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A Proper Generalized Decomposition-Based Solver
for Nonlinear Magnetothermal Problems

Zhi Qin, Hakeim Talleb, and Zhuoxiang Ren

Sorbonne Universités, University Pierre et Marie Curie–Université Paris 06, Paris F-75005, France

This paper investigates solving coupled magnetothermal problems through a proper generalized decomposition-based
non-incremental approach. The magnetodynamic and thermodynamic problems are strongly coupled as the electric material property
changes with the temperature while the temperature field evolves due to the Joule heat generated by induced currents. A challenge
to solve the coupled problem is that the electric time constant can be several orders of magnitude smaller than the thermal one.
Solution through a classical time integration approach requires too many time steps, especially when a long duration needs to be
simulated, hence making the problem size too large to be handled. The proposed solver overcomes this difficulty through decomposing
unknown dynamic fields into the space and time modes and solving the linearized systems in space and time iteratively, using the
finite element method. The material nonlinearity can be incorporated in a straightforward way. The advantages of the proposed
solver are demonstrated in solving an academic problem.

Index Terms— Finite elements in space and time, magnetothermal coupling, model reduction, proper generalized
decomposition (PGD).

I. INTRODUCTION

NUMERIC simulation plays an important role in studying
time-dependent physics problems. Classical strategies

to conduct such simulations consist of discretizing the
model in space and solving the resultant ordinary differential
equations (ODEs) with time integration. It can be inap-
plicable in the cases where a large number of time
steps is involved or a huge amount of results needs to
be stored [1]. An alternative way is to project the ini-
tial model onto a reduced basis and solve a system of
smaller size, which effectively alleviates computing bur-
dens. The idea is realized thanks to the proper generalized
decomposition (PGD) method [2] and developed into the
so-called non-incremental space–time separation method [3].

In general, the reduced basis of the dynamic problem can be
constructed either a posteriori or a priori. When constructed
a posteriori, the initial problem needs to be solved, after which
reduced basis can be obtained through the decomposition of
the calculated results into the space–time modes. Techniques,
such as the singular value decomposition (SVD) or the proper
orthogonal decomposition [4], can be employed for such
purposes. For constructions a priori, the pre-calculation of
the unknown fields is unnecessary. Instead, the unknowns
are assumed as a sum of space–time modes that can be
obtained through an enrichment process. Each enrichment step
consists of calculating one pair of space and time modes
simultaneously. Iterations in the enrichments usually converge
in a moderate number of steps, leading to a significant decline
in the problem size compared with the conventional meth-
ods [2]. Moreover, the representation of unknown dynamic

 especially on mechanics. For instance, it is employed to solve 
the problems of rheology [5], viscoelasticity [6], fluid flow 
[7], and elastodynamics [8]. A dedicated review is found in 
[4]. In the electromagnetic community, the applications of 
PGD on the magnetostatic field problems are now available 
[9].

Nevertheless, applying the new methodology to the cases
where dynamic electromagnetic fields are involved remains
to be exploited. Meanwhile, dynamic multi-physics problems
with distinct time constants are very common. Taking the cou-
pled magnetothermal problem, for instance, both the magnetic
and thermal fields depend on each other, since the material
properties are temperature dependent and that time varying
magnetic fields induce eddy current in the conducting area
which, in turn, generates heat and affects the temperature field.
The difference between the characteristic time constants of
the fields can be very large, particularly for high-frequency
current exciting cases. Solving the coupled problem with time
integration requires the time steps to be set according to the
smallest time constant that can be very small. For example, to
simulate temperature rise due to a 1 kHz source current during
1 min needs at least 6×105 steps with a minimum of ten time
steps per period, regardless of extra steps stemming from the
material nonlinearity. For realistic large-size 3-D cases, the
time integration approach is apparently impractical. Solving
the problem in frequency domain using the harmonic balance
method [10] providing an alternative though the calculating
burden may not be significantly decreased.

In this paper, a non-incremental solver applying the space–
time separation strategy to such magnetodynamic multi-
physics problems is developed. In addition to a huge potential
of reducing calculating costs, the proposed solver provides
a convenient way to account for the temperature depen-
dence of material properties. The remaining sections are

fields over the whole space–time domain can then be achieved 
with the obtained modes, whose size can be much smaller 
than that obtained with a classical solver. The PGD-based 
space–time separated method witnessed many applications,  
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organized as follows. In Section II, the coupled problem is
presented. A conventional time integration approach is recalled
in Section III. The non-incremental solver is introduced
in Section IV, followed by numerical examples in Section V.
Section VI provides the concluding remarks and perspectives.

