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Abstract
Mitochondria, long known as the cell powerhouses, also regulate redox signaling and arbi-

trate cell survival. The organelles are now appreciated to exert additional critical roles in cell

state transition from a pluripotent to a differentiated state through balancing glycolytic and

respiratory metabolism. These metabolic adaptations were recently shown to be concomi-

tant with mitochondrial morphology changes and are thus possibly regulated by contingen-

cies of mitochondrial dynamics. In this context, we examined, for the first time,

mitochondrial network plasticity during the transition from proliferating neural progenitors to

post-mitotic differentiating neurons. We found that mitochondria underwent morphological

reshaping in the developing neural tube of chick and mouse embryos. In the proliferating

population, mitochondria in the mitotic cells lying at the apical side were very small and

round, while they appeared thick and short in interphase cells. In differentiating neurons, mi-

tochondria were reorganized into a thin, dense network. This reshaping of the mitochondrial

network was not specific of a subtype of progenitors or neurons, suggesting that this is a

general event accompanying neurogenesis in the spinal cord. Our data shed new light on

the various changes occurring in the mitochondrial network during neurogenesis and sug-

gest that mitochondrial dynamics could play a role in the neurogenic process.

Introduction
Mitochondria are not only key energy-generating organelles that participate in numerous bio-
synthetic and metabolic pathways, but also crucial regulators of apoptosis [1]. Recent studies in
stem cells demonstrated that mitochondria also play critical roles in cell state transition. Using
in vitromodels, it was indeed reported that the transition from a pluripotent to a differentiated
state is reversible and partly controlled by the balance between glycolytic and respiratory me-
tabolism [2,3]. Embryonic and adult pluripotent stem cells are characterized by a high activity
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of glycolytic enzymes accompanied by a low mitochondrial mass and mtDNA content [4,5].
This maintenance of a glycolytic state in progenitors preserves them from oxidative damage
and contributes to committed differentiation [2,6]. The later switch to oxidative phosphoryla-
tion better fits the high energy demand of differentiating cells [2]. Accordingly, repression of
oxidative metabolism and activation of glycolysis are an obligatory steps for adult cells repro-
graming into iPS [3,7,8]. Of recent interest, mitochondrial morphology changes come with
these reversible metabolic adaptations and are thus possibly regulated by contingencies of mi-
tochondrial dynamics [4,9].

The plasticity of the mitochondrial network relies on fission and fusion processes of outer
and inner membranes that control mitochondrial morphology. When fission prevails, mito-
chondria appear as dots, whereas when fusion predominates, mitochondria form a filamentous
and interconnected network. Furthermore, this mitochondrial dynamics allows immediate ad-
aptation of the organelles to energetic needs, keeping mitochondria in good health by restoring
or removing damaged organelles or precipitating apoptosis in cases of severe defects [10,11].

Mitochondrial dynamics results from the balance between the opposing forces of two dis-
tinct machineries: one involving Mitofusins 1 and 2 (MFN1/2) and OPA1 for fusion and the
other involving DRP1 for fission. Knocking out DRP1 or MFN1/2 genes, as well as homozygous
OPA1 mutations, in mouse models induces midgestation embryonic lethality [12–16], demon-
strating the major contribution of mitochondrial dynamics to development. However, while
this regulatory process is common to many cell types, the association of OPA1 and MFN2 mu-
tations with severe human neuropathies underlines the singular importance of mitochondrial
dynamics in neurons [17,18]. Accordingly, conditional brain-specific DRP1 or MFN2 ablation
in mice led to numerous defects in central nervous system development [15,16,19]. Neural cell-
specific DRP1-/- mice display a smaller forebrain [15] and a smaller cerebellum, with completely
smooth surfaces [16]. Furthermore, targeted deletion of DRP1 induced neurodegeneration in
post-mitotic Purkinje cells [20]. Conditional specific MFN2 knockout led to massive post-natal
Purkinje cell degeneration [19] and a severe loss of dopaminergic axonal projections in the stri-
atum [21]. Finally, in both primary neurons from these mice models, neuritogenesis and synap-
togenesis were impaired as they were in wild-type neurons in which effectors of mitochondrial
dynamics were inactivated [15,20,22–25]. Altogether, these data suggest that mitochondrial dy-
namics plays an essential role in neuronal differentiation and maturation.

