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Abstract An approximation to the many-body London dis-
persion energy in molecular systems is expressed as a func-
tional of the occupied orbitals only. The method is based
on the local-RPA theory. The occupied orbitals are local-
ized molecular orbitals and the virtual space is described
by projected oscillator orbitals, i.e. functions obtained by
multiplying occupied localized orbitals with solid spheri-
cal harmonic polynomials having their origin at the orbital
centroids. Since we are interested in the long-range part of
the correlation energy, responsible for dispersion forces, the
electron repulsion is approximated by its multipolar expan-
sion. This procedure leads to a fully non-empirical long-
range correlation energy expression. Molecular dispersion
coefficients calculated from determinant wave functions ob-
tained by a range-separated hybrid method reproduce exper-
imental values with less than 15% error.

Keywords RPA · oscillator orbitals · London dispersion
energy · dispersion coefficient · local correlation method

1 Introduction

According to the Perdew’s popular classification of den-
sity functional approximations (DFA) [1], the random phase
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approximation (RPA) is situated on the highest, fifth rung
of Jacob’s ladder, which leads from the simplest Hartree
level towards the “heaven” corresponding to the exact so-
lution of the Schrödinger equation. When stepping upwards
on Jacob’s ladder, one uses more and more ingredients of
the Kohn-Sham single determinant. Starting from the low-
est rungs, the density, its gradient, the full set of occupied
orbitals are successively necessary for the construction of
the functional. At the highest rung DFA is usually based
on many-body methods, which require the knowledge of the
complete set of occupied and virtual orbitals. Such methods
have the drawback that the size of the virtual orbital space
can be very large even in a moderately sized atomic orbital
basis. In the case of plane wave calculations the virtual space
can become even prohibitively large. One solution to keep
the size of matrices in reasonable limits makes recourse to
an auxiliary basis set to expand the occupied-virtual product
functions. Such approaches are known in quantum chem-
istry as resolution of identity [2] or density-fitting [3, 4]
methods. Similar advantages can be achieved by Cholesky
decomposition [5] techniques. In plane wave calculations
the plane wave basis itself can be used to expand the product
states [6]. Further gain can be achieved by projection meth-
ods, which avoid any explicit reference to virtual orbitals.
Such a technique, named projective dielectric eigenpotential
(PDEP) method, has been successfully applied to construct
the dielectric function in plane wave RPA calculations [7–
9]. Recently, Rocca succeeded to reduce further the size of
the problem by a prescreened set of virtuals [10].

The purpose of the present work is to demonstrate that
an approximate variant of the RPA (and also of the MP2)
correlation energy can be expressed by using quantities that
are computable from occupied orbitals alone. In this context,
one should mention the beautiful result, which has been ob-
tained by Surján, who has shown that the MP2 correlation
energy, exempt of any further approximation in a given basis
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set, can be reformulated as a functional of the Hartree-Fock
density matrix, i.e. using exclusively the occupied orbitals
[11]. Our main interest is not to reproduce the full correla-
tion energy with high numerical precision, but we focus our
attention to a well-defined part of it, namely on the long-
range dynamical correlation energy, which is usually taken
responsible for the London dispersion forces.

It is now well-documented that most of the conven-
tional density functional calculations in the Kohn-Sham
framework, unless special corrections are added to the to-
tal energy, are unable to grasp the physics of these long-
range forces. Various fairly successful dispersion correc-
tion schemes are known, but although most of them were
claimed to posses an essentially ab initio character, they
use, without exception, some “external” data, like atomic
polarizabilities, atomic radii, etc. . . [12–18]. Even if these
quantities are usually not taken from experimental sources,
and rather originate from ab initio computations, their pres-
ence deprives these theories of their self-contained charac-
ter. Hence, although we do not pretend that the rather dras-
tic approximations which are going to be implemented in the
following allow us to achieve results of a quality comparable
to the precision attained by carefully fine-tuned methodolo-
gies, we argue that the ingredients of the present approach
originate from a controlled series of approximations and do
not use any “external” inputs. Moreover, in contrast to the
relatively costly and sophisticated methods, like RPA, we
do not need virtual orbitals, i.e. we stay on the fourth rung
of Jacob’s ladder.

Our approach relies on the use of localized occupied
molecular orbitals (LMOs) that can be obtained relatively
easily by a unitary transformation in the subspace of oc-
cupied orbitals, according to either an external or an in-
ternal localization criterion [19]. The localization of virtual
orbitals is much more difficult, since the usual localization
criteria for the occupied orbitals lead often to divergent re-
sults. It is to be noted that recently a significant progress
has been reported [20] for the efficient localization of vir-
tual orbitals. However, we follow another strategy here and
build excited determinants using localized functions which
are able to span the essential part of the virtual space. One
of the most popular local correlation approaches in this spirit
consists in using the atomic orbital (AO) basis functions to
represent the virtual space. They are made orthogonal to the
occupied space by projection, leading to the projected AOs
(PAOs) techniques [21–23]. The locality of these functions
is guaranteed by construction, even if it may be somewhat
deteriorated by the projection procedure.