II. COUPLED NONLINEAR DYNAMIC PROBLEM

A. Magnetic Problem

Solving magnetodynamic problems with the finite element
method has been investigated by many researchers, e.g., the
authors in [11] and [12] among others. In view of that, a large
portion of magnetodynamic applications is axisymmetric, for-
mulations in cylindrical coordinates will be considered in what
follows. Primary procedures and notations are adapted from

[11]. Denote �B, �H , �E , and �J , respectively, as the magnetic
induction, magnetic field, electric field, and electric current
density. The governing equations of the eddy current problem
and the material constitutive laws read as in (1) and (2),
respectively

∇ × �E = −∂ �B/∂ t (1a)

∇ × �H = �J (1b)
�B = μ �H (2a)
�J = σ �E (2b)

where μ and σ depict the magnetic permeability and the
electric conductivity, respectively. The electric conductivity σ
depends on the temperature field T in the current case, which
reads

σ = F(T ). (3)

Introducing the magnetic vector potential �A as in (4) yields
relation (5)

�B = ∇ × �A (4)

∇ × �E = −∇ × ∂ �A/∂ t . (5)

It can be deduced from (5) that

�E = −∂ �A/∂ t − ∇V (6)

where V represents an unknown electric potential.
The current term �J is a sum of eddy current �Je and source

current �Js , with �Je expressed as in

�Je = σ(−∂ �A/∂ t − ∇V ). (7)

Thus, the constitutive equation for eddy current problem can
be expressed as

∇ × 1

μ
(∇ × �A) = σ(−∂ �A/∂ t − ∇V ) + �Js (8)

which is to be solved with gauging conditions.
In the axisymmetric case, only the ϕ components of �A,

�Je, and �Js , i.e., Aϕ , Jeϕ , and Jsϕ , are non-vanishing. In this
condition, the variable V disappears and the current density
is expressed by Jeϕ = −σ∂ Aϕ/∂ t . The gauging condition
is satisfied when Dirichlet conditions are applied to Aϕ .
Equation (8) can, thus, be simplified into a scalar function

σ
∂ Aϕ

∂ t
+ ∂

∂r

(
1

μr

∂(r Aϕ)

∂r

)
+ ∂

∂z

(
1

μ

∂ Aϕ

∂z

)
= Jsϕ. (9)

Introducing a new variable

A = r Aϕ (10)

gives the equation of interest

σ

r
Ȧ + ∂

∂r

(
1

μr

∂ A

∂r

)
+ ∂

∂z

(
1

μr

∂ A

∂z

)
= J (11)

where Ȧ = ∂ A/∂ t and J = Jϕ .
Let �A denote the magnetic domain whose boundary �A

can be parted as a sum of Dirichlet boundaries �A
D and

Neumann boundaries �A
N . Boundary conditions for A can be

formulated as

A = Â on �A
D

∂ A/∂n = �̂A on �A
N (12)

where n indicates the unit vector of outward direction and
normal to �N .

Initial condition for A can be expressed by

A = A0 at t = 0. (13)

B. Thermal Problem

The thermal problem is governed by the heat transfer
equation

ρCp∂T /∂ t − ∇ · (κ∇T ) = QT (14)

where ρ is the mass density, Cp is the specific heat capacity,
κ is the thermal conductivity, and the heat source QT that
comes from Joule heating of the induced eddy currents
reads [12]

QT = σ

(
∂ A

r∂ t

)2

. (15)

Rewriting (14) in cylindrical coordinates gives

ρCpṪ − κ
∂2T

∂r2 − κ
∂2T

∂z2 = σ

(
∂ A

r∂ t

)2

(16)

with Ṫ = ∂T /∂ t .
The initial condition for T is

T = T0 at t = 0. (17)

Boundary conditions are

T = T̂ on �T
D

−κ · ∂T /∂n = Q̂T on �T
N (18)

where �T
D and �T

N are, respectively, the Dirichlet and Neumann
boundaries of the thermal problem domain �T .

III. CONVENTIONAL TIME INTEGRATION APPROACH

A. Finite Element Formulations

Weak forms of the coupled problem can be obtained
using the variational principle. Let us begin with multiplying
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(11) by (16) with test functions A∗ and T ∗ before integrating
over domains �A and �T , respectively, which yields
∫ A

�
A∗
{

σ

r
Ȧ + ∂

∂r

(
1

μr

∂ A

∂r

)
+ ∂

∂z

(
1

μr

∂ A

∂z

)
− J

}
d� = 0

(19a)
∫ T

�
T ∗
{

ρCpṪ − κ
∂2T

∂r2 − κ
∂2T

∂z2 − σ

(
∂ A

r∂ t

)2
}

d� = 0.