Although evidence has begun to accumulate indicating that mitochondrial dynamics play a
crucial role in the metabolic adaptations observed during the transition from a multipotent
neural progenitor state to a differentiated state [4,9], a clear picture of the mitochondrial mor-
phology changes accompanying the transition from proliferating progenitors to post-mitotic
differentiating neurons is still missing. To fill this gap, we analyzed mitochondrial morphology
using the paradigm of the developing neural tube of chick and mouse embryos at the prospec-
tive spinal cord level. The spinal cord develops from a caudal stem zone containing uncommit-
ted progenitors. Progenitors leaving the stem zone form the neural plate folding into the neural
tube. The neural tube presents the advantage of a simple anatomical organization, with prolif-
erating progenitors confined to the ventricular zone and differentiating neurons located at the
periphery in the mantle zone. The ventricular zone is a pseudoepithelium where neural progen-
itors display an elongated shape, with cytoplasmic connections both to the apical and basal sur-
faces and nuclei performing oscillatory movements in phase with the cell cycle; i.e., interkinetic
nuclear migration [26]. Upon the action of intrinsic and environmental signals, successive
waves of neural progenitors are committed to a neuronal fate and exit the cell cycle. After their
last mitosis at the apical side, these committed cells migrate out of the ventricular zone toward
the mantle zone, where they differentiate into neurons. The molecular networks orchestrating
these neurogenesis steps in the developing neural tube are well known [27,28] and numerous
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markers allow identifying specific populations of neural progenitor cells and their correspond-
ing neuronal subtypes.

Material and Methods

Embryos
All animal procedures were approved by the CNRS/Fédération de Recherche de Biologie de
Toulouse Animal Experimentation Ethics Committee (C2EA-01) under the protocol number
01024–01.7. The study was carried out in compliance with the European Policy on Ethics. Fer-
tile hen eggs (from Gallus gallus), obtained from a local supplier (SCAL l’Isle Jourdain, France),
were incubated at 38°C in a humidified chamber for the appropriate duration to yield embryos
of Hamburger and Hamilton stages HH10 and HH20 (days E1.5 and E3.5 of development, re-
spectively). C57Bl6 mouse embryos were isolated at E10 after detection of vaginal plugs.

Cell culture and mitotracker labeling
The HeLa cell line was purchased from the ATCC and cultured in DMEM (GIBCO) supple-
mented with 10% FCS (Gibco). The DF1 cell line (UMNSAH/DF-1, ATCC CRL-12203, kind
gift of Gaël Orieux, UPMC, Institut de la Vision, Paris, France) was cultured in DMEM supple-
mented with 5% FCS and 5% chick serum (Gibco).

Mitochondria were labeled by incubation of the cells for 40 min with the Mitotracker Red
probe (Invitrogen) at 0.1 μM in culture medium. Cell nuclei were detected by Hoechst (Sigma)
post-fixation labeling.

Electroporation
We used the Mito-DsRed expression vector that encodes DsRed2 protein (Discosomosa sp.) in
fusion with the Mitochondrial targeting sequence of the human COX-subunit VIII, placed
under the control of the pCMV promoter. In ovo electroporations were performed as previous-
ly described [29] in E1.5 day-old chicken embryos. Electroporated eggs were incubated at 38°C
for 2 days, and E3.5 embryos were processed for immunodetection.

