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Abstract: This review summarizes the importance of nanoporous materials and their 

fascinating structural properties with respect to the catalytic and photocatalytic reduction of 

CO2 to methane, toward achieving a sustainable energy supply. The importance of catalysis 

as a bridge step for advanced energy systems and the associated environmental issues are 

stressed. A deep understanding of the fundamentals of these nanoporous solids is necessary 

to improve the design and efficiency of CO2 methanation. The role of the support dominates 

the design in terms of developing an efficient methanation catalyst, specifically with respect 

to ensuring enhanced metal dispersion and a long catalyst lifetime. Nanoporous materials 

provide the best supports for Ni, Ru, Rh, Co, Fe particles because they can prevent sintering 

and deactivation through coking, which otherwise blocks the metal surface as carbon 

accumulates. This review concludes with the major challenges facing the CO2 methanation 

by nanoporous materials for fuel applications. 

Keywords: zeolites; mesoporous materials; methane; Synthetic Natural Gas (SNG);  

Ni nanoparticles; deactivation prevention 
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1. Introduction 

Energy generated via renewable energy strategies is critical to various aspects of global human 

development, including harmony, equity, employment, ecosystems, and environmental protection. As 

the demand for energy continues to increase worldwide, mainly in emerging economies, overcoming 

energy barriers is a key step in the continued development of civilization. Modern economic development 

(chemical industry, power plants, transportation sector) is inherently dependent on fossil fuels, which 

are non-renewable energy sources [1–5], yet fossil fuels still represent more than 85% of the world 

energy consumption. Since the industrial revolution in the 19th century, the majority of anthropogenic 

CO2 emissions have been attributed to the consumption of fossil fuels [6–12], resulting in environmental 

pollution and very probably in increased global warming effect. In this context, a challenge for 21st 

century is the control of technological processes, developing highly active and selective reaction systems 

with atom efficiency and minimizing unwanted secondary reactions [13–22]. Excessive CO2 emissions 

have caused global climate change and increased planetary temperatures; more specifically, the global 

surface temperature has increased by 0.74 °C over the past century. The CO2 levels in the earth 

atmosphere have increased significantly by more than 10 billion tonnes per year. Moreover, heavy 

dependence on fossil fuels causes problems in energy security because a large fraction of the fossil fuel 

consumed is imported, and these resources are non-renewable. Therefore, sustainable energy production, 

combined with moderate consumption practices, represents a challenge to our civilization [1,2,4,5,23–25]. 

Alternative energy sources should be derived from geothermal, hydrothermal, solar, wind, nuclear and 

other renewable resources. One perspective is that all sectors should employ low-pollution renewable 

energy with the net “zero emission” of CO2. However, several petrochemical companies are considering 

biomass and natural gas fuel sources as alternative renewable feedstocks.  

Several strategies should be considered to reduce the amount of carbon dioxide emitted into  

the atmosphere. Examples include the implementation of new green technologies by exchanging  

the fossil fuels for renewable energy sources, the biological, physical and chemical capture and  

storage of CO2, and the conversion of CO2 to various chemical products and fuels as shown in  

Figure 1 [2,4,11,12,21,24,26]. 

 

Figure 1. Possible strategies of reducing CO2.  

Carbon capture and storage (CCS) has received major attention in recent years [27–32]. In this 

strategy, several approaches have been tested for the removal of CO2 from power plants or other large 
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emitters. These approaches include amine scrubbing, cryogenic distillation, membrane separation and the 

use of an absorbent/adsorbent [33]. Amine scrubbing is inconvenient in that this approach is inherently 

corrosive and there exists difficulty in solvent regeneration. In comparison, cryogenic distillation imposes 

a high energetic demand. Membrane separation is limited by permeability-selectivity. In contrast, the 

adsorption of CO2 into nanoporous materials is both an energy efficient process and offers separation 

capability. Several nanoporous adsorbents have been tested for CO2 capture [33]. Among these nanoporous 

materials, the zeolites and MOF have predominantly been studied, both of which present high selectivities 

for the separation of flue gas. The high selectivity of these materials has been explained by the zeolite 

electric field, which inherently varies in strength, further suggesting that the architecture of the zeolite 

structure is a very important feature [34–36]. These nanoporous materials have been suggested as 

suitable materials for CO2/CH4 separation. In the CCS approach, CO2 is captured in either a pre- or  

post-combustion process. In pre-combustion capture, the partial oxidation of a feedstock fuel produces 

syngas, which reacts with steam to yield shifted syngas. In the post-combustion capture process, the CO2 

is separated from the exhaust flue gas, which primarily consists of N2 and CO2 [34–36]. The captured 

CO2 is then stored either in the deep ocean or underground in geological formations such as depleted oil 

and gas reservoirs. The problem there is that CO2 should be inert chemically with respect to the 

geological rocks, in presence of water and for a very long time. Although the implementation of CSS 

will lead to decreased emissions of CO2 into the atmosphere and will yield raw materials, implementation 

with respect to the world economy is an inconvenient aspect of this approach. For CCS, the sequestration 

site must be near the CO2 source. Often, the CO2 must eventually be transported to a different site, which 

necessitates further investment for the development of adequate infrastructure. A plausible alternative 

CCS strategy is the development of a new catalytic process or improvements to those already in existence 

for the use of captured carbon as a reagent to produce useful chemicals or fuel. 

The conversion of CO2 should be used as an alternative to petrochemistry and petrorefineries and as 

a bridging technology toward the development of a sustainable energy supply, and consequently 

sustainable industrial development, for the long term [37]. However, the process of CO2 valorization by 

conversion into chemical products has been known for many decades; more specifically, the synthesis 

of salicylic acid was discovered in 1969 [2,38], the synthesis of NaHCO3–Na2CO3 was developed in 

1882 and was known as the “Solvay process” [39] and the synthesis of urea was identified in 1922 [40].  