(19b)

The space domain is discretized through a triangulation Th .
As the magnetic and thermal fields are coupled in a strong
fashion and A and T depend on each other, both the magnetic
and thermal problems can be analyzed on the same space mesh

�h = ⋃Nele
s

i=1 �i
e consisting of Nnode

s nodes in Nele
s elements.

Meanwhile, r and σ in (19) in �i
e can be replaced by r̄i and σi ,

respectively. For simplicity, the values of r and σ at the
barycentric coordinate of each element are taken. As such,
techniques developed for conventional Cartesian coordinate
system-based problems can be adapted. The weak form is
expressed as in

Nele
s∑

i=1

∫
�i

e

{
σi

r̄i
A∗ Ȧ + 1

μr̄ i

(
∂ A∗

∂r

∂ A

∂r
+ ∂ A∗

∂z

∂ A

∂z

)
− A∗ J

}
d�

= 0 (20a)

Nele
s∑

i=1

∫
�i

e

{
ρCp T ∗ Ṫ −κ

(
∂T ∗

∂r

∂T

∂r
+ ∂T ∗

∂z

∂T

∂z

)
− σi

r̄2
i

T ∗ Ȧ2
i

}
d�

= 0. (20b)

Next, field unknowns in each element are interpolated in terms
of nodal degrees of freedom (DoFs) using appropriate basis
functions. As an example, values of A and T at a point X
[or at (r, ϕ, z)] in element �k

e can be expressed as products of
basis functions N (X) and nodal DoFs Ak (respectively, T k)

A(X) = N (X)T · Ak (21a)

T (X) = N (X)T · T k . (21b)

Taking into account the boundary conditions in (20) yields a
system of ODEs with respect to the time t , as shown in

C
A
(T ) · Ȧ + K

A
· A = J (22a)

C
T

· Ṫ + K
T

· T = Q(T , A) (22b)

where matrices and vectors are defined as in

C
A
(T ) =

Nele
s∑

i=1

∫
�i

e

σi (T )

r̄i
N T Nd� (23a)

K
A

=
Nele

s∑
i=1

∫
�i

e

1

μr̄ i
∇N T ∇Nd� (23b)

J =
Nele

s∑
i=1

∫
�i

e

N T Nd�J i (23c)

C
T

=
Nele

s∑
i=1

∫
�i

e

ρCp N T Nd� (23d)

K
T

=
Nele

s∑
i=1

∫
�i

e

κ∇N T ∇Nd� (23e)

Q(T , A) =
Nele

s∑
i=1

∫
�i

e

σi (T )

r̄2
i

(
∂ Ai

∂ t

)2

N T Nd� (23f)

and A and T are the DoFs to be computed; terms associated
with Neumann boundary conditions can be added to the
r.h.s. terms.

B. Time Integration and Handling Nonlinearity

The Crank–Nicholson time discretization schema is one of
the most used time integration methods to solve (22) step by
step. To account for material nonlinearity, the Picard iteration
(also referred to as the fixed-point method) or the Newton
iteration can be employed within each time step. However,
the Newton method can be intractable in the present case,
since it necessitates the calculating derivatives of the nonlinear
terms with respect to A and T , which can be too involved and
too costly [10]. Therefore, the Picard method that linearizes
the system at the current step by simply substituting DoFs
from the previous iteration into the nonlinear terms should be
preferable. As shown in (24), at the (k +1)th step, Ak and T k
obtainted from the kth step are used as initial values for
Ap

k+1 and T p
k+1; A p+1

k+1 and T p+1
k+1 can then be calculated

from linear system (24). Subsequent iterations repeat when
p increases from 1 to the maximum iteration number N ite

max

C
A

(
T p

k+1

) · Ȧ
p+1
k+1 + K

A
· A p+1

k+1 = J (24a)

C
T

· Ṫ
p+1
k+1 + K

T
· T p+1

k+1 = Q
(
T p

k+1, A p
k+1

)
. (24b)

Iterations terminate when either N ite
max is reached or conver-

gence condition (25) is met, where εtol is a prescribed value

max

⎛
⎝
∥∥A p+1

k+1 − A p
k+1

∥∥∥∥A p
k+1

∥∥ ,

∥∥T p+1
k+1 − T

p

k+1

∥∥∥∥T p
k+1

∥∥
⎞
⎠<εtol. (25)

Ak+1 and T k+1 are obtained as

Ak+1 = Ap+1
k+1 (26a)

T k+1 = T p+1
k+1 . (26b)

However, it is well known that the Picard iteration method
may converge poorly or even fail to converge to the correct
answer for large time steps. A remedy is to calculate (27) in
a Crank–Nicholson frame, but with a smaller time step �t
during which the variations in T and A are not signifi-
cant. Well-developed linear solvers can also be employed
directly