Antibodies
Mitochondria were labeled by immunofluorescence using a mouse antibody specific for the
human ATP-synthase (Molecular Probes) or a mouse antibody cocktail specific for the rodent
OXPHOS complexes (MitoProfile Total OXPHOS, Mitosciences), or rabbit antibody specific
for the human TOM20 mitochondrial protein (Santa-Cruz). Neural progenitor domains were
labeled by immunofluorescence with either anti-Pax6 (Covance) or anti-Olig2 (Upstate Milli-
pore) polyclonal antibodies, and mitotic progenitors with anti-P-H3 epitope antibodies (Up-
state Millipore) or MPM2 (Mitotic Protein Monoclonal#2, Upstate Biotechnology), which
recognizes phosphorylated epitopes at the onset of mitosis. Antibodies directed against the
neuronal beta3-tubulin (Sigma) or JC7 (a gift from J. Covault), were used to identify differenti-
ating neurons. SR101-Phalloidin that labels cortical actin in the whole tissue was used to visual-
ize overall cell morphology and DAPI (Sigma) to label nuclear DNA. For Western blot
experiments, antibodies against Actin (Chemicon), HSP60 (LK2, Sigma), OXPHOS (Mitos-
ciences), DRP1 and OPA1 (BD-Biosciences), and MFN2 (Abnova) proteins were used.

Primary antibodies were detected using either fluorochrome-tagged secondary antibodies
coupled to Alexa 488, 596 or 647 for immunochemistry or HRP-conjugated secondary anti-
bodies for Western blot experiments (Abcam).
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Immunochemistry
Embryos were dissected and fixed for 3 h (chick) or 12 h (mouse) in a 3.7% v/v formaldehyde/
PBS solution. Briefly, floating 50-μm vibratome sections were immunostained by successive in-
cubations with the primary antibodies overnight at 4°C, the secondary antibodies for 4 h at
room temperature, and rinsing steps. Images were acquired on confocal SP2 or SP8 micro-
scopes (Leica) using X20, X40, and X63 oil objectives.

For immunofluorescence analysis, HeLa and DF1 cells were seeded on glass coverslips and
cultured until reaching approximately 80% confluence. After fixation in a 3.7% v/v formalde-
hyde-PBS solution for 20 min and permeabilization in a 0.5% v/v Triton-X100-PBS solution
for 10 min, cells were processed for OXPHOS labeling as described [24].

Western blot
Protein extracts were prepared from E1.5 and E3.5 chick neural tubes and from HeLa and DF1
cultured cells. Tissue and cell lysis was performed in 50 mM Tris pH 7.5, 5 mM EDTA, 5 mM
EGTA, 300 mMNaCl, 1% NP40, 1 mM PMSF lysis buffer, and 100-μg samples of clarified pro-
tein lysates were submitted to SDS-PAGE. Immunodetection of Actin, HSP60, OXPHOS,
DRP1, OPA1 and MFN2 proteins was performed as previously described [24].

Results

Antibodies directed against mitochondrial respiratory complexes allow
detecting mitochondria in the chick embryo
In order to visualize mitochondria in the chick neural tube, we used the OXPHOS antibody
cocktail directed against one subunit of each of the 5 mitochondrial mammalian respiratory
complexes. We first verified the cross-reactivity of this antibody by Western blot using chick-
en-derived fibroblasts (DF1 cells) as well as neural tubes dissected from E3.5 embryos. The ex-
pected proteins from the 5 complexes were detected in human epithelial HeLa cell extracts, but
only those from complexes V, III, and II were clearly visualized in both DF1 cells and neural
tubes extracts (Fig 1A). We next compared the signal obtained by immunocytochemistry in
HeLa and in DF1 cells (Fig 1B). As expected, the OXPHOS antibody cocktail labeled a filamen-
tous mitochondrial network in HeLa cells [30]. In DF1 cells, the OXPHOS signal was clearly
similar to the MitoTracker staining, which specifically labeled filamentous mitochondria (Fig
1B). Finally, we electroporated the mitochondria-targeted fluorescent protein-encoding vector
Mito-DsRed in E1.5 embryos and performed immunodetection with the OXPHOS antibody
cocktail at E3.5. Fig 1C shows that OXPHOS staining extensively co-localized with the red
“mosaic” signal indicative of mitochondria in electroporated cells. Altogether, these results in-
dicated that the OXPHOS antibody cocktail was suitable for analyzing mitochondrial morphol-
ogy in the chicken neural tube.