In 1970 [2], the catalytic conversion of CO2 to synthesize methanol from syngas enriched with CO2 was 

first developed. The valorization of CO2 by conversion into other chemicals has been discussed in several 

reviews [2,3,11,12,24]. A promising approach for the valorization of CO2 was the catalytic conversion 

of CO2 into fuels: Fischer-Tropsch, MeOH, DME, CH4 (synthetic natural gas—SNG), and syngas.  

In this review, we focus only on CO2 methanation for the SNG process. Methanation involves the catalytic 

hydrogenation of carbon oxides to provide an efficient alternative to conventional natural gas [41]; 

moreover, the infrastructure for handling CH4 is well established. SNG is considered a promising 

approach for obtaining this valuable, high-combustion-efficiency gaseous fuel which can be used in 

current hydrocarbon-based automobiles and transportation systems while reducing dependence on 

petroleum; in addition, this fuel is considered environmentally friendly as it recovers CO2 used as 

reactant in its synthesis [42–46]. Catalysis is a core technology of the energy industry [47–51] with an 

important role in the area production of sustainable fuels and energy [4,5,52–58]. The development of 

suitable catalysts for the conversion of CO2 is under intensive study by researchers around the world. A 
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large number of excellent studies on various metal catalysts have appeared in the literature [59–63], and 

supported nickel catalysts are the most widely studied for CO2 methanation due to their high ability to 

dissociate CO2 [64,65]. Their higher activities and selectivities for methane have been attributed to 

various factors, including the nature of the support, nature of the metal, amount of metal and its 

dispersion. However, these traditional catalysts suffer from several drawbacks, including sensitivity to 

metal site poisoning, sintering, coke deposition, and deactivation [66–70]. In light of the ubiquitous 

restrictions imposed by environmental legislation and economics, the use of nanostructured porous 

catalysts, which can be very selective for the desired products, is one alternative to the use of traditional 

catalysts [71,72]. Nanoporous catalysts are of great interest because of their highly ordered pore structure, 

high specific surface area, and tailorable pore size, framework, and surface properties [73–82]. 

Nanoporous materials can be used as hosts for the preparation of nano-sized catalysts. The advantages 

of the small metal particles of nanoporous catalyst are a great variety in the valence band electron structure, 

short range ordering, enhanced interaction with the environment due to the high number of dangling bonds, 

and self-structuring for optimum performance in chemisorption. Surface area is the main factor which 

controls the catalytic activity of a nanoporous catalyst. The surface area of a porous material is higher than 

the surface of a non-porous material. The large surface area leads to a well-distributed dispersion of the 

catalytic phase at high loadings; this can hardly be achieved with non-porous traditional support, such as 

silica gel or alumina. The uniform porosity results in monodispersed nanometer-sized catalysts. In cases 

where catalytic activity is size-sensitive, it is very desirable to use nanochannels as a confinement zone 

to obtain the nanocatalyst. Taking into account that the catalytic reactions occur on surface of the catalysts, 

the higher surface leads to an improved activity and selectivity. One of crucial points is whether turnover 

frequency measured for a given catalytic reaction increases or decreases as the particle size is diminished. 

Nanoporous catalysts play an important role in all areas of catalysis, especially in energy and 

environmental applications [83–91]. The structural aspects of nanoporous materials have been summarized 

in several excellent publications [73,92–98]. Therefore, a meaningful assessment of the importance of 

nanoporous catalysts over time should be performed. This review comprehensively discusses the catalytic 

and photocatalytic conversion of CO2 to CH4 and the role of nanoporous catalysts in these reactions.  

2. Thermodynamics of CO2  

CO2 is kinetically and thermodynamically stable and the methanation reaction is extremely exothermic 

due to the high concentration of oxidized carbon forms in the feed gas [99]. The chemical reactions are 

driven by the difference between the Gibbs free energy values of the reactants and products of the chemical 

reaction, as shown by the Gibbs–Helmholtz equation: ΔG° = ΔH° − TΔS°. A large energy input, 

optimized reaction conditions and active catalysts are necessary to transform CO2 into useful products. 

This is because CO2 is inert: the carbon atom in CO2 is in its most oxidized state, which means that its 

chemical transformation is thermodynamically highly unfavorable [100]. In this case, as a raw material, 

CO2 is in its lowest energy state, constituting a major obstacle in the establishment of industrial processes 

for CO2 conversion. 

Upon analyzing the Gibbs free energy of the exothermic hydrogenation of CO2, a majority of the 

associated reactions are found to be thermodynamically unfavorable. Because the Gibbs free energy 

values are more positive than the corresponding ΔH° values, they are less favorable; only a few reactions 
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have both negative ΔG° and ΔH° values. Values of ΔG < 0 correspond to hydrogenation or reactions 

with products containing C-O bonds. Favorable values of ΔG in the hydrogenation reaction are associated 

with the formation of water. Because hydrogen must be produced at the cost of the input energy, none 

of these reactions is favorable for CO2 mitigation. 

The values of the enthalpy and Gibbs free energy, calculated by ASPEN software [3,101–103], of the 

exothermic, ΔH < 0, reaction in the CO2 hydrogenations are as follows: 

CO2(g) + H2(g) → HCOOH(l); ΔH° = −31.0 kJ·mol−1; ΔG° = +34.3 kJ·mol−1 (1)

CO2(g) + 2H2(g) → HCHO(g) + H2O(l); ΔH ° = −11.7 kJ·mol−1; ΔG° = +46.6 kJ·mol−1 (2)

CO2(g) + 3H2(g) → CH3OH(l) + H2O(l); ΔH° = −137.8 kJ·mol−1; ΔG° = −10.7 kJ·mol−1 (3)

CO2(g) + 4H2(g) → CH4(g) + 2H2O(l); ΔH° = −259.9 kJ·mol−1; ΔG° = −132.4 kJ·mol−1 (4)