In the present work we are going to revisit and explore a
quite old idea of Foster and Boys from the early sixties [24–
26]. The main concern of these authors was to construct a
set of virtual orbitals directly from the set of occupied LMOs
by multiplying them with solid spherical harmonic functions

centered on the barycenter of the LMO. The orthogonality
of these new functions can be ensured by a projection proce-
dure. Boys and Foster called these new functions, obtained
after multiplication, oscillator orbitals (OOs), and after re-
moving the components of the OOs in the space of the occu-
pied orbitals they may be called projected oscillator orbitals
(POOs). Very few articles in the literature mention Boys’ os-
cillator orbitals [27], probably because it had no particular
numerical advantage in high-precision configuration inter-
action calculations and its practical implementation raised a
number of complications which could be avoided by more
straightforward algorithms, like the use of the full set of vir-
tual molecular orbitals (VMOs). We have found only a sin-
gle, very recent article, which referred to the notion of oscil-
lator orbitals [28] as a useful concept, but not as a practical
computational tool. To the best of our knowledge, the math-
ematical implications of using oscillator orbitals to define
the virtual space has never been rigorously studied. Such an
analysis is beyond the scope of the present study: it is going
to be the subject of a forthcoming publication.

The POOs are non-orthogonal among each other, which
is at the origin one of the complications mentioned above.
This problem can be handled just like in the case of the
PAOs, therefore a theory of electron correlation based on
POOs can follow a similar reasoning as local correlation
methods using PAOs [29]. In particular, in this paper, the
RPA method will be reformulated for a virtual solace con-
structed from POOs.

It is worthwhile to mention that the projected oscilla-
tor orbitals bear some similarities to the trial perturbed wave
function in the variation-perturbational technique associated
with the names of Kirkwood [30], Pople and Schofield [31]
(KPS), to calculate multipole molecular polarizabilities. The
closely related Karplus-Kolker [32, 33] (KK) method and its
variants [34, 35] use a similar Ansatz for the perturbed or-
bitals. In these latter methods, which were formulated origi-
nally as simplified perturbed Hartree-Fock theories, the first
order perturbed wave function is a determinant with first or-
der orbitals ψ(1)

i which are taken in the following product
form [36] ψ(1)

i = giψi −
∑

k〈ψk | giψi〉ψk, where gi are lin-
ear combination of some analytically defined functions, like
polynomials. As we shall see, the principal difference of this
Ansatz and the POOs is that in the former case one multi-
plies the occupied canonical orbitals with the function gi,
while the oscillator orbitals are constructed from localized
orbitals.

As mentioned previously, our main focus is the model-
ing of London dispersion forces. It has been demonstrated
in our earlier works [37–39] that the essential physical
ingredients of London dispersion forces are contained in
the range-separated hybrid RPA method, where the short-
range correlation effects are described within a DFA and
the long-range exchange and correlation are handled at the
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long-range Hartree-Fock and long-range RPA levels, respec-
tively. Among numerous possible formulations of the RPA
[39, 40], we have chosen to adopt the variant based on
the ring-diagram approximation to the coupled cluster dou-
bles theory. The relevant amplitude equations will be rewrit-
ten with the help of POOs leading to simplified working
equations, which do not refer to virtual orbitals explicitly.
For the sake of comparison we are going to study the case
where the POOs are expanded in the virtual orbital space.
The long-range electron repulsion integrals, appearing in the
range-separated correlation energy expression, can be rea-
sonably approximated by a truncated multipole expansion.
It means that in addition to the well-known improved con-
vergence properties of the correlation energy with respect to
the size of the basis set, one is able to control the conver-
gence through the selection of the multipolar nature of the
excitations, leading to a possibility of further computational
gain.

The exploitation of localized orbitals for dispersion en-
ergy calculations has already been proposed since the early
works on local correlation methods [41–45]. In classical
and semiclassical models most often the atoms are se-
lected as force centers; only a few works exploit the ad-
vantages related to the use of two-center localized orbitals
and lone pairs. A notable exception is the recent work
of Silvestrelli and coworkers [46–50], who adapted the
Tkatchenko-Scheffler model [16] for maximally localized
Wannier functions, which are essentially Boys’ localized or-
bitals for solids. It is worthwhile to mention that one of the
very first use of the bond polarizabilities as interacting units
for the decryption of London dispersion forces has been sug-
gested as early as in 1969 by Claverie and Rein [51]; see also
[52].