C
A
(T k) · Ȧk+1 + K

A
· Ak+1 = J (27a)

C
T

· Ṫ k+1 + K
T

· T k+1 = Q(T k, Ak). (27b)
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IV. SPACE–TIME SEPARATION APPROACH

A. Weak Formulation

In the PGD-based space–time separating approach, it is
assumed that the fields A and T can be approximated as a
sum of N space–time modes, as shown in (28). The objective
is to calculate such modes a priori

A ≈
N∑

i=1

Ai
x Ai

t (28a)

T ≈
N∑

i=1

T i
x T i

t . (28b)

The source term J in (19a), on the other hand, can be
determined a posteriori as it is already defined in the whole
space–time domain

J =
n J∑
j=1

J j
x J j

t (29)

where n J stands for the number of stranded inductors. It can
be noticed that J j

x stands for the unit current density in the

conductor and J j
t represents the current function.

Fields A and T are obtained in an accumulating fashion,
i.e., a new mode Al

x Al
t (respectively, T l

x T l
t ) is calculated

and added to the previous modes
∑l−1

i=1 Ai
x Ai

t (respectively,∑l−1
i=1 T i

x T i
t ) for l = 1, . . . , N . This procedure is called the

enrichment [3]. Assume that at the (m + 1)th enrichment,
the first m modes of A and T are obtained. Then, A and T
at the (m + 1)th enrichment (i.e., Am+1 and Tm+1) can be
expressed as

Am+1 =
m∑

i=1

Ai
x Ai

t + RA SA (30a)

Tm+1 =
m∑

i=1

T i
x T i

t + RT ST (30b)

where RA SA and RT ST are the searched new modes with
RA and RT related to the space variables, and SA and ST to
the time variables, for, respectively, the magnetic and thermal

problems. After normalization, Am+1
x Am+1

t and T m+1
x T m+1

t
can be calculated from RA SA and RT ST , respectively. Weak
form can be obtained in a similar fashion as in the previous
approach except that the integral domain is the whole space–
time domain � ⊗ I , with � denoting the spatial domain
while I denoting the time duration.

To linearize the nonlinear terms σ and Ȧ2 during the
calculation of new modes, the Picard method is applied. In par-
ticular, instead of expressing σ as a function of

∑m
i=1 T i

x T i
t +

RT ST at the (m + 1)th enrichment, it is calculated from the
first m modes of T , and denoted as σm (31a). Ȧ2 is handled
in the same fashion (31b)

σm = F
(

m∑
i=1

T i
x T i

t

)
(31a)

Ȧ2 =
(

m∑
i=1

Ai
x

Ai
t

∂ t

)2

. (31b)

Hence, the weak form can be given as in

∫∫
�⊗I

A∗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σm
r

∂
(∑m

i=1 Ai
x Ai

t +RA SA
)

∂t

+ ∂
∂r

(
1
μr

∂
(∑m

i=1 Ai
x Ai

t +RA SA
)

∂r

)

+ ∂
∂z

(
1
μr

∂
(∑m

i=1 Ai
x Ai

t +RA SA
)

∂z

)

−
n J∑
j=1

J j
x J j

t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d�d I = 0 (32a)

∫∫
�⊗I

T ∗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρCp
∂
(∑m

i=1 T i
x T i

t +RT ST
)

∂t

− κ
∂2
(∑m

i=1 T i
x T i

t +RT ST
)

∂r2

− κ
∂2(∑m

i=1 T i
x T i

t +RT ST
)

∂z2

− σm

(
∂
(∑m

i=1 Ai
x Ai

t
)

r∂t

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d�d I = 0 (32b)

where the test functions are

A∗ = R∗
A SA + RA S∗

A

T ∗ = R∗
T ST + RT S∗

T . (33)

Though σ and (∂ A/∂ t)2 are linearized, the resultant
system is still nonlinear because both RA (respec-
tively, RT ) and SA (respectively, ST ) are unknown in (32a)
[respectively, (32b)]. The alternating direction method [3]
comes to stage. It consists of alternatively calculating one of
the two unknowns by assuming that the other is known. It is
also called the fixed-point iterations [3].

B. Discretization in Space and Time

Discretize the time duration I ≡ [0, τ ] with line elements
Ih [see (34)] with I i

h = [ti−1, ti ] and 0 = t0 < · · · < tNele
t

= τ .
Then, the discretized space–time domain can be represented
as in (35), in which �α ⊗ Iβ depicts a space–time element

Ih =
Nele

t⋃
i=1

I i
h (34)

�h ⊗ Ih =
Nele

s∑
α=1

Nele
t∑

β=1

�α ⊗ Iβ. (35)

The following basis functions in space and time are used to
discretize the space- and time-related variables:

Ni
(
i = 1, . . . , Nnode

s

)
, L j

(
j = 1, . . . , Nnode

t

)
(36)

where Nnode
s is the number of space nodes and Nnode

t is the
number of time points.