2CO2(g) + H2(g) → (COOH)2(l); ΔH° = −39.3 kJ·mol−1; ΔG° = 85.3 kJ·mol−1 (5)

2CO2(g) + 6H2(g) → CH3OCH3(g) + 3H2O(l); ΔH° = −264.9 kJ·mol−1; ΔG° = −38.0 kJ·mol−1 (6)

CO2(g) + H2 + CH3OH(l) → HCOOCH3(l) + H2O(l); ΔH° = −31.8 kJ·mol−1;  

ΔG° = −25.8·kJ mol−1 
(7)

CO2(g) + H2 + CH3OH(l) →CH3COOH(l) + H2O(l); ΔH° = −135.4 kJ·mol−1;  

ΔG° = −63.6 kJ·mol−1 
(8)

CO2(g) + 3H2(g) + CH3OH(l) → C2H5OH(l) + 2H2O(l); ΔH° = −221.6 kJ·mol−1 ;  

ΔG° = −88.9 kJ·mol−1 
(9)

CO2(g) + H2(g) + NH3(g) → HCONH2(l) + H2O(l); ΔH° = −103.0 kJ·mol−1;  

ΔG° = +7.2 kJ·mol−1 
(10)

CO2(g) + CH4(g) → CH3COOH(l); ΔH° = −13.3 kJ·mol−1; ΔG° = +58.1 kJ·mol−1 (11)

CO2(g) + CH4(g) + H2(g) → CH3CHO(l) + H2O(l); ΔH° = −14.6 kJ·mol−1;  

ΔG° = +74.4 kJ·mol−1 
(12)

CO2(g) + CH4(g) + 2CO2(g) → (CH3)2CO(l) + H2O(l); ΔH° = −70.5 kJ·mol−1;  

ΔG° = +51.2 kJ·mol−1 
(13)

CO2(g) + C2H2(g) + H2(g) → CH2 = CHCOOH(l); ΔH° = −223.6 kJ·mol−1;  

ΔG° = −115.0 kJ·mol−1 
(14)

CO2(g) + C2H4(g) → CH2 = CHCOOH(l); ΔH° = −49.1 kJ·mol−1; ΔG° = +26.2 kJ·mol−1 (15)

CO2(g) + C2H4(g) + H2(g) → C2H5COOH(l); ΔH° = −166.6 kJ·mol−1;  

ΔG° = −56.6 kJ·mol−1 
(16)

CO2(g) + C2H4(g) + 2H2(g) → C2H5CHO + H2O(l); ΔH° = −171.1 kJ·mol−1;  

ΔG° = −44.4 kJ·mol−1 
(17)

CO2(g) + C6H6(l) → C6H5COOH(l); ΔH° = −21.6 kJ·mol−1; ΔG° = +30.5 kJ·mol−1 (18)

CO2(g) + C6H5OH(l) → mC6H4(OH)COOH(l); ΔH° = −6.6 kJ·mol−1; ΔG° = +46.9 kJ·mol−1 (19)
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Hydrogenation reactions of CO2 with ΔH > 0 can be performed [3,101–103]. These reactions are 

associated with highly positive ΔG° values and are not favorable. 

CO2(g) + CH2=CH2(g) → CH2CH2O(l) + CO(g); ΔH° = +152.9 kJ·mol−1;  

ΔG° = +177.3 kJ·mol−1 
(20)

CO2(g) + C(s) →2CO(g); ΔH° = +172.6 kJ·mol−1; ΔG° = +119.9 kJ·mol−1 (21)

3CO2(g) CH4(g) → 4CO(g) + 2H2O(l); ΔH° = +235.1 kJ·mol−1; ΔG° = +209.2 kJ·mol−1 (22)

CO2(g) + CH4(g) → 2CO(g) + 2H2(g); ΔH° = +247.5 kJ·mol−1; ΔG° = +170.8 kJ·mol−1 (23)

CO2(g) + 2CH4(g) → C2H6(g) + CO(g) + H2O(l); ΔH° = +58.8 kJ·mol−1; ΔG° = +88.0 kJ·mol−1 (24)

2CO2(g) + 2CH4(g) → C2H4(g) + 2CO(g) + 2H2O(l); ΔH° = +189.7 kJ·mol−1; ΔG° = +208.3 kJ·mol−1 (25)

CO2(g) + C2H4(g) → C2H4O(g) + CO(g); ΔH° = +178.0 kJ·mol−1; ΔG° = +176.0 kJ·mol−1 (26)

In general, the conversion of CO2 is accompanied by the production of CO. The reaction enthalpies 

for the production of the same product from either CO or CO2 are comparable, although in most cases, 

CO is favored compared to CO2 [3,101–103].  

3. Reaction Mechanism of CO2 Methanation 

Over the past few decades, understanding the mechanism of the methanation of CO2 has represented 

a significant challenge. Following a careful analysis of several studies, we ascertained that in the methanation 

of CO2, two types of mechanisms occur: with CO as intermediate (Figure 2), when CO2 in converted to 

CO before the methanation [104–108] and direct methanation of CO2 (Figure 2) without forming CO as 

intermediate [109,110]. 

 

Figure 2. Reaction mechanisms of CO2 methanation. 