Our approach, at least in its simplest form, is situated
somewhere between classical models and fully quantum lo-
cal correlation methods and can be considered (practically in
all its forms) as a coarse-grained nonlocal dispersion func-
tional formulated exclusively on the basis of ground state
densities and occupied orbitals. It will be shown how the
various matrix elements can be expressed from occupied
orbital quantities only. As a numerical illustration, molec-
ular C6 dispersion coefficients will be calculated from lo-
calized orbital contributions and compared to experimental
reference data. The paper will be closed by a discussion of
possible future developments.

2 Theory

2.1 Projected oscillator orbitals

The a posteriori localization of the subspace of the occu-
pied orbitals is a relatively standard procedure, which can

be achieved following a large variety of localization crite-
ria (for a succinct overview, see Ref. [53]). In the context of
correlation energy calculations, i.e. in various “local correla-
tion approaches”, the most widely used localization methods
are based either on the criterion of Foster and Boys [24] or
that proposed by Pipek and Mezey [54]. For reasons which
become clearer below, in the present work we will use the
Foster-Boys localization criterion, which can be expressed
in various equivalent forms [26]. In its the most suggestive
formulation, the Foster-Boys’ localization procedure con-
sists in the maximization of the squared distance between
the centroids of the orbitals:

max


occ∑
i< j

|〈φi| r̂ |φi〉 − 〈φ j| r̂ |φ j〉|
2

 . (1)

Another form of the localization criterion, which is strictly
equivalent to the previous one, corresponds to the minimiza-
tion of the sum of quadratic orbital spreads

min

 occ∑
i

〈φi| r̂2 |φi〉 − |〈φi| r̂ |φi〉|
2

 . (2)

As it has been demonstrated by Resta [55], the previous min-
imization implies that the sum of the spherically averaged
squared off-diagonal matrix elements of the position oper-
ator is minimal too. This last property of the Boys’ local-
ized orbitals is going to be useful in the development of the
present model.

Any set of localized orbitals obtained by a unitary trans-
formation from a set of occupied orbitals spans the same
invariant subspace as the generalized Kohn-Sham operator,
f̂ µ, and satisfies the equation:

f̂ µφµi =

occ∑
j

ε
µ
i jφ

µ
j , (3)

where f̂ µφi = t̂ + v̂ne + v̂H + v̂lr,µ
x,HF + v̂sr,µ

xc,DFA is the range-
separated hybrid operator. In this expression t̂ is the kinetic
energy, v̂ne is the nuclear attraction, v̂H is the full-range
Hartree, v̂lr,µ

x,HF is the long-range Hartree-Fock (non-local) ex-
change, and v̂sr,µ

xc,DFA is the short-range exchange-correlation
potential operator. The range-separation parameter, µ, de-
fined below, cuts the electron repulsion terms to short- and
long- range components. For µ = 0 one recovers the full-
range density functional approximation (DFA), while for
µ→ ∞ one obtains the full-range Hartree-Fock theory.

As outlined in the introduction, inspired by the original
idea suggested first by Foster and Boys [24] and refined later
by Boys [26], we propose here to construct localized vir-
tual orbitals by multiplying the localized occupied orbital
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φi(r) by solid spherical harmonics having their origin at the
barycenter of the localized occupied orbital. According to
Boys [26], this definition can be made independent of the
orientation of the coordinate system by choosing local co-
ordinate axes which are parallel to the principal axes of the
tensor of the moment of inertia of the charge distribution
φ∗i (r)φi(r) (see Appendix A).

In the following we are going to elaborate the theory for
the simplest case, when these oscillator orbitals are gener-
ated by first order solid spherical harmonic polynomials, i.e.
the i-th LMO is multiplied by (r̂α − Di

α), where r̂α is the
α = x, y, z component of the position operator and Di

α is
a component of the position vector pointing to the centroid
of the i-th LMO, defined as Di

α = 〈φi| r̂α |φi〉. It is possible
to generate oscillator orbitals by higher order spherical har-
monics too, which is left for forthcoming work. We denote
the POO by |φ̃iα〉, where the index iα refers to the fact that
the OO has been generated from the i-th LMO by using the
r̂α function. For the sake of the simplicity of the formulae,
the POOs will be expressed in the laboratory frame; the ex-
pressions for the dipolar POOs in a local frame are shown in
the Appendix A. The POO reads in the laboratory frame as

|φ̃iα〉 =

(
Î −

occ∑
m

|φm〉〈φm|

)(
r̂α − Di

α

)
|φi〉 = Q̂ r̂α |φi〉, (4)

with Q̂ = (Î −
∑occ

m |φm〉〈φm| ), the projector onto the virtual
space.