Mitochondrial morphology changes during embryonic neurogenesis in
the chicken neural tube
To compare the mitochondrial morphology in neural progenitors versus differentiating neu-
rons, we used E3.5 embryos because numerous proliferating neural progenitors are still present
in the ventricular zone, while differentiating neurons accumulate in the mantle zone. To pre-
cisely analyze the changes occurring in the mitochondrial network related to cell differentia-
tion, we focused on progenitors of motor neurons (pMNs) and their corresponding
differentiating motor neurons (MNs), easily traceable with specific markers and confined to
the ventral part of the spinal cord. The pMNs were identified using an antibody directed
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against the transcription factor Olig2. Differentiating MNs were labeled using the BEN/SC1/
DM-GRASP antibody (named JC7), which recognizes a glycoprotein of the immunoglobulin
superfamily on motor neurons and on sensory neurons located outside the spinal cord. We
also used phalloidin to detect F-actin and to visualize the morphology of the cell.

OXPHOS immunodetection in pMNs and differentiating MNs revealed a clear difference in
mitochondrial morphology. In pMNs, mitochondria appeared as short and thick well-delineat-
ed elements (Fig 2A), distinctly detected around the nucleus. In differentiating MNs, mito-
chondria were unambiguously thinner, elongated, and organized into a more complex and
denser network (Fig 2B). The same observations were made in the population of spinal progen-
itors expressing the transcription factor Pax6 fated to differentiate into interneurons (Fig 2C)
and in differentiating neurons visualized using the pan-neuronal marker beta3-tubulin (Fig
2D). We confirmed these observations with an antibody directed against another mitochondri-
al protein, TOM20, located in the outer mitochondrial membrane, which gives a signal fully su-
perimposable with OXPHOS staining (Fig 3A–3C). Altogether, these data indicate that
mitochondrial morphology changes at the transition from neural progenitors to differentiating
neurons and that this shape modification is a generic event associated with neurogenesis rather
than specific to a subtype of neurons.

Fig 1. The OXPHOS antibody labels respiratory complex proteins in Western blots and immunocytochemical experiments. (A) Representative
immunoblot of OXPHOS antibody labeling, showing the expected 5 proteins in HeLa cells extracts, and proteins from the V, III, and II complexes in chicken
DF1 fibroblasts. (B) Fluorescent micrographs of OXPHOS labeling showing green filamentous mitochondria in HeLa cells (upper left panel) and chick DF1
fibroblasts (lower left panel). MitoTracker staining of DF1 cells depicts a red mitochondrial network (lower right panel) superimposed on the green OXPHOS
staining (upper right panel) (scale bar 10 μm). (C) Confocal micrograph of a transversal section from a E3.5 chicken neural tube showing OXPHOS-
immunostained mitochondria (green) and a mosaic staining of Mito-DsRed-labeled mitochondria on the left side (red) (scale bar 50 μm). Higher magnification
at the level of the ventricular zone illustrates the co-localization of the Mito-DsRed (red) and OXPHOS staining (green) (scale bar, 20 μm).

doi:10.1371/journal.pone.0128130.g001
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In the proliferating progenitor population, cells are either in interphase or in mitosis, divid-
ing into two daughter cells. We did not detect any difference in interphasic cells suggestive of
mitochondrial rearrangements within G1, G2 and S phases. However, in mitotic cells, located
apically and identified using P-H3 or MPM2, the morphology of mitochondria was strikingly