For example, the values of A and T of the kth mode
(k = 1, . . . , m) at a point (X , t) can be interpolated from
their space and time DoFs (respectively, Ak

x and Ak
t ) as

Ak(X , t) =
⎛
⎝Nnode

s∑
i=1

Ni (X)Aki
x

⎞
⎠⊗

⎛
⎝Nnode

t∑
j=1

L j (t) A
k j
t

⎞
⎠ (37a)

T k(X , t) =
⎛
⎝Nnode

s∑
i=1

Ni (X)T ki
x

⎞
⎠⊗

⎛
⎝Nnode

t∑
j=1

L j (t) T
k j

t

⎞
⎠. (37b)
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The values of A and T calculated from the kth enrichment
over all space–time nodes can be expressed by second-order
tensors Ak

x ⊗ Ak
t and T k

x ⊗ T k
t , respectively. They are both of

size R
Nnode

s ∗ Nnode
t .

The electric conductivity σm can be evaluated as in (38),
where �m is a second rank tensor of size R

Nnode
s ∗ Nnode

t and
(T m)lh is the scalar component at the lth row and hth column
of
∑m

i=1 T i
x ⊗ T i

t with 1 ≤ l ≤ Nnode
s and 1 ≤ h ≤ Nnode

t .
In an element �α ⊗ Iβ , σm can be taken as a constant
value σ

αβ
m (e.g., value at the barycentric coordinate). The

approximating is accurate if the geometric dimensions of the
element �α ⊗ Iβ are small enough

(�m)lh = F((T m)lh). (38)

The source term
∑m

i=1 σm(Ai
x(∂ Ai

t/r∂ t))2 from the thermal
problem can be calculated following the same principle.

It results in a second rank tensor Qm of size R
Nnode

s ∗ Nnode
t .

Applying SVD separates it into a sum of nQ space–time
modes, as in

SVD(Qm) =
nQ∑
j=1

Qm
x j

⊗ Qm
t j
. (39)

Without losing generality, let us start with calculating the space
modes RA and RT . SA and ST are assigned with arbitrary
values in the first iteration before taking values from previous
iterations for the rest. Test functions can be expressed as

A∗ = R∗
A SA (40a)

T ∗ = R∗
T ST . (40b)

Substituting (40) into (35) leads to (41). Note that due to
the time discretization consistency [3], time basis functions
in front of the time derivative term ∂LT /∂ t is changed from
L to L̃ , with L̃ equal to L + (�tβ · d L)/2. When Neumann
boundary conditions are involved, corresponding terms may
be added into the stiffness matrix and r.h.s. vectors

∫∫
�⊗I

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σm
r R∗

A RA SA
∂SA
∂t

+ R∗
A

μ

(
∂
∂r

(
1
r

∂ RA
∂r

)
+ ∂

∂z

(
1
r

∂ RA
∂z

))
S2

A

+
m∑

i=1

⎡
⎢⎢⎢⎢⎣

σm
r R∗

A Ai
x SA

∂ Ai
t

∂t

+ R∗
A

μ
∂
∂r

(
1
r

∂ Ai
x

∂r

)
SA Ai

t

+ R∗
A

μ
∂
∂z

(
1
r

∂ Ai
x

∂z

)
SA Ai

t

⎤
⎥⎥⎥⎥⎦

−
n J∑
j=1

R∗
A J j

x SA J j
t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d�d I = 0

(41a)

∫∫
�⊗I

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρCp R∗
T RT ST

∂ST
∂t

− κ R∗
T

(
∂2 RT
∂r2 + ∂2 RT

∂z2

)
S2

T

+
m∑

i=1

⎡
⎢⎣

ρCp R∗
T T i

x ST
∂T i

t
∂t

− κ R∗
T

(
∂2T i

x
∂r2 + ∂2T i

x
∂z2

)
ST T i

t

⎤
⎥⎦

−
n J∑
j=1

R∗
AQ j

x SA Q j
t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d�d I = 0.