3.1. Methanation of CO2 with CO as Intermediate 

As a function of the nature and history of catalysts and their reaction conditions, this reaction 

mechanism is difficult to establish, taking into account that in the literature on CO2 methanation, it is 

believed [104–108,111] that carbon monoxide is a critical intermediate in carbon dioxide methanation. 
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More specifically, the methanation of CO2 consists of the reduction of CO2 to CO: CO2 + H2 ↔ CO + H2O 

followed by the conversion of CO into methane (or other alkanes); CO + 3H2 ↔ CH4 + H2O. In this 

case, the mechanism is identical to that for CO methanation [112,113]. Because the equilibrium for  

CO2 + H2 ↔ CO + H2O is somewhat unfavorable at the reaction temperatures (200–400 °C), it can be 

noted that this reaction path is unlikely. One way to circumvent this difficulty is to require that at these 

temperatures the methanation of carbon monoxide: CO + 3H2 ↔ CH4 + H2O, proceed at significantly 

faster rates than carbon monoxide production. If carbon monoxide were consumed as rapidly as it forms, 

no carbon monoxide would be observed in the reactor exit stream [114]. Another mechanism, first 

suggested by Doehlemann [115] in 1938 and subsequently by Kul’kowa and coworkers [116,117], was 

also described by Wagner [118]. In this alternative mechanism [118], CO2 dissociates into CO(ad) and 

O(ad), (CO2 (ad) → CO(ad) + O(ad)) and the adsorbed oxygen atoms react with molecular hydrogen in a 

single step (H2(g) + O(ad) → H2O(ad)), forming water, while the adsorbed CO is transformed into methane 

(CO(ad) → CH4). However, this mechanism assumes that the H2(g) + O(ad) → H2O(ad) step is rate-controlling 

of CO2 methanation. In the methanation of CO2 on Rh/Al2O3 [119], the dissociation of CO2 into carbon 

monoxide and oxygen on the surface of the catalysts was also observed in diffuse reflectance infrared 

Fourier transform (DRIFT) studies. The Rh–CO (2048 cm−1), Rh3+–CO (2123 cm−1), and Rh–(CO)2 

(2024 and 2092 cm−1) bands confirmed the formation of COads. CO2 adsorbed as Rh–(CO)2 and CO 

associated with oxidized Rh are the most hydrogen-reactive species. The presence of CO as a key 

intermediate in the methanation of CO2 was proved by steady-state transient (SST) studies on a Ru/TiO2 

catalyst [107]. However, at the interface between the metal and support, the presence of formate as a 

result of reaction with carbonate species was also observed, as an intermediate for the formation of CO. 

Single crystals of Ni have been suggested as a model catalyst for CO2 methanation [120,121]. The 

dissociation of CO2 on Ni(100) [106] proved that CO2 is first converted to CO and subsequently to carbon 

before hydrogenation. The authors observed that the activation energy and reaction rate for CO2 methanation 

are very close to the values for the formation of CH4 (88.7 kJ·mol−1) from CO (72.8–82.4 kJ·mol−1) 

under identical reaction conditions. It is known also that the formed CO is then dissociated into C and O 

atoms on the metal sites before being further hydrogenated into methane by the dissociated H2 that 

remains on the metal particles [105,122]. When a Ni(111) surface was tested using atom superposition 

and electron delocalization-molecular orbital theory [123], the dissociation of CO was found to be the 

rate-determining step. However, the elementary steps of the CO2 methanation reaction consisted of two 

mechanisms, carbon formation and carbon methanation. For the first mechanism, the activation energies 

were calculated to be 1.27 eV (~120 kJ−1) for CO2 dissociation, 2.97 eV (~290 kJ·mol−1) for CO 

dissociation, and 1.93 eV (~190 kJ·mol−1) for 2CO dissociation. For the carbon methanation mechanism, 

the following activation energies were reported: 0.72 eV (~72 kJ·mol−1) for methylidyne, 0.52 eV  

(~50 kJ·mol−1) for methylene, and 0.50 eV (~48 kJ·mol−1) for methane [123]. 

3.2. Methanation of CO2 without CO as Intermediate 

Elsewhere, the direct methanation of CO2 without CO as an intermediate has also been reported [109,110]. 

An alternative mechanism for CO2 methanation on various catalysts consists of the methanation of CO2 

through carbonates and formates, which are directly hydrogenated into CH4 [107,108,124–127]. The CO2 is 

first dissociated into CO directly [128–130]. CO2 methanation on Pd–MgO/SiO2 catalysts [126] has shown 
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that the MgO support initiates the reaction. In this case, magnesium carbonate species were observed on 

the surface of the catalysts. Pd, the active phase of the catalysts, dissociates molecular hydrogen and 

promotes the hydrogenation of the carbonates and residual carbon atoms [131]. These results show the 

synergy between the basic support and the active phase. CO2, which is an acidic molecule, is activated by 

the basic sites of the MgO support to form magnesium carbonate, while the metallic sites of Pd dissociate 

the hydrogen. However, methoxy groups were also observed in the CO methanation mechanism [132]. 

A Ni/CeO2 catalyst showed the highest CO2 conversions at lower temperatures with CH4 selectivities 

very close to 100% [133–135]. The better performance of CeO2 support was attributed to its higher ability 

to adsorb CO2 molecules, followed by its ability to reduce the molecules into CO and then convert the 

CO into CH4. Temperature-programmed reduction (TPR) experiments on Ru catalysts [59] have shown 

that CO + H2 reacts to produce CO2 and water, without the production of methane; therefore, gaseous 

phase CO is not a reaction intermediate during CO2 methanation with Ce0.95Ru0.05O2 catalyst [59]. 

Moreover, CO2 was converted directly into methane, without CO as intermediate when nanoporous 

gallium oxide was used in the photocatalytic conversion of carbon dioxide into methane [136]. 

4. Catalytic Conversion of CO2 to CH4 

The Sabatier reaction, discovered in 1902 by Sabatier and Senderens [137], consists of the catalytic 

hydrogenation of carbon dioxide to methane. This methanation reaction was investigated by NASA as  

a necessity for reclaiming oxygen within closed-cycle life support systems. In this case, CO2 from the 

cabin atmosphere is transformed into water vapor, which is electrolyzed and used to return oxygen to 

the cabin, in addition to one part of hydrogen, as required by the Sabatier reaction. The other part of hydrogen 

is provided from the electrolysis of stored water, which produces breathable oxygen as a by-product, 

reducing the proportion of available carbon dioxide that must be reacted and assuring excess carbon 

dioxide in the feed mixture. In the 1970s, the direct hydrogenation of highly thermodynamically stable 

CO2 attracted significant attention for the production of substitute natural gas (SNG), due to the shortage 

of natural gas at that time [138]. The ever-increasing demand for natural gas as a fuel and raw material 

has stimulated renewed efforts to find other means of methane production. With mounting evidence of 

an “energy crisis” upon us, alternative approaches such as catalytically synthesizing methane from 

hydrogen and carbon dioxide continue to meet with increased promise for development. 