Fig 2. Mitochondrial reshaping accompanies neuronal differentiation in the chicken neural tube.
Panels A through E represent confocal micrographs of green OXPHOS-stained mitochondria in E3.5
transversal sections (scale bar 50 μm), magnified in the mid- and right-side panels (scale bar 10 μm). In
panels A, C, and E, SR101-Phalloidin signaling (red) was used to mark the cellular contours. Neuronal
progenitors, immunolabeled either with Olig2 for future motor neurons (A, blue) or Pax6 for future
interneurons (C, blue), contain short and thick mitochondria. In panel B, JC7-immunodetection (purple)
delineates the surface of differentiating motor neurons endowed with a longer and denser mitochondrial
network. In panel D, the mitochondrial network of beta3-tubulin-stained differentiating neurons (purple) is also
long and dense. In panel E, P-H3-immunostained (blue) mitotic progenitors are shown to contain very small
and round mitochondria.

doi:10.1371/journal.pone.0128130.g002
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different than in interphase progenitors as shown using either OXPHOS (Fig 2E) or TOM20
staining (Fig 3D). They appeared as very small and round dots distributed around the con-
densed chromosomes. This indicates a drastic reshaping of the mitochondrial network occur-
ring in mitosis.

Mitochondrial morphology changes during neurogenesis in the mouse
neural tube
To broaden our findings, we verified if the different mitochondrial morphological characteris-
tics observed in the chicken neural tube were also observed in the developing mouse embryo.

Fig 3. Immunodetection of the outer mitochondrial membranes TOM20 reveals the same changes in
mitochondrial morphology than OXPHOS. Panels A to C represent confocal micrographs of TOM20 (red)
and OXPHOS (green) mitochondria staining in cross-sections of the spinal cord of E3.5 chick embryo. Panel
A is a low magnification indicative of the enlargement positions shown in B (left) and C (right). In panel B
neural progenitors display short and thick labeled-mitochondria (black and white). In panel C differentiating
neurons show a longer and denser mitochondrial network (red or green). Note the evident overlay of the two
red and green stainings (left panels). Scale bars, 20μm. Panel D illustrates the TOM20-labeled very small
and round mitochondria (red) observed in mitotic cells (white arrows) stained with MPM2 antibody (green).
Scale bars, 20μm.

doi:10.1371/journal.pone.0128130.g003
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We thus used an antibody specific for the 5th mitochondrial respiratory complex, ATP-
synthase, which specifically labels mitochondria (S1 Fig) and appeared more suitable than the
whole OXPHOS cocktail for this tissue in terms of signal/noise ratio. We analyzed mouse em-
bryos at the E10 development stage, which corresponds to the E3.5 stage in chicken embryos.
As in the chick neural tube, short and thick mitochondria were observed in the mouse neuroe-
pithelium along the whole ventro-dorsal axis of the neural tube, including Olig2-labeled subdo-
mains (Fig 4A). Conversely, in the mantle zone, the beta3-tubulin-labelled differentiating cells
contained elongated and branched mitochondria (Fig 4B), in the population of spinal MNs as
well as in inter-neurons (data not shown). Very small and round mitochondria were again ob-
served in the P-H3-labelled mitotic progenitors (Fig 4C). These observations indicate that this

Fig 4. Mitochondrial reshaping accompanies neural progenitor differentiation in the mouse neural
tube. Panels A to C represent confocal micrographs of green ATP synthase-stained mitochondria in E9.5–10
neural tube transverse sections (scale bar 50 μm), magnified in the mid- and right-side panels (scale bar
10 μm). In panel A, Olig2-stained neuronal progenitors (blue), future motor neurons, contain short and thick
mitochondria. In panel B, beta3-tubulin-stained (purple) differentiating neurons are endowed with a longer
and denser mitochondrial network. In panel C, P-H3-stained (blue) mitotic progenitors are shown to contain
very small and round mitochondria.

doi:10.1371/journal.pone.0128130.g004
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change of shape accompanying spinal neurogenesis is conserved between chick and mice spe-
cies, suggesting that it is a common property of vertebrate neural cells.