(41b)

Discretizing (41) yields two sets of linear equations as follows:

∫∫
�⊗I

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ
αβ
m
r̄α

N N T R Aα
⊗ ST

Aβ
L̃∂LT /∂ t S Aβ

+ 1
r̄αμ∇N∇N T R Aα

⊗ ST
Aβ

L LT S Aβ

+
m∑

i=1

⎡
⎢⎣

σ
αβ
m
r̄α

N N T Ai
xα

⊗ ST
Aβ

L̃∂LT /∂ t Ai
tβ

+ 1
r̄αμ∇N∇N T Ai

xα
⊗ ST

Aβ
L LT Ai

tβ

⎤
⎥⎦

−
n J∑
j=1

N N T J j
xα ⊗ ST

Aβ
L LT J j

tβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d�d I = 0

(42a)

∫∫
�⊗I

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρCp N N T RTα
⊗ ST

Tβ
L̃∂LT /∂ t STβ

− κ∇N∇N T RTα
⊗ ST

Tβ
L LT STβ

+
m∑

i=1

⎡
⎣ρCp N N T T i

xα
⊗ ST

Tβ
L̃∂LT /∂ tT i

tβ

−κ∇N∇N T T i
xα

⊗ ST
Tβ

L LT T i
tβ

⎤
⎦

−
n J∑
j=1

N N T Qm
x j α

⊗ ST
Aβ

L LT Qm
t jβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d�d I = 0

(42b)

where N is the space basis function associated with the space
nodes in �α and L is the time basis functions associated with
the time nodes in Iβ .

Integrating over space and time followed by assembling the
elemental matrices into global level yields linear equations for
R A and RT[
Ĉ

A
+ (

ST
A M

t
S A

)
K

A

]
R A

= −
m∑

i=1

[
C̆

A
+ (

ST
A M

t
Ai

t

)
K

A

]
Ai

x +
n J∑
j=1

(
ST

A M
t
J j

t
)
M

A
J j

x

(43a)[(
ST

T K
t
ST

)
C

T
+ (

ST
T M

t
ST

)
K

T

]
RT

= −
m∑

i=1

[(
ST

T K
t
T i

t

)
C

T
+ (

ST
A M

t
T i

t

)
K

T

]
T i

x

+
n J∑
j=1

(
ST

T M
t
Qm

t j

)
M

T
Qm

x j
. (43b)

Coefficient matrices are obtained as follows:

K
t
=

Nele
t∑

β=1

∫
Iβ

L̃
∂LT

∂ t
dt (44a)

M
t
=

Nele
t∑

β=1

∫
Iβ

L LT dt (44b)

Ĉ
A

=
Nele

s∑
α=1

⎡
⎢⎣
(

Nele
t∑

β=1

σ
αβ
m
r̄α

ST
Aβ

· ∫Iβ
L̃∂LT /∂ tdt · S Aβ

)

· ∫�α
N N T d�

⎤
⎥⎦ (44c)

C̆
A

=
Nele

s∑
α=1

⎡
⎢⎣
(

Nele
t∑

β=1

σ
αβ
m
r̄α

ST
Aβ

· ∫Iβ
L̃∂LT /∂ tdt · A

iβ
t

)

· ∫�α
N N T d�

⎤
⎥⎦ (44d)

K
A

=
Nele

s∑
α=1

∫
�α

1

r̄αμ
∇N∇N T d� (44e)
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M
A

= M
T

=
Nele

s∑
α=1

∫
�α

N N T d� (44f)

C
T

=
Nele

s∑
α=1

∫
�α

ρCp N N T d� (44g)

K
T

=
Nele

s∑
α=1

∫
�α

κ∇N∇N T d�. (44h)

C. Enrichment Procedure

Define [A
x
]m = [A1

x , A2
x , . . . , Am

x ], likewise for [A
t
]m ,

[T
x
]m , and [T

t
]m . Then, define a new tensor {modes}m as

{modes}m =
⋃

([A
x
]m, [A

t
]m, [T

x
]m, [T

t
]m). (45)

Equation (43) can be rewritten in a more compact form as

R A = F s
A(S A, {modes}m) (46a)

RT = F s
T (ST , {modes}m). (46b)

Once calculated, R A and RT are normalized as

R A = RA

‖F A‖ , RT = RT

‖RT ‖ . (47)

In the same way, functions for calculating S A and ST can be
obtained as in

S A = F t
A(R A, {modes}m) (48a)

ST = F t
T (RT , {modes}m). (48b)

The normalization of R A and RT prevents cases in fixed-point
iterations, where one of the space and time modes tends to
be infinitely small while the other tends to be infinitely large
and, thus, leads to difficulties for converging [4]. {R A, RT }
and {S A, ST } are repeatedly updated until convergence or a
maximum iteration number N ite

max is reached. As the magnetic
and thermal problems may converge at different rates, it
would be wise to perform iterations separately. Moreover, as
suggested in Fig. 1, the two problems can be resolved in
parallel, permitting a further reduction in computation time.
The parallel calculation is not implemented in this paper but
can be regarded as a perspective for future efficiency improve-
ment. Convergence criterion εFixIte for both the problems can
be taken identically. Then, the convergence of iterations reads∥∥Sl