The CO2 methanation reaction is reversible and highly exothermic CO2(g) + 4H2(g) → CH4(g) + 2H2O(l), 

ΔH° = −259.9 kJ·mol−1, ΔG° = −132.4 kJ·mol−1. Because the highly oxidized CO2 molecule is highly 

thermodynamically stable, this compound is not reactive. In this case, CO2 methanation requires  

high-energy substances and entails an eight-electron process with kinetic limitations [131,139]. However, 

when a reactive catalyst is used, the reaction takes place at low temperatures with high yields and 

selectivities [131,139]. Porous materials such as microporous zeolite and mesoporous materials have 

been used for CO2 hydrogenation; even so, CO2 methanation over zeolites has been investigated less 

extensively than the hydrogenation of CO. The active phase deposited on the support has been investigated 

using a number of catalytic systems. 

The catalysts used in CO2 methanation include the transition elements Ni [106,122,127,140–146],  

Pd [147], Pt [148], Co [149–151], Rh [66,152–154], Mg [155], Zn [156], Zr [157,158], Sn [159],  

U [160], Ta [161], Nb [162], Cr [163], Ir [164,165], Cu [166], Ag [166], V [167], W [163,168–170],  
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Mo [171–173], Mn [174,175], Ti [176,177], Fe [72,178–181]. Excellent reviews of these reports have 

also been published. Among these metals, Ni, Ru and Rh have been the most effective in this  

reaction [59,71,104,182–185]. Ru and Rh have been reported as the most selective toward  

methane [59,104,184], while Ni has been the most-studied catalyst [71,182] because it presents high 

activity and selectivity, is cheaper, and hence more interesting from a commercial perspective. Ni has 

been dispersed on several support types with acidic, basic or neutral sites; in these studies, it was 

concluded that the activity, selectivity and stability of catalysts made with Ni is determined by the nature 

of the support. Different interactions can be established between the metal and the support, and these 

differences influence the catalytic properties of the active metal sites [182]. In spite of the large number 

of studies performed on Ni-supported catalysts, Ni/Al2O3 is the best-known catalyst for industrial CO2 

methanation applications worldwide and it has been commercialized by Evonik, Johnson Matthey, Topsoe 

and Clariant-Sud Chemie.  

The Raney catalysts are very well known in the hydrogenation industry and seem to present high 

reactivity and selectivity during CO2 methanation [186]. Both of these properties have been attributed 

to the catalyst’s high surface area and structural/thermal properties. The amount of Ni used is also very 

important because Ni leads to higher methane selectivity [187]. The high activity of Ni/Al2O3 catalysts 

in such applications is partially attributed to the presence of a nickel aluminate spinel phase, located at 

the metal-support interface, which is thought to stabilize the metal particles. Concurrently, it is believed 

that the formation of a nickel aluminate spinel phase also results in inefficiencies when using Ni-based 

catalysts [188,189]. Ni/Al2O3 catalysts prepared through impregnation delivered a rapid deactivation 

process during an exothermic methanation reaction, resulting in the sintering of Ni particles and severe 

carbon deposition [190]. Furthermore, the most commonly reported problem associated with Ni-based 

catalysts is deactivation at low temperatures, due to the interaction of the metal particles with CO and 

the formation of mobile/volatile nickel carbonyls that lead to the sintering of the metal particles [191,192]. 

To overcome the problems associated with deactivation and sintering, several solutions have been 

proposed. As it is commonly known in catalysis chemistry, the addition of a second metal such La, Ce, 

Sm, Fe, Mg, Y, Pt, Ru, Rh and/or the use of a porous support such as a zeolite or a mesoporous material 

can be used to inhibit metal sintering [193–196]. The catalyst containing nanoporous solids is very 

selective to methane without CO formation. The presence of either the second metal species or the porous 

structure of the support, which provides a high surface area, can prevent sintering and increase the 

dispersion of metal particles. For example, when using Al2O3 or SiO2 supports with Ni or Ru metal, the 

addition of CeO2 improves the activity of the system for CO2 methanation [134,197,198]. The high activity 

and selectivity promoted by CeO2 have been attributed to its high capacity for metal dispersion and to 

its propensity to create oxygen vacancies, which promote the reduction of CO2 into CO prior to the 

hydrogenation to CH4 [59,129,133–135,197–200]. 

When using porous surfaces with high surface areas, the interaction between the nickel and its support 

is a crucial factor, determining the catalytic performance of the system with respect to its activity and 

selectivity for CO2 methanation [145]. Due to the significant ability of the support to disperse the active 

phase, the preparation of highly dispersed metal-supported catalysts has been the focus of a variety of 

investigations. Reports have shown that a mesoporous nickel–alumina xerogel [72] can serve as an 

efficient catalyst in several reactions, due to the well-developed mesoporosity of the support and its ability 

to finely disperse nickel species [201]. Mesoporous nickel (35 wt %)–metal (M = Fe, Zr, Ni, Y, and Mg) 
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(5 wt %)–alumina xerogel catalysts with a different second metal were tested for use in CO2 methanation. 