A progressive rearrangement of the mitochondrial network accompanies
neural progenitors maturation
Our observations underlined a morphological change in mitochondria morphology accompa-
nying the transition from neural progenitors to differentiating neurons. To complete our data,
we then asked if mitochondrial morphology was conserved during the main temporal steps of
neural progenitors maturation. We thus stained E1.5 embryos with TOM20 antibodies and an-
alyzed mitochondrial shape at different rostro-caudal levels: in the caudal stem zone containing
uncommitted progenitors (Fig 5A and 5D); in the caudal neural plate where cells are commit-
ted to the neural fate (Fig 5A and 5C) and in the more mature young neural tube (Fig 5A and
5B). As observed at E3.5, proliferating progenitors from all these rostro-caudal levels at E1.5
also display numerous short and thick mitochondria (5A–5D). The main difference noticed is
a re-arrangement of these thick mitochondria within the cells as progenitors become more ma-
ture. Indeed, in the caudal stem zone, mitochondria appeared tightly packed (Fig 5D), while
displaying a more organized and delineated network in the neural tube (Fig 5B); an intermedi-
ate situation was observed at the level of the caudal neural plate (Fig 5C). Together with the ex-
periments made at E3.5, these observations indicate that thick and short mitochondrial
morphology is a general feature of neural progenitors, and that mitochondria rearrange con-
comitantly with the maturation of progenitors in the developing neural tube.

Changes in mitochondrial morphology are not related to major changes
in fission and fusion protein levels
Changes in mitochondrial morphology could be due to a differential expression of the proteins
that mediate fission and fusion. We therefore compared the quantities of the fusogenic MFN2
and OPA1 proteins and of the fission protein DRP1 in E1.5 chick neural tubes, containing
mostly cycling neural progenitors, with those in E3.5 neural tubes, which contained numerous
neurons, using Western blotting (Fig 6). At both stages, MFN2 and DRP1 proteins appeared as
single bands, while OPA1 staining displayed the classical isoforms (Fig 6) [30]. The only differ-
ence we observed is an approximately 1.5-fold increase in the expression of the longest isoform
of OPA1 (159 ± 31%); however, the difference did not reach statistical significance (p = 0.063).
At both stages, labeling with two specific mitochondrial antibodies gave the same pattern (Fig
6). No difference of OXPHOS and HSP60 levels was detected, suggesting that mitochondrial
biomass and respiratory complexes quantities increased to the same extent than the total pro-
tein amount and actin between E1.5 and E3.5.

Discussion
Here, we investigated the morphology and distribution of mitochondria in the neural tube of
E1,5, E3.5 chicken and E10 mouse embryos upon neurogenesis. We report the first in vivo evi-
dence that mitochondria undergo morphological reshaping correlating with the transition
from proliferating neural progenitors to differentiating neurons. In the proliferating ventricular
zone, mitochondria in the mitotic cells lying at the apical side were very small and round, while
they appeared short and thick in interphase cells. In contrast, in differentiating neurons, mito-
chondria formed a thin and dense network. This reorganization of the mitochondrial network
is not specific of a subtype of progenitors or neurons, suggesting that this is a general event ac-
companying neurogenesis in the spinal cord.
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In agreement with previously reported in vitro studies, we observed that mitochondrial
morphology in neural progenitors varied between interphase (G1/S/G2 phases) and mitosis.
Mitochondrial fission has indeed been reported to be increased during mitosis through the ac-
tivating phosphorylation of DRP1 by the mitotic kinase CDK1/cyclin B [31], while the recovery
of longer mitochondria when exiting mitosis was regulated by the anaphase-promoting com-
plex-dependent DRP1 ubiquitination and degradation [32].