A − Sl−1
A

∥∥∥∥Sl−1
A

∥∥ ≤ εFixIte (49a)

∥∥Sl
T − Sl−1

T

∥∥∥∥Sl−1
T

∥∥ ≤ εFixIte (49b)

where the superscript l indicates that the mode is calculated
from the lth fixed-point iteration. Results are then assigned to
the (m + 1)th modes

Am+1
x = R A, Am+1

t = S A (50a)

T m+1
x = RT , T m+1

t = ST . (50b)

The enrichment procedure terminates when the following
convergence conditions is reached. A maximum enrichment

Fig. 1. Algorithm of the space–time separation solver.

number Nen
max can be specified too in order to control loops

numbers ∥∥Am+1
x ⊗ Am+1

t

∥∥∥∥∑m+1
i=1 Ai

x ⊗ Ai
t

∥∥ ≤ εEn (51a)

∥∥T m+1
x ⊗ T m+1

t

∥∥∥∥∑m+1
i=1 T i

x ⊗ T i
t

∥∥ ≤ εEn. (51b)

Other issues, such as the enforcement of non-homogeneous
Dirichlet boundary conditions, can be found in [13].

Provided that overheads, such as the matrices assembling,
are negligible, the computational complexity of the proposed
solver can be evaluated as

CPGD =
⎛
⎝

Nen
A∑

i=1

N ite
Ai +

Nen
T∑

j=1

N ite
T j

⎞
⎠ C0 (52)

where C0 = C(Nnode
s ) + C(Nnode

t ) is the complexity of
solving an Nnode

s -dimensional space problem and an Nnode
t -

dimensional time problem and Nen
X the total enrichment steps

with N ite
Xi fixed-point iteration passed at its i th enrichment

(X = A, T ). The complexity of the incremental solver can
be assessed as in

Cinc = 2 × Nnode
t · C(Nnode

s

)
. (53)

Benefits with the PGD-based solver arise when Nnode
t is

greater than (
∑Nen

A
i=1 N ite

Ai +∑Nen
T

j=1 N ite
T j ).

page 9-6



Fig. 2. Model configuration and space triangulation.

TABLE I

MAGNETIC AND THERMAL MATERIAL CONSTANTS

V. NUMERICAL ILLUSTRATIONS

A. Model Configuration and Results

The proposed solver is implemented in MATLAB, which
is employed to solve a coupled magnetothermal problem in
which a conductor axisymmetric to the z-axis is surrounded by
an excitation coil; an area of 0.2 m ×0.5 m, including the air,
is considered as the solution domain. The geometric dimen-
sions of the parts are depicted in Fig. 2. Material property
constants are summarized in Table I. Temperature dependence
of the electric conductivity of the workpiece is given in

σ(T ) = σ0/[1 + α(T − T0)] (54)

where α equals to 3.9 · 10−3 and T0 is set to 293.15 K.
Eddy current in the excitation coil is not accounted for

in the simulation. A uniform sinusoidal electric current of
2000 kA and 100 Hz is applied to the coil. Linear triangular
elements are used to discretize the space domain. The size of
the elements near the conductor skin is set to be relatively
smaller to account for the skin effects, and 5659 elements
with 2900 nodes are generated. The total time duration is set
to 0.1 s, i.e., ten periods for the electromagnetic problem.

The simulation is first carried out on a model with an
extremely fine space–time mesh using the traditional incre-
mental approach, whose outputs {A}REF and {T }REF are
used as reference. Next, a relatively larger time increment is
set while Picard nonlinear iterations are performed between
two adjunct time steps. Both the simulations are carried out
with a mature in-house finite element package. It is found that

Fig. 3. Relation between relative errors and step sizes of the increment
solver.

the calculation expense increases significantly in order to get a
close solution to the reference one, which is less optimal. Then
we resort to incremental solvers without nonlinear solvers,
for which time steps need to be set as small as possible
so as to limit the nonlinear effects between adjunct time
steps. Denote the results obtained with the direct incremental
solver as {A}INC, {T }INC. Define ε_r the relative error from
the incremental solver as in the following equation with
X = A, T :

εr = ‖{X }REF − {X}INC‖
‖{X}REF‖ . (55)

The relation of the relative errors for A as a function of
time step size is illustrated in Fig. 3. Relative errors of the
temperature field show a similar trend. It can be seen that
the relative error goes below 1% only if over 500 steps are
contained during one magnetic period, i.e., time step size
decreases below 2 · 10−5 s. �t is thus fixed to 2 · 10−5 s.
A simulation under the same conditions is conducted with
the PGD solver, whose results are noted as {A}PGD, {T }PGD.