In carbon dioxide methanation reaction, the yield of CH4 decreased in the order of 35Ni5Fe > 35Ni5Zr > 

35Ni5Ni > 35Ni5Y > 35Ni5Mg. The identity of the second metal species influenced the CO2 methanation 

process. The most active and selective mesoporous catalyst was 35Ni5Fe; this catalyst possesses a weak 

metal support interaction that is closely related to the CO dissociation energy. Fe was found to be the 

optimal second metal in the CO2 methanation reaction. Fe can modify the size of metallic Ni particles 

and the reducibility of the Ni which leads to changes of the local electron density. These results show 

that the metal-support interaction, the CO dissociation energy and the pore volume influenced the CO2 

conversion. The use of a Ni/RHA–Al2O3 catalyst with a mesoporous structure and high surface area exhibited 

favorable catalytic activity [145]. Nanocrystallites of nickel oxide, such as NiO and NiAl2O4, are formed 

with high dispersion on the surface, suggesting a strong interaction between the metal and oxide. The 

catalytic activity of Ni/RHA–Al2O3 is better than that of Ni/SiO2–Al2O3 due to its enhanced metal dispersion 

ability and higher chemical reaction rate. At 500 °C, a conversion of 58% and a methane selectivity of 

90% were obtained [145]. On 3 w% Ni/MCM-41 catalysts, [146] a high selectivity (96.0%) were 

achieved at a space velocity of 5760 kg−1·h−1, which was superior to the results obtained with a Ni/SiO2 

catalyst and comparable to that of a Ru/SiO2 catalyst [106,142,202]. The high selectivity was maintained 

at a higher reaction temperature (400 °C). The best activity and selectivity for CO2 methanation when 

using a Ni/MCM-41 mesoporous catalyst is attributed to the highly dispersed Ni0 at 700 °C, as obtained 

on a surface [146]. A mesoporous catalyst of Ni/SiO2 was reported to be more active than Ni/Al2O3 in CO2 

methanation [203], although other papers have reported very high activities of highly loaded Ni/Al2O3 

catalysts [204], which even can be increased by Fe-doping [205]. Ni/ZrO2 catalysts doped with Ce or 

Sm cations [196] exhibit higher catalytic activity for CO2 methanation. This behavior can be ascribed to a 

synergistic effect between the surface area and doping with rare earth elements. Up to 280 °C, the 

Co/KIT-6 mesoporous catalyst exhibits a higher CO2 methanation activity, with a conversion of 49% and 

a methane selectivity of 100% [151]. Its high methane selectivity has been attributed to the high degree of 

dispersion obtained on its large surface area as well as its highly ordered bicontinuous mesoporous structure.  

Zeolites are an attractive support material due to their high thermal stability and large surface area. 

Encouraging results have been obtained for the methanation of CO [206–211] and CO2 on  

zeolites [71,212]. High activity and selectivity during CO2 methanation was reported for Y zeolite, which 

possesses a higher mesoporosity; in this case, the zeolite structure accounts for the improved  

kinetics [213]. Of the Ru/HZSM-5 and Ru/SiO2 catalysts, the former is more selective for CH4. This 

behavior can be explained by the higher amount of CO2 that is able to react with the OH groups of the 

zeolite, in addition to the stronger interaction between the metal and the support. Fourier Transform 

Infrared (FTIR) [214] on Ru/zeolite have shown that CO2 methanation takes place by the dissociative 

adsorption of CO to form COad and Oad, followed by conversion into CH4 and H2O. The hydrogenation 

of CO2 has been investigated in a dielectric barrier discharge (DBD) plasma reactor packed with 10 wt % 

Ni/zeolite pellets within a temperature range of 180–360 °C [215]. In this case, less than 15% CO2 

conversion was observed in the catalytic system; in comparison, the non-thermal plasma created in the 

catalyst bed increased the conversion of CO2 by more than 95%. These results suggest that the formation 

of a reactive species in the plasma reactor can speed up the rate-determining step of catalytic hydrogenation. 

The high conversion of CO2 was attributed to the smaller Ni particles and their uniform dispersal over 

the zeolite after the plasma reaction. The hydrogenation of CO2 involves the dissociation of CO2 to C-O 
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and O on the active site of Ni/zeolite [216,217]. Ni/USY and NiCe/USY zeolite catalysts [71] exhibit high 

conversion rates and selectivity for methane production during CO2 methanation. When using a large 

amount of Ni with a high proportion of Ni0, the conversion is favored. The presence of CeO2 after 

reduction might promote the activation of CO2 into CO. The zeolite catalyst shows no deactivation or 

sintering of the Ni metal particles. 

These results show that the performance of nanoporous catalyst materials depends on a variety of 

parameters, including particle size and shape, amount of metal, nature of the metal and the support, and 

evolution of the catalyst surface during thermal treatment. The role of a large pore/surface is crucial to 

ensure enhanced metal dispersion, high diffusivity and longer catalyst lifetime. An important aspect is 

the use of nanopores/nanocavities, which could favor the local increase of CO2 concentration—

nanoconfinement—and thus the consecutive conversion of intermediates with formation of CH4.  

5. Photocatalytic Reduction of CO2 into CH4 

To replace fossil fuels with fuels derived from recycled CO2, photovoltaics might be able to generate 

the energy necessary to produce these fuels. The photocatalytic reduction of CO2 with H2O, which is an 

important reaction, especially as a means of carrying out artificial photosynthesis, has been attempted in 

light of the importance of carbon storage [218].  

The first study carried out on the photocatalytic reduction of CO2 with H2O used TiO2 and SrTiO3 as 

photocatalysts [219] and yielded HCOOH, HCHO as the principal product, and CH3OH and CH4 in trace 

amounts. Furthermore, various semiconductors, such as tungsten trioxide (WO3), titanium dioxide (TiO2), 

zinc oxide (ZnO), cadmium sulfide (CdS), gallium phosphide (GaP), and silicon carbide (SiC) activated 

by both xenon- and mercury-lamp irradiation, have been used for such purposes [98]. Photocatalytic CO2 

reduction is more difficult to perform and delivers with a lower efficiency [220–223] due to the associated 

thermodynamics and kinetics. The reduction of CO2 by H2O to obtain methane is a highly endothermic 

process (±802 kJ·mol−1) and requires a significant amount of energy. This energy is later released during 

the oxidation of the fuel. The reaction mechanisms for CO2 reduction necessitate either the consecutive 

or simultaneous transfer of electrons and photons to the CO2. CO2 reduction utilizes electrons with higher 

reduction potential. The best-known catalysts for the photocatalytic reduction of CO2 with water are TiO2. 