In Eq. 4 the “pure” (OO) component of the POO is
r̂α |φi〉, while the orthogonalization tails stem from the term
−

∑occ
m,i |φm〉〈φm| r̂α |φi〉. In this sense the “locality” of the

OO is somewhat deteriorated, since we have contributions
from each of the other LMOs. At this point the Boys local-
ization criterion will be at our advantage, since it ensures
that the sum of the off-diagonal elements of the x, y and z
operators taken between the occupied orbitals, and appear-
ing in the orthogonalization tails, be minimized [55]. In this
sense, the Boys-localization scheme seems to be naturally
adapted for the construction of dipolar oscillator orbitals.

To illustrate the concept of dipolar oscillator orbitals,
two examples are taken from the oxygen lone pair and the C-
H bonding orbitals of the formaldehyde molecule, described
in the above-defined local frame. Figs 1 and 2 show the lo-
calized orbitals and the three projected dipolar oscillator or-
bitals having a nodal surface intersecting the orbital centroid
and oriented in the three Cartesian coordinate directions of
the local coordinate system, x, y and z. It is quite clear that
the node coincides with the region of the highest electron
density of the orbital and in this sense ensures an optimal de-
scription of the correlation. Higher order polynomials gen-
erate virtual orbitals with further nodes.

From now on, we will use the simplified notations |φi〉 ≡

|i〉 and |φ̃iα〉 ≡ |iα〉, in other words the subscript α on the

orbital index indicates that it is an oscillator orbital. We des-
ignate the occupied (canonical or localized) molecular or-
bitals as i, j, k, . . . and the canonical virtual molecular or-
bitals (VMOs) as a, b, c, . . . .

The oscillator orbitals are non-orthogonal among each
other; their overlap integral can be evaluated using the idem-
potency of the projectors:

S iα, jβ = 〈iα | jβ〉 = 〈i| r̂αr̂β | j〉 −
occ∑
m

〈i| r̂α |m〉〈m| r̂β | j〉. (5)

Note that the overlap matrix S is of size NPOO×NPOO, where
NPOO is the number of projected oscillator orbitals.

The POOs can be expanded in terms of a set of orthonor-
malized virtual orbitals (e.g. the set of canonical virtuals).
Although later we eliminate explicit reference to the set of
virtual orbitals of the Fock/Kohn-Sham operator (i.e. every-
thing will be written only in terms of the occupied orbitals or
equivalently in terms of the corresponding density matrix),
with the help of the resolution of identity, we give the ex-
plicit form of the coefficient matrix linking the POOs with
the virtuals:

|iα〉 =

( all∑
p

|p〉〈p|
)
Q̂ r̂α |i〉 =

virt∑
a

|a〉〈a| r̂α |i〉 =

virt∑
a

|a〉Va iα .

(6)

The matrix V is constructed simply from the elements of
the occupied/virtual block of the position operator, Va iα =

〈a| r̂α |i〉. The overlap matrix of the expanded POOs can be
written in terms of the coefficient matrix V:

S iα, jβ = 〈iα | jβ〉 =

virt∑
ab

V†iα a 〈a | b〉Vb jβ
= (V† V)iα jβ . (7)

Higher order oscillator orbitals, not used in the present
work, can be generated in an analogous manner, using
higher order solid spherical harmonic functions.

2.2 Ring CCD-RPA equations with POOs

In the ring CCD (ring coupled cluster double excita-
tions) formulation [39], the general RPA correlation en-
ergy (direct-RPA or RPA-exchange) is a sum of pair-
contributions attributed to a pair of occupied (localized) or-
bitals:

ERPA
c =

1
2

occ∑
i j

tr
{
Bi j Ti j}, (8)
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(a) O lone pair |i〉 (b) Q̂ r̂x |i〉 (c) Q̂ r̂y |i〉 (d) Q̂ r̂z |i〉

Fig. 1 Projected Oscillator Orbitals ((b),(c),(d)) generated by projection of the products of first order solid spherical harmonics polynomials with
the O lone pair orbital of H2C−−O seen in (a). The harmonics are aligned with the local frame axes, i.e. the principal axes of the tensor of the
moment of inertia of the charge distribution of the oxygen lone pair orbital. The green dot indicates the position of the LMO centroid.

(a) C−H bonding orbital |i〉 (b) Q̂ r̂x |i〉 (c) Q̂ r̂y |i〉 (d) Q̂ r̂z |i〉

Fig. 2 Projected Oscillator Orbitals ((b),(c),(d)) generated by projection of the products of first order solid spherical harmonics polynomials with
the C−H bonding orbital of H2C−−O (a). The harmonics are aligned with with the local frame axes, i.e. the principal axes of the tensor of the
moment of inertia of the charge distribution of the C−H bonding orbital. The green dot indicates the position of the LMO centroid.

where the amplitudes Ti j satisfy the Riccati equations,
which can be written in terms of orthogonalized occupied
i, j, k, . . . and virtual a, b, c, . . . orbitals as:

Ri j = Bi j + ((εεε + A)T)i j + (T(A + εεε))i j + (TBT)i j = 0, (9)

with the matrix elements:

ε
i j
ab = δi j fab − fi jδab

Ai j
ab = Ki j

ab − Ji j
ab = 〈a j | ib〉−〈a j | bi〉 (10)

Bi j
ab = Ki j

ab − K′i j
ab = 〈i j | ab〉−〈i j | ba〉,

where f is the fock matrix of the fock operator f̂ and with
the two-electron integrals of spin-orbitals written with the
physicists’ notation:
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〈i j | ab〉 =

∫
φ∗i (r)φ∗j(r

′)w(r, r′)φa(r)φb(r′) drdr′, (11)

where w(r, r′) = |r′ − r|−1 is the Coulomb electron repulsion
interaction.

Note that the size of the matrices in Eq. 8 and 9 is,
for each pair [i j], Nvirt × Nvirt and that in this notation
the matrix multiplications are understood as, for example:
(T(A + εεε))i j

ab =
∑

mc T im
ac Am j

cb + T im
ac ε

m j
cb .

Using the transformation rule between the amplitudes
in the VMOs and in the POO basis, Ti j = VTi j

POOV† (see
Appendix B), the Riccati equations can be recast in the POO
basis as (again, see Appendix B):

Ri j
POO = Bi j

POO + (εεεPOO + Aim
POO) Tm j

POO SPOO

+ SPOO Tim
POO (εεεPOO + Am j

POO)

+ SPOO Tim
POO Bmn

POO Tn j
POO SPOO = 0. (12)

This corresponds to a local formulation of the ring CCD am-
plitudes equations, and the dimension of the matrices, em-
phasized by the subscript POO, is merely NPOO × NPOO. As
explained in Appendix C, this type of Riccati equations can
be solved iteratively in a pseudo-canonical basis.

2.3 Local excitation approximation

Since the excitations are limited to “pair-domains”, the ef-
fective dimension of the equations for a pair is actually rou-
ghly independent from the size of the system, just like in any
local correlation procedure.

As the simplest approximation, one can take only the
three excitations to the dipolar POOs generated by a selected
LMO, i.e. for each pair of LMOs [i j] we have the local ex-
citations i → iα and j → jβ, leading to a 3 × 3 problem to
solve and iterate on. Within this approximation, all matrices
involved in the derivations can be fully characterized by two
occupied LMO indices and two cartesian components, α and
β (the subscript POO is omitted from now on):

(A)i j
iα jβ
≡ (A)i j

αβ and: (S)iα jβ ≡ (S)i j
αβ

(B)i j
iα jβ
≡ (B)i j

αβ (f)iα jβ ≡ (f)i j
αβ (13)

(T)i j
iα jβ
≡ (T)i j

αβ

With this in mind, and with the additional approxima-
tion which consists in neglecting the overlap between POOs
coming from different LMOs, i.e. (S)i j

αβ ≈ δi j (S)ii
αβ, the di-

rect RPA Riccati equations of Eq. 12 become:

Ri j = Bi j + fii Ti j S j j − fii Sii Ti j S j j + Aim Tm j S j j

+ Sii Ti j f j j − Sii Ti j S j j f j j + Sii Tim Am j

+ Sii Tim Bmn Tn j S j j = 0. (14)

In the above equation, we have written explicitly the fock
matrix contributions and used implicit summation conven-
tions over m and n. A detailed derivation of Eq. 14 from
Eq. 12 is shown in Appendix D. These Riccati equations
can be solved by a transformation to the pseudo-canonical
basis, as described in Appendix C.

2.4 Multipole approximation for the long-range
two-electron integrals in the POO basis

In the context of range-separation, and in the spirit of con-
structing an approximate theory which takes advantage of
the localized character of the occupied molecular orbitals,
we are going to proceed via a multipole expansion of the
long-range two-electron integrals.

The matrices Ai j
POO and Bi j

POO will be reinterpreted in
terms of long-range two-electron integrals, i.e. w(r, r′) will
be replaced by wlr(r, r′) = erf

(
µ|r′ − r|

)
|r′ − r|−1 in Eq. 11.

They read respectively as (see Eq. 10 and the transformation
described in Appendix B):

Ki j
mαnβ − Ji j

mαnβ = 〈mα j | inβ〉lr − 〈mα j | nβi〉lr (15)

Ki j
mαnβ − K′i j

mαnβ = 〈i j |mαnβ〉lr − 〈i j | nβmα〉lr. (16)

Note that these integrals could be calculated by using
the POO to VMO transformation of Eq. 6. However, such
an expression is not in harmony with our goal of getting rid
of virtual orbitals, since it requires the full set of integrals
transformed in occupied and canonical VMOs with an ad-
ditional two-index transformation. We could formally elim-
inate virtual molecular orbitals by applying the resolution of
identity, but in this case we would be faced with new type
of two-electron integrals, in addition to the usual ones gen-
erated by the Coulomb interaction |r − r′|−1, namely inte-
grals generated by r̂α |r−r′|−1, r̂′β |r−r′|−1 and r̂α r̂′β|r−r′|−1.
Therefore we are going to proceed by a multipole expansion
technique.