To compare the latter with the results obtained with the
conventional solver, the following relative error is defined:

Er = ‖{X }INC − {X}PGD‖
‖{X }INC‖ (56)

where X = A, T .
It is found that relative errors for A and T between

the conventional and the PGD-based solvers are 0.36% and
0.20%, respectively. As depicted in Fig. 4, good agreements
are obtained between the three sets of results. Snapshots
of induced current density in the conductor during the first
and the ninth magnetic period obtained from both the PGD
solver and the reference simulation are shown in Fig. 5.
Differences between the two sets of results are barely visible.
Relative errors between the two are below 1%. Impacts of the
nonlinearity of σ can be observed. For example, the maximum
current induced during the first period is apparently larger
than that in the ninth period, which implies that the electric
conductivity has diminished due to the temperature rise.

B. Convergence and Complexity

Relative errors for fixed-point iterations and enrichments
can be calculated using (49) and (51), respectively. In Fig. 6
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Fig. 4. Results from different solvers (a) for the magnetic problem, and
(b) for the thermal problem.

are shown three kinds of typical convergence rates of the
fixed-point iteration. For iterations contained in the very first
enrichments, there is divergence if the maximum number
of iterations is not large enough. However, it improves
when more space–time modes are enriched though not
reaching criterion (49a). From about the tenth enrichment
on, convergence rates are accelerated in that the relative
error goes below 10−4 after around five iterations. Maximum
fixed iteration N ite

max is set to 10 with a stopping criterion
εFixIte being 10−4. It is observed that most sets of fixed-point
iterations converge within ten steps.

Convergence of the enrichment can be evaluated from (51)
that assesses whether the norm of newly calculated
space–time modes is negligible in front of the sum of all pro-
ceedings. Fig. 7 depicts the convergence history of the first 50
enrichments with and without updating. Enrichment without
updating is what has been introduced in Section IV. Its con-
vergence is not monotonous while it can still provide accurate
results with a bit more space–time modes. The enrichment
with updating, in contrast, gives a monotonous convergence.
Updating means that after a new pair of space–time modes is
added, the solver should reorder all the calculated modes in a
descending sense according to their norms and then recalculate
all the space and time modes with the reordered ones as initial
values [4]. However, the improvements of the convergence
may come at the price of a significantly increased calculating
cost. It is found here that simulation time is largely extended
when updating to enrichment is considered. Stopping criterion
for the enrichment εEn is fixed at 10−4 while maximum
enrichment number is set to 100. Enrichments for A is stopped
at its 73rd enrichment, while enrichment for T at the 81st.
Total fixed-point iteration numbers for A and T are 478 and
527, respectively.

Fig. 5. Induced current density (in A/m2) during the first (1–9 ms) and the
ninth period (91–99 ms).

Fig. 6. Convergence rates in fixed-point iterations.

To sum up, solving the coupled magnetothermal problem
with the conventional and the PGD-based solver under the
same space and time discretization provides results of a
difference of <0.36%. In this particular case, the number
of space and time nodes is respectively 2900 and 5000.
Based on (52) and (53), the complexity of the conventional
solver is around four times of that of the PGD-based solver.
In another words, as much as 75%, costs can be saved with the
non-incremental solver while no compromise on accuracy is
needed. As the proposed and the conventional simulations are
carried out on different platforms, a comparison of computing
time does not make much sense and is not reported here.
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Fig. 7. Convergence rates in enrichments.

Another interesting fact of the proposed solver is that the
time evaluation of A (respectively, T ) over the whole domain
can now be represented with 73 (respectively, 81) space–
time modes (namely, space vector of size 2900 × 1 and time
vector of size 5000 × 1). However, 5000 space vectors of
size 2900 × 1 are needed with the conventional solver. For
cases where all calculating results need to be stored, the
PGD-based solver reduces the value size to about two orders of
magnitudes lower. It can be argued that for problems where
the space nodes overweight time nodes (e.g., in large-scale
3-D problems), benefits with the PGD-based non-incremental
solver can be even more significant.

VI. CONCLUSION

Solving strongly coupled nonlinear magnetothermal
dynamic problems using the finite element method is
investigated in this paper. A PGD-based non-incremental
solver is proposed. Compared with classical time integration
solvers, the proposed solver is more advantageous in terms
of calculating costs when a large amount of time steps
is needed. In addition, accounting for nonlinearity can be
incorporated in a very straightforward way. Application of
the proposed solver on large-scale nonlinear multi-physics
problems, incorporating parallel computing into the solver,
as well as improvements to efficiency and convergence rate
shall be the future extensions of this paper.
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