It should be noted that TiO2 is not photoresponsive under visible light irradiation, limiting its use as a 

photocatalyst. To obtain a photoresponse in the visible region, TiO2 catalysts must be doped with  

metals [224–226], non-metals and oxygen vacancies [227,228] or noble metal doping must be  

used [229,230]. However, it has been observed that for reactions carried out in water, the doped 

photocatalysts present photoconversion but also lead to dopant metal leaching and catalyst deactivation. 

Excellent articles on these topics have also been published [98,218,231–240]. It has further been observed 

that the use of nanoparticle semiconductors can provide a higher activity for CO2 reduction compared to 

the corresponding bulk semiconductor [234]. It has been observed that the photocatalytic activity 

increased with the decreasing diameter of the TiO2 particles, although sunlight radiation was increasingly 

less utilized. However, when Pt was added to the TiO2, a “short-circuited photoelectrochemical cell” 

providing both oxidizing and reducing sites for the reaction developed [234]. Often, a clear distinction 

between the mechanisms of the photoreduction and photoelectrochemical reduction of CO2 is not 

possible, particularly when using metal-doped semiconductor materials. The reaction mechanism in the 
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photoreduction of CO2 involves two important species, the hydrogen atom and carbon dioxide anion 

radical, which is produced by electron transfer from the conduction band.  

Some investigations have pursued the development of highly dispersed transition metal oxides, such 

as Ti, V, Cr, Mo, inside micro- and mesoporous materials as nanophotocatalysts. Zeolites contain only 

isolated metal ions in their framework structures. These nanophotocatalysts can be excited under UV 

irradiation to form the corresponding charge-transfer excited states involved in electron transfer. The 

reactivities of charge-transfer excited states, i.e., electron-hole pair states, are responsible for photocatalytic 

reactions such as the reduction of CO2 with H2O to produce CH4 and CH3OH [218,241–243]. However, 

in the photocatalytic reaction, CO2 adsorbs onto the surface of the photocatalyst due to its microporosity, 

which permits the concentration of the substrate near reactive sites to increase and decreases the 

activation energy of the process. The use of microporous zeolites permits increased CO2 adsorption and 

can introduce diffusion through the pores. It has also been reported that CO, CH4, H2, and higher 

hydrocarbons can be produced during the photocatalytic reduction of CO2 on TiO2 surfaces in the 

presence of gaseous H2O [244]. In contrast, it is known that the octahedrally coordinated bulk TiO2 

photocatalyst is not selective for the photocatalytic reduction of CO2 with gaseous H2O. Instead, the 

selectivity of the photocatalytic reaction is favored on the tetrahedrally coordinated titanium dioxide 

photocatalysts of the silica matrix when the activity and selectivity are favored, leading to the significant 

formation of CH3OH [245–249]. Ti-containing micro- and mesoporous zeolites have exhibited efficient 

and selective photocatalytic reactivity for the reduction of CO2 with H2O using UV radiation. The 

hydrophobicity and hydrophilicity of zeolite are additional parameters that affect the activity and 

selectivity of the photocatalytic reduction of CO2 with H2O when attempting to produce CH4 and CH3OH 

through this reaction [218]. It has been shown that the competition between CH3OH and CH4 is governed 

by the hydrophobicity/hydrophilicity of β-zeolite, as studied for the photocatalytic reduction of CO2 with 

H2O at 50 °C. The activity of hydrophilic Ti–β–OH was found to be higher than that for hydrophobic 

Ti–β–F. However, the selectivity for the formation of CH3OH from Ti–β–F (41%) was higher than that 

from Ti–β–OH (11%). Ti–β–OH exhibited a higher reactivity compared to Ti–β–F, although its 

selectivity was different. On the hydrophilic Ti–β–OH zeolite, the selectivity for the formation of methane 

was higher than that with TS–1, Ti–β–F and P25. The selectivity for methane followed the order Ti–β–OH 

> TS–1 > Ti–β–F > P25. The higher activity of Ti–β–OH toward methane formation has been explained 

by the higher concentration of charge-transfer excited complexes. Furthermore, it has been shown 

previously [245,246] that the competitive interaction of CO2 and H2O molecules with the charge-transfer 

excited state of the tetrahedral titanium oxide species results in the formation of C radicals, H atoms, 

and OH radicals on the surface, while CH4 and CH3OH are formed by the reaction of C radicals with H 

atoms and OH radicals [245,246]. When using hydrophilic Ti–β–OH, the concentration of H2O is 

significantly higher than that obtained with hydrophobic Ti–β–F, leading to a higher selectivity for the 

formation of methane. A higher selectivity for methane was also observed on Ti/FSM–16 [218], while 

the use of fluorinated Ti/FSM–16 led to the higher formation of CH3–OH, even though the formation of 

methane was a major reaction pathway in both cases. 