Neural progenitors contain short and thick mitochondria, which progressively display a
more delineated morphology with neuroepithelium maturation. The low complexity of the mi-
tochondrial network in the neuroepithelium is reminiscent of what was described for many
pluripotent cell types in vitro [33]. These cells contain rare, short and small perinuclear mito-
chondria and are characterized by a glycolytic metabolism that limits ROS production and

Fig 5. Rearrangement of mitochondria in maturating neural progenitors. (A) Dorsal view of E1.5 (stage-10HH) chick embryo; (B-D) cross-sections of
panel A. Images in the center and right-hand lanes are enlargements from images in the left lane. (B) TOM20 (red or white) and DAPI (blue) show the well
delineated and organized mitochondrial network around the nuclei in the neural tube (Scale bars, 20μm left and mid panels; 10μm right panel). Panels C and
D are confocal micrographs of TOM20-stained mitochondria (red and white) and DNA (DAPI, blue) in younger progenitors located respectively in the caudal
neural plate (C) and in the caudal stem zone (D). Arrows in B and C point to a mitosis and arrows in D point highly packed mitochondria (Scale bars, 20μm left
panel; 10μm, mid and right panels).

doi:10.1371/journal.pone.0128130.g005
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oxidative damage [3,4]. Accordingly, reactivation of glycolysis, which is an obligatory step for
adult cells reprograming into iPSCs, occurs with mitochondrial shortening and degradation
[3]. Thus, the low complexity of the mitochondrial network that we observed in vivo in the
neuroepithelium could be related to a glycolytic state.

Upon neurogenesis, progenitors exit the cell cycle, delaminate basally and then migrate into
the mantle zone, where they start to develop neuritic processes. We showed that this transition
from proliferating progenitors to differentiated neurons is accompanied by an increase in mito-
chondrial length and network density. This morphological transition could be related to an in-
creased expression of the long OPA1 fusogenic isoform [34] in differentiating cells of E3.5
chicken neural tubes, as well as to post-translational modifications known to regulate the func-
tion of mitochondrial dynamics actors but undetectable in our experiment [35] So, as previous-
ly demonstrated in vitro, neuronal differentiation in vivo seems to occur with mitochondrial
biogenesis and fusion, altogether evocative of a metabolic shift from glycolysis to oxidative
phosphorylation [4,5,11,36]. As previously described [37,38] this mitochondrial filamentation
could allow mitochondria to reprogram into more efficient ATP providers able to fulfill the
high energy demands of differentiating cells. Newborn neurons could thus be energized to en-
gage in axonogenesis and competition for neurotrophic factors during neuronal growth [39,40].

To conclude, our data shed new light on the various changes occurring in the mitochondrial
network along with spinal neurogenesis. These findings suggest that mitochondrial dynamics
could play a role in the neurogenic process. Interestingly, a possible causal link between this
process and molecular pathways controlling embryonic stem cell differentiation was recently
reported. Experimental ablation of OPA1/MFN2 fusogenic proteins was indeed shown to im-
pair differentiation of ESC into cardiomyocytes via calcineurin and Notch signaling [11]. Fur-
thermore, Notch signaling was recently shown to control both glycolysis and mitochondrial

Fig 6. Differential expression of effectors of mitochondrial dynamics in E1.5 and E3.5 chicken neural tube extracts. Representative immunoblot
showing the expression of the mitochondrial dynamics proteins, DRP1, MFN2 and OPA1, as well as mitochondrial respiratory complexes V, III and II and
HSP60 protein in E1.5 and E3.5 chicken neural tubes extracts, with actin used as control. While DRP1 and MFN2 are represented as single bands of similar
intensities at both ages, staining of the OPA1 isoforms reveals an increase in the longest isoform in the E3.5 extract compared with the E1.5 extract.

doi:10.1371/journal.pone.0128130.g006
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activity [41,42]. Thus, during neural tube development, mitochondrial dynamics could contrib-
ute to, and act with, the Notch pathway [43], well-known to control the balance between pro-
genitor maintenance and differentiation in the developing nervous system [44]. Beyond the
nucleus-driven decisions, mitochondrial differentiation could thus pave the way for growth/
differentiation factor-dependent processes.
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