The expansion centre for the multipole expansion will
be chosen at the centroid of the LMOs, i.e. in this example
at Di and D j. Using the second order long-range interaction
tensor Li j(Di j), with Di j = Di − D j (see Appendix E), we
have

Ki j
mαnβ = 〈mα j | inβ〉lr ≈

∑
γδ

〈mα| r̂γ |i〉 Li j
γδ 〈 j| r̂δ |nβ〉

+ higher multipole terms. (17)
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A truly remarkable formal result emerging from the
framework of oscillator orbitals is that the r̂γ matrix element
between the POO mα and the LMO i that appears in the pre-
vious equation is nothing else but the overlap between the
POOs mα and iγ (cf. Eq. 5):

〈mα| r̂γ |i〉 = 〈m| r̂α r̂γ |i〉 −
occ∑
n

〈m| r̂α |n〉〈n| r̂γ |i〉 = S mαiγ ,

(18)

so that the matrix element Ki j
mαnβ simply reads:

Ki j
mαnβ = S mαiγLi j

γδS jδnβ . (19)

After applying the local excitation approximation, this bi-
electronic integral becomes even simpler, according to the
following expression:

Ki j = SiiLi jS j j. (20)

In the case of direct RPA, only the Ki j two-electron
integrals are needed. For the more general exchange RPA
(RPAx) case, most of the electron repulsion integrals,
〈mα j | nβi〉lr, can be neglected in the multipole approxima-
tion, since they correspond to the interaction of overlap
charge densities formed by localized orbitals in different
domains. Nevertheless, integrals of the type 〈mα j |mβ j〉lr
should be kept: they describe the interaction of the overlap
charge densities of the j-th LMO and the mα POO, which is
a typical long-range Coulomb interaction. Similar consider-
ations hold for the K′i j matrix elements, which correspond
to an exchange integral involving overlap charge densities
of orbitals belonging to different domains and can be ne-
glected at this point (a few integrals will however survive).
The RPAx variant of the model will be considered in more
details in forthcoming works.

2.5 Spherical average approximation

The previously discussed 3 × 3 matrices can be easily re-
placed by scalar quantities, if one considers a spherical av-
erage of the POO overlap and fock matrices:

S ii
αβ ≈

1
3 si δαβ with si =

∑
α

S ii
αα, (21)

and:

f ii
αβ ≈

1
3 f i δαβ with f i =

∑
α

f ii
αα. (22)

In this diagonal approximation, and in the case of direct
RPA where A = B = K, the Riccati equations of Eq. 14
supposing implicit summations on m and n become:

Ri j = si s j Li j +
(

f i s j − fii si s j
)

Ti j + 1
3 si sm s j Lim Tm j

+
(
si f j − si s j f j j

)
Ti j + 1

3 si sm s j Tim Lm j

+ 1
32 si sm sn s j Tim Lmn Tn j = 0. (23)

This set of equations can be solved directly, i.e. without pro-
ceeding by the pseudo-canonical transformation described
in Appendix C for the more general case. The only quanti-
ties needed are the spherically averaged si and f i associated
to localized orbitals and the long-range dipole-dipole ten-
sors. The update formula to get the n-th approximation to
the amplitude matrix element is

T i j (n)
αβ =

si s j Li j
αβ + ∆Ri j

αβ(T
(n−1))

∆i s j + si ∆ j , (24)

with:

∆i = fii si − f i, (25)

and:

∆Ri j(T) = 1
3 si sm s j Lim Tm j + 1

3 si sm s j Tim Lm j

+ 1
32 si sm sn s j Tim Lmn Tn j. (26)

Pursuing with the local excitation and the spherical av-
erage approximations, the long-range correlation energy is
given by the following spin-adapted expression:

ERPA,lr
c =

4
9

occ∑
i j

si s j tr
{
Li j Ti j}. (27)

2.6 Bond-bond C6 coefficients

Using the first order amplitudes, i.e. the amplitudes obtained
in the first iteration step during the solution of Eq. 24:

Ti j (1) =
si s j

∆i s j + si ∆ j Li j, (28)

the second order long-range correlation energy becomes:

E(2),lr
c =

4
9

occ∑
i j

si s j si s j

∆i s j + si ∆ j tr
{
Li j Li j}. (29)
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This expression describes the correlation energy as a pair-
wise additive quantity made up from bond-bond contribu-
tions. The summation over the components of the long-
range interaction tensors gives (see Appendix E):

tr
{
Li j Li j} =

6
Di j6 Fµ

damp(Di j), (30)

and allows us to cast the long-range correlation energy in a
familiar form, as:

E(2),lr
c =

occ∑
i j

Ci j
6

Di j6
Fµ

damp(Di j), (31)

where Ci j
6 is the dispersion coefficient between the i and j

LMOs:

Ci j
6 =

8
3

si s j si s j

∆i s j + si ∆ j . (32)

Note that the above dispersion coefficient corresponds to
a single-term approximation to the bare (non-interacting)
spherically averaged dipolar dynamic polarizability associ-
ated with the localized orbital i,

αi
0(iω) ≈

4
3

ωi

ω2
i + ω2

si, (33)

where ωi = ∆i/si is an effective energy denominator and the
quantity si stands for the second cumulant moment (spread)
of the localized orbital. Note that this possibility to approx-
imate αi

0(iω) only as a function of objects like f i and si is
a direct consequence of the remarkable feature that the sec-
ond moment between an LMO and a POO corresponds to an
overlap between two POOs (see Eq. 18).

It is easy to verify that with the help of the Casimir-
Polder formula

Ci j
6 =

3
π

∫ ∞

0
dω αi

0(iω)α j
0(iω), (34)

that it is indeed the Ci j
6 dispersion coefficient which is recov-

ered from the polarizabilities defined in Eq. 33. This simple
model for the dynamic polarizability associated to an LMO,
deduced from first principles, can be the starting point of
alternative dispersion energy expressions, e.g. based on the
modeling of the dielectric matrix of the system or using the
plasmonic energy expression.

3 Preliminary results: molecular C6 coefficients

In order to have a broad idea about the appropriateness of
this simple dispersion energy correction, we have calculated
the molecular C6 coefficients for a series of homodimers as
the sum of the atom-atom dispersion coefficients given by
Eq. 32.

The matrix elements between POOs, S ii
αβ and f ii

αβ, which
are needed to calculate the scalars si and f i, can be obtained
directly by manipulating the matrix representation of the op-
erators. Such a procedure leads to what we will call the “ma-
trix algebra” expressions (denoted by [M]), of the following
form:

si
[M] =

∑
α

〈i| r̂α Q̂ r̂α |i〉 =

virt∑
a

|〈i| r̂ |a〉|2, (35)

and (see Appendix F):

f i
[M] =

virt∑
ab

∑
α

〈i| r̂α |a〉 fab 〈b| r̂α |i〉. (36)

Alternatively, these matrix elements can be obtained
through the application of commutator relationships, there-
fore this latter option will be referred to as the “operator
algebra” approach (denoted by [O]). They take the form:

si
[O] =

∑
α

〈i| r̂α Q̂ r̂α |i〉 = 〈i| r̂2 |i〉 −
occ∑
m

|〈i| r̂ |m〉|2, (37)

and (again, see Appendix F):

f i
[O] = 3

2 + 1
2

occ∑
m

(
fim〈m| r̂2 |i〉 + 〈i| r̂2 |m〉 fmi

)
−

occ∑
mn

∑
α

〈i| r̂α |m〉 fmn 〈n| r̂α |i〉. (38)

Four different Fock/Kohn-Sham operators have been ap-
plied to obtain the orbitals, which are subsequently local-
ized by the standard Foster-Boys procedure. In addition to
the local/semi-local functionals LDA and PBE, the range-
separated hybrid RSHLDA [37, 56] with a range-separation
parameter of µ = 0.5 a.u. as well as the standard re-
stricted Hartree-Fock (RSH) method were used. The nota-
tions LDA[M] and LDA[O] refer to the procedure applied to
obtain the matrix elements: either by the matrix algebra [M]
or by the operator algebra [O] method. All calculations were
performed with the aug-cc-pVTZ basis set, using the MOL-
PRO quantum chemical program package [57]. The matrix
elements were obtained by the MATROP facility of MOL-
PRO [57]; the C6 coefficients were calculated by Mathemat-
ica.
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Table 1 Molecular C6 coefficients from the dipolar oscillator orbital method, using LDA, PBE, RHF and sr-LDA/lr-RHF determinants in aug-
cc-pVTZ basis set and Boys localized orbitals. The matrix elements are calculated with a matrix algebra [M] and operator algebra [O] approach,
respectively. All results are in atomic units. Values highlighted as bold indicate the best agreement with experiment..