A Ti/Y zeolite containing tetrahedral isolated sites was tested for the photocatalytic reduction of CO2 

in the presence of water using UV light from a high-pressure Hg lamp (>280 nm) at 55 °C [246,247]. The 

tetrahedrally arranged Ti sites formed methanol with methane as the major product, while the Pt/Ti–Y 

zeolite selectively formed methane. In this case, CO was an apparent intermediate for the reduction of 
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CO2, although H2 was not. It is possible that the water was oxidized to OH and H+ and that the Pt sites 

likely worked to suppress charge recombination [246]. Similarly, Ti–MCM–48 produced both methane 

and methanol, although Pt/Ti–MCM–48 was found to be the most active catalyst and selectively  

formed methane [247]. Ti–SBA–15 also produced methane and methanol, where methane was the major 

product [248–250]. The methane yield of highly dispersed tetrahedral isolated sites of titanium 

nanophotocatalyst was increased 300 times as compared to crystalline TiO2. The activity was attributed to 

photo-excited Ti centers generated by a Ligand to Metal Charge Transfer transition (Ti+IV − O−II→Ti+III − 

O−I) upon light absorption [248]. Pt-loading on the Ti-containing zeolite catalyst leads to an efficient 

quenching of the photoluminescence, accompanied by the shortening of its lifetime [235]. The reaction 

mechanism in the photocatalytic reduction of CO2 with H2O on the highly dispersed Ti oxide catalyst can 

be proposed to occur as follows: CO2 and H2O molecules interact with the excited state of the  

photo-induced (Ti3+ − O−)� species, and the reduction of CO2 and the decomposition of H2O proceeds 

competitively. Furthermore, H atoms and OH• radicals are formed from H2O and these radicals react 

with the carbon species formed from CO2 to produce CH4 and CH3OH [235]. The reaction mechanism in 

the photoreduction of CO2 involves two important species, the carbon dioxide anion radical (CO2 + e− → 

CO2) and hydrogen atom (H+ + e− → H), which is produced by electron transfer from the conduction 

band. Multielectron reactions compete with these reactions (Figure 3). As observed from Figure 3, the 

thermodynamic potential of CO2 reduction decreases even if several electrons and protons could be 

simultaneously transferred in pairs to CO2. It is kinetically unfeasible for the reactions where all protons 

and electrons needed to form CH4 and H2O are transferred in a single step. This suggests that the 

appropriate photocatalyst should have photocatalytic centers in which sites transferring electrons are 

close enough to other sites acting as acids and transferring at least one proton according to Figure 3. 

 

Figure 3. Photocatalytic reduction of CO2 to fuels [98,220,221,232].  

In this case an efficient photocatalyst should have appropriate catalytic sites where chemical redox 

processes leading to the desired products could take place with low activation barriers. The basic sites 

and porosity can play a favorable role in the photocatalytic process by increasing the concentration of 

HCHO
(ɛ°red = -0.48V)

CO2

HCOOH
(ɛ°red = -0.61V)

CO + H2O

(ɛ°red = -0.52V)

+2H+
+2e-

+4H+
+4e-

+6H+
+6e-

+8H+
+8e- CH4 + 2H2O

(ɛ°red = -0.24V)

CH3OH + H2O
(ɛ°red = -0.38V)



Molecules 2015, 20 5651 

 

 

the substrate near the reactive sites and by decreasing the activation energy of the process. It must be 

noted that the solubility of CO2 in water is low, and the CO2 photoreduction reaction competes with 

H2O2 and H2 formation, as follows: 

2H2O + 4h+ → O2 + 4H+ (27)

4H+ + 4e− → 2H2 (28)

O2 + 2H+ + 2 e− → H2O2 (29)

Methanol and formaldehyde are the easier products of CO2 reduction in water solution. If the water 

is replaced by the other reductants such as low-polarity solvents or low-dielectric constant solvents, CO 

is formed as the major product. CO2 anion radicals are strongly adsorbed on the surface through the 

carbon atom of another CO2 anion radical because these radicals are not well dissolved in low-polarity 

solvents [98]. When a high-dielectric constant solvent is used, formic acid is formed as a major product, 

because the CO2 anion radicals can be greatly stabilized by the solvent, resulting in weak interactions 

with the photocatalyst surface and the carbon atom of the radical reacts with a proton to produce formic 

acid. In order to the increase water solubility, basic pH values are necessary, but this converts CO2 into 

CO3
2− or HCO3

− that are more stable and more difficult to reduce than CO2 itself. Consequently, it could 

be of interest to study other solvents or to perform CO2 reduction in the gas phase [98]. 

6. Conclusions 

This review summarizes recent studies performed on the methanation of CO2 on nanoporous 

materials. Although our knowledge of nanoporous materials is relatively well developed, several challenges 

remain with respect to their use in methanation processes. This review has presented an extensive series 

of investigations of CO2 methanation over various catalysts. The best results concerning the 

activity/selectivity and the lifetime of catalysts have been obtained for Ru and Rh. However, the high 

costs associated with these catalysts impedes their use at large scale, such as commercial applications. Ni is 

the best alternative candidate due to its high selectivity for methane production. The role of the support 

dominates the catalyst design in terms of developing an efficient methanation catalyst, specifically with 

respect to ensuring enhanced metal dispersion and a long catalyst lifetime. For this reason, nanoporous 

materials provide the best supports for Ni (Ru, Rh, Co, Fe) particles because they can prevent sintering 

and deactivation through coking, which otherwise blocks the metal surface as carbon accumulates. 

Because the methanation reaction is extremely exothermic, the excessive heat of reaction induces metal 

sintering, which lowers the overall metal surface area and leads to the poor activity observed for the 

classical supports. Thus, it is necessary that we develop an efficient, low-temperature methanation 

catalyst with high thermal stability and coke formation resistance.  

Many investigations have focused on CO2 methanation, but significant effort must still be made in 

the coming years to understand the fundamental reaction mechanisms in order to improve the activity 

and the selectivity of catalysts for methane. The results of our study have demonstrated that there remains 

a lack of a conceptual framework regarding nanoporous catalysts and that we must enhance our 

understanding of the nanoarchitecture of the active sites to improve the catalytic and photocatalytic 

selectivity of nanomaterials toward methane. Furthermore, the results show that the use of highly dispersed 

small particles on supports with high surface areas and highly dispersed tetrahedrally coordinated sites 



Molecules 2015, 20 5652 

 

 

serve as the active sites for high methane selectivity. The use of nanoporous catalysts is one of the most 

promising approaches in the design of efficient local structures for catalysts at the molecular level, 

toward the development of effective methanation catalysts. 
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