators of
the second stage, 4 codes around each of the six ADC output
transitions representing the six comparators of the third stage,
and 2 codes around each of the six ADC output transitions
representing the six comparators of the fourth and fifth stages.
In total, we rely only on 8×6+6×6+4×6+2×6+2×6 = 132
out of 2046 codes of an 11-bit ADC, that is, on only 6% of
the codes, which represents a very significant static test time
reduction.

The DNL obtained using the standard histogram technique
is shown in Fig. 16(a) while the estimated DNL using the
reduced-code testing technique without and with noise can-
cellation is shown, respectively, in Fig. 16(b) and 16(c). The
estimated profiles of DNL in Fig. 16(b) and 16(c) are more
regular since they are extracted from the DNLs of a reduced



10

Fig. 16. DNL obtained with: (a) standard histogram technique; (b) reduced-code testing without noise cancelling; and (c) reduced-code testing with noise
cancelling.

zoomIN
L

 (
L

S
B

)

(a)

max = 2.2414

min = -2.1514

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−3

−2

−1

0

1

2

3

ADC output code

(b)

max = 2.7716

min = -2.6524

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−3

−2

−1

0

1

2

3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−3

−2

−1

0

1

2

3

(c)
ADC output code ADC output code

max = 2.6501

min = -2.2965

zoom

Fig. 17. INL obtained with: (a) standard histogram technique; (b) reduced-code testing without noise cancelling; and (c) reduced-code testing with noise
cancelling.

set of codes. The highest DNL errors in the ADC correspond
to the first stages in which the transitions are not so noisy.
Thus, the minimum and maximum DNLs are well captured
regardless whether noise cancellation is used or not. However,
when comparing the profile of the smaller absolute DNLs
in Fig. 16(b) and Fig. 16(c) with the profile of the smaller
absolute DNLs in Fig. 16(a), we observe that the profile in
Fig. 16(b) is less ”dense” as opposed to the profile in Fig.
16(c), which implies that there are many codes that have
been assigned smaller absolute DNL values. This implies that,
unless noise cancelling is used, there are significant errors
in the mapping between the ADC output transitions and the
comparators that are being exercised in the case where the
comparators belong to stages that are towards the end of the
pipeline.

The INL obtained using the standard histogram technique is
shown in Fig. 17(a) while the estimated INL using the reduced-
code testing technique without and with noise cancellation is
shown, respectively, in Fig. 17(b) and 17(c). The inset plots
in 17(b) and 17(c) show a zoom of the estimated INL profiles
superimposed on INL profile obtained using the standard
histogram technique. From Fig. 17(c) it is evident that the
reduced-code testing technique with noise cancellation offers
an excellent INL estimation, implying that we are summing
up a succession of well estimated DNLs despite the noise
in the ADC output transitions. In fact, the estimated INL

is practically indistinguishable from the INL obtained with
the standard histogram technique. In contrast, from Fig. 17(b)
it is evident that the reduced-code testing technique without
noise cancellation, although is capable of capturing the general
INL profile, results in evident INL errors due to summing
up a succession of poorly estimated DNLs. The general INL
profile is captured thanks to the high peaks of DNL. In the
case of an ADC with small DNL errors, the reduced-code
testing technique without noise cancellation would have failed
to capture even the general INL profile. In contrast, if noise
cancellation is used, the INL estimation will be excellent
independently of the DNL values of the ADC and the level of
noise in the measurement environment.

VII. CONCLUSION

We proposed an enhancement of the reduced-code testing
technique for pipeline ADCs that dramatically improves its
effectiveness. The reduced-code testing technique is based on
the underlying observation that there are output codes that
have equal widths thanks to the architectural properties of the
pipeline ADC. Therefore, to extract the complete transfer char-
acteristic of the ADC it suffices to measure only a small subset
of codes. For this reason, compared to the standard histogram
technique that requires measuring irrespectively all codes, the
reduced-code testing technique reduces drastically the static
test time. The key is to be able to find the mapping between



11

the ADC codes and the comparators that are being exercised in
the internal stages of the pipeline. The proposed enhancement
relies, first, on monitoring the outputs of the internal stages
of the pipeline and, second, on canceling out the noise, which
is an important step in deriving an accurate mapping. For this
purpose, we exploit the inherent properties of the architecture
of a pipeline ADC. We demonstrate that, compared to generic
static test approaches for ADCs, greatest static test cost re-
duction can be achieved by delving into the ADC architecture
to exploit its inherent properties. Experimental results on a
55nm 11-bit 2.5-bit/stage pipeline ADC demonstrate that by
measuring only 6% of the codes we can estimate the DNL
and INL profiles very accurately. The resulting DNL and INL
profiles are practically indistinguishable from those produced
by the standard histogram technique.

REFERENCES

[1] F. Poehl, F. Demmerle, J. Alt, and H. Obermeir, “Production test
challenges for highly integrated mobile phone SOCs–a case study,” in
Proc. IEEE European Test Symposium, 2010, pp. 17–22.

[2] K. Arabi and B. Kaminska, “Efficient and accurate testing of analog-
to-digital converters using oscillation-test method,” in Proc. European
Design and Test Conference, 1997, pp. 348–352.

[3] Y. C. Wen, “A BIST scheme for testing analog-to-digital converters with
digital response analyses,” in Proc. IEEE VLSI Test Symposium, 2005,
pp. 221–225.

[4] H. Xing, H. Jiang, D. Chen, and R. L. Geiger, “High-resolution ADC
linearity testing using a fully digital-compatible BIST strategy,” IEEE
Transactions on Instrumentation and Measurement, vol. 58, no. 8, pp.
2697–2705, 2009.

[5] B. Provost and E. Sanchez-Sinencio, “Auto-calibrating analog timer for
on-chip testing,” in Proc. IEEE International Test Conference, 2010, pp.
541–548.

[6] E.S. Erdogan and S. Ozev, “An ADC-BIST scheme using sequential
code analysis,” in Proc. Design Automation Test in Europe Conference
Exhibition, 2007, pp. 1–6.

[7] F. Azais, S. Bernard, Y. Bertrand, X. Michel, and M. Renovell, “A low-
cost adaptive ramp generator for analog BIST applications,” in Proc.
IEEE VLSI Test Symposium, 2001, pp. 266–271.

[8] W.-T. Lee, Y.-Z. Liao, J.-C. Hsu, Y.-S. Hwang, and J.-J. Chen, “A high
precision ramp generator for low cost ADC test,” in Proc. International
Conference on Solid-State and Integrated-Circuit Technology, 2008, pp.
2103–2106.

[9] B. Provost and E. Sanchez-Sinencio, “On-chip ramp generators for mixed-
signal BIST and ADC self-test,” IEEE Journal of Solid-State Circuits,
vol. 38, no. 2, pp. 263–273, 2003.

[10] B. Provost and E. Sanchez-Sinencio, “A practical self-calibration scheme
implementation for pipeline ADC,” IEEE Transactions on Instrumenta-
tion and Measurement, vol. 53, no. 2, pp. 448–456, 2004.

[11] Y. Wang, J. Wang, F. Lai, and Y. Ye, “Optimal schemes for ADC BIST
based on histogram,” in Proc. IEEE Asian Test Symposium, 2005, pp.
52–57.

[12] “IEEE standard for terminology and test methods for analog-to-digital
converters,” IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000), pp.
1 –139, 2011.

[13] “IEEE standard for digitizing waveform recorders,” IEEE Std 1057-2007
(Revision of IEEE 1057-1994), pp. 1 –142, 2008.

[14] F. Alegria, P. Arpaia, A.M. Cruz Serra, and P. Daponte, “Performance
analysis of an ADC histogram test using small triangular waves,” IEEE
Transactions on Instrumentation and Measurement, vol. 51, no. 4, pp.
723–729, 2002.

[15] L. Jin, K. Parthasarathy, T. Kuyel, D. Chen, and R.L. Geiger, “Ac-
curate testing of analog-to-digital converters using low linearity signals
with stimulus error identification and removal,” IEEE Transactions on
Instrumentation and Measurement, vol. 54, no. 3, pp. 1188–1199, 2005.

[16] M. A. Jalon, A. Rueda, and E. Peralias, “Enhanced double-histogram
test,” Electronics Letters, vol. 45, no. 7, pp. 349–351, 2009.

[17] H.-K. Chen, C.-H. Wang, and C.-C. Su, “A self calibrated ADC BIST
methodology,” in Proc. IEEE VLSI Test Symposium, 2002, pp. 117–122.

[18] R. Holce, L. Michaeli, and J. Saliga, “DNL ADC testing by the
exponential shaped voltage,” IEEE Transactions on Instrumentation and
Measurement, vol. 52, no. 3, pp. 946–949, 2003.

[19] F. Adamo, F. Attivissimo, N. Giaquinto, and M. Savino, “FFT test of
A/D converters to determine the integral nonlinearity,” IEEE Transactions
on Instrumentation and Measurement, vol. 51, no. 5, pp. 1050–1055,
2002.

[20] C. Wegener and M.P. Kennedy, “Linear model-based testing of ADC
nonlinearities,” IEEE Transactions on Circuits and Systems, vol. 51, no.
1, pp. 213–217, 2004.

[21] Z. Yu and D. Chen, “Algorithm for dramatically improved efficiency
in ADC linearity test,” in Proc. International Test Conference, 2012, pp.
1–10.

[22] S. Goyal and A. Chatterjee, “Linearity testing of A/D converters using
selective code measurement,” Journal of Electronic Testing: Theory and
Applications, vol. 24, no. 6, pp. 567–576, 2008.

[23] J. Lin, S. Chang, T. Kung, H.Ting, and C. Huang, “Transition-code based
linearity test method for pipelined ADCs with digital error correction,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
19, no. 12, pp. 2158–2169, 2010.

[24] A. Laraba, H. G. Stratigopoulos, S. Mir, H. Naudet, and C. Forel, “En-
hanced reduced code linearity test technique for multi-bit/stage pipeline
ADCs,” in Proc. IEEE European Test Symposium, 2012, pp. 50–55.

[25] A. Laraba, H. G. Stratigopoulos, S. Mir, H. Naudet, and G. Bret,
“Reduced code linearity testing of pipeline ADCs,” IEEE Design and
Test of Computers, vol. 30, no. 6, pp. 80–88, 2013.

[26] A. Laraba, H. G. Stratigopoulos, S. Mir, H. Naudet, and G. Bret,
“Reduced code linearity testing of pipeline ADCs in the presence of
noise,” in Proc. IEEE VLSI Test Symposium, 2013, pp. 1–6.

[27] F. Maloberti, Data Converters, IEEE Computer Society Press, 2007.

Asma Laraba (S’12) received a MSc in micro-
and nanoelectronics from Joseph Fourier University,
Grenoble, France in 2010 and a PhD in electrical
engineering from National Institute Polytechnic of
Grenoble in 2013. Her PhD thesis research was
conducted at TIMA Laboratory, Grenoble, France
and focused on DFT and BIST of analog-to-digital
converters. She is the recipient of the 2012 European
Test Symposium best paper award. She is currently
an analog design engineer in Xilinx, Dublin, Ireland.

Haralampos-G. Stratigopoulos (S’02-M’07) re-
ceived the Diploma in electrical and computer en-
gineering from the National Technical University
of Athens, Greece, in 2001 and the Ph.D. in elec-
trical engineering from Yale University, USA, in
2006. From October 2007 to May 2015 he was
a Researcher with the French National Center for
Scientific Research (CNRS) at TIMA Laboratory,
Grenoble, France. Currently he is a researcher with
the CNRS at LIP6 Laboratory, Paris, France. His
main research interests are in the areas of design-

for-test and built-in test for analog, mixed-signal, RF circuits and systems,
computer-aided design, and machine learning. He was the General Chair of
the 2015 IEEE International Mixed-Signal Testing Workshop (IMSTW), the
Program Chair of the 2011 IEEE International Mixed-Signal, Sensors, and
Systems Testing Workshop (IMS3TW), and the Program Chair of the 2013
IEEE International Workshop on Test and Validation of High-Speed Analog
Circuits (TVHSAC). He has served on the Technical Program Committees
of Design, Automation, and Test in Europe Conference (DATE), IEEE
International Conference on Computer-Aided Design (ICCAD), IEEE VLSI
Test Symposium (VTS), IEEE European Test Symposium (ETS), IEEE Inter-
national Test Conference (ITC) and several others international conferences.
He is an Associate Editor of Springer Journal of Electronic Testing: Theory
& Applications, IEEE Design & Test Magazine, and IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. He received
the Best Paper Award in the 2009, 2012, and 2015 IEEE European Test
Symposium (ETS).



12

Salvador Mir (M’99) has an Industrial Engineering
(Electrical, 1987) degree from the Polytechnic Uni-
versity of Catalonia, Barcelona, Spain, and M.Sc.
(1989) and Ph.D. (1993) degrees in Computer Sci-
ence from the University of Manchester, UK. He
is a Research Director of CNRS (Centre National
de la Recherche Scientifique) at TIMA Laboratory
in Grenoble, France. He is director of TIMA Lab-
oratory since January 2015, and he has lead the
RMS (Reliable Mixed-signal Systems) Group from
2002 to 2014. His area of expertise is analog/mixed-

signal/RF/MEMS test. He has published many papers in this field and he has
been General, Program, Topic Chair and member of the Steering Committee
of many IEEE/IFIP International Conferences. He is editor of two books on
silicon Microsystems.

Hervé Naudet leads the DFT and test engineering
teams in the Digital Product Group of STMicro-
electronics in Grenoble, France. His research in-
terests include systems-on-chip (SoCs), systems-in-
packages (SiPs), mixed-signal testing, analog and
digital DFT, and industrial test strategy. He has
been a presenter in several international conferences,
including CNRS conference in Paris (2002), Design
Technology Conference in Grenoble (2010), and
VOICE in San Jose (2012). He has an MEA engineer
diploma from the Science Engineering Institute of

Montpellier.