Molecule Ref. LDA[M] LDA[O] PBE[M] PBE[O] RHF[M] RHF[O] RSHLDA[M] RSHLDA[O]

H2 12.1 18.4 18.4 17.2 17.2 9.6 16.2 10.6 16.9
HF 19.0 20.7 21.5 20.7 21.6 12.4 17.2 14.9 19.3
H2O 45.3 55.6 56.5 55.1 56.1 31.9 45.4 36.4 48.9
N2 73.3 118.3 118.8 117.6 118.0 75.2 109.0 81.1 110.9
CO 81.4 120.4 120.9 119.1 119.7 70.9 104.1 79.1 109.6
NH3 89.0 118.8 119.9 116.7 117.8 66.3 98.6 72.6 102.0
CH4 129.7 192.4 193.0 185.9 186.5 105.3 163.5 114.5 168.2
HCl 130.4 208.9 211.8 205.1 208.5 121.5 186.3 126.7 184.8
CO2 158.7 234.9 237.0 233.2 235.4 130.9 184.0 153.3 202.8
H2CO 165.2 205.7 207.2 202.8 204.3 115.2 168.3 129.4 178.4
N2O 184.9 317.1 319.3 315.3 317.5 178.9 252.3 206.0 274.7
C2H2 204.1 343.5 345.2 340.4 342.2 206.4 316.1 209.7 306.5
HBr 216.6 303.3 325.9 302.5 325.4 188.3 293.5 188.2 282.7
H2S 216.8 392.8 397.7 382.8 388.2 213.0 339.2 220.5 335.5
CH3OH 222.0 303.8 305.3 297.0 298.5 166.8 246.2 187.2 260.2
SO2 294.0 542.6 554.9 539.8 552.5 284.9 416.7 329.5 456.2
C2H4 300.2 466.1 467.8 456.7 458.4 266.3 406.4 279.4 405.8
CH3NH2 303.8 440.6 442.3 429.8 431.4 240.2 360.3 263.2 373.3
SiH4 343.9 639.6 655.3 598.4 613.9 280.0 484.6 310.9 513.0
C2H6 381.9 579.2 580.9 560.9 562.5 313.5 480.9 341.2 495.5
Cl2 389.2 727.4 735.4 714.3 723.7 401.3 607.5 424.3 612.2
CH3CHO 401.7 627.5 630.4 613.3 616.0 333.2 493.6 372.6 521.7
COS 402.2 845.7 855.8 843.9 853.7 456.3 689.2 495.7 713.5
CH3OCH3 534.1 781.4 784.3 758.4 761.1 415.2 619.4 464.8 654.3
C3H6 662.1 1045.9 1049.4 1018.6 1021.8 571.2 868.2 609.8 881.2
CS2 871.1 2099.4 2119.5 2073.4 2094.5 1085.6 1658.0 1144.0 1686.2
CCl4 2024.1 3831.3 3861.0 3750.4 3784.0 2004.8 3007.0 2135.5 3051.9

MAD%E 59.84 61.69 56.71 58.62 15.22 33.75 11.84 37.60
STD%E 28.08 28.25 27.76 27.98 9.88 21.15 7.24 20.86
CSSD%E 67.14 68.92 64.11 65.97 18.39 40.37 14.07 43.62
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Fig. 3 Percentage errors in calculated molecular C6 coefficients ob-
tained with different methods using the matrix algebra approach.

The results and their statistical analysis are collected in
Table 1 for a set of small molecules taken from the database
compiled by Tkatchenko and Scheffler [16], as used in [58].
The experimental dispersion coefficients have been deter-

mined from dipole oscillator strength distributions (DOSD)
[59–71]. The percentage errors of some of the methods
(LDA[M], PBE[M], RHF[M] and RSHLDA[M]) are shown
in Figure 3.

Besides Eq. 32, the C6 coefficients were also calculated
from an iterative procedure, where the amplitude matrices
Ti j were updated according to the first two lines of Eq. 23.
Such a procedure corresponds roughly to a local MP2 itera-
tion, and the methods are labelled LDA2, PBE2, RHF2 and
RSHLDA2. These results are summarized in Table 2, where
a detailed statistical analysis is presented for all the compu-
tational results.

The dispersion coefficients obtained from LDA and PBE
orbitals are strongly overestimated. It is not really surprising
in view of the rather diffuse nature of DFA orbitals and their
tendency to underestimate the occupied/virtual gap. Due to
the fact that LDA and PBE lead to local potentials, the oper-
ator and matrix algebra results are very similar: their differ-
ence is smaller than the supposed experimental uncertainty
of the DOSD dispersion coefficients (few percent). It is quite
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Table 2 Detailed statistical analysis of the methods to obtain POO C6
coefficients.

LDA[M] PBE[M] RHF[M] RSHLDA[M]

MA%E 59.8 56.7 15.2 11.8
STD%E 28.1 27.8 9.9 7.2
CSSD%E 67.1 64.1 18.4 14.1
MED%E 55.3 52.1 17.1 11.4
MAX%E 141 138 24.6 31.3
MIN%E 9.1 8.8 -34.7 -21.7

LDA2[M] PBE2[M] RHF2[M] RSHLDA2[M]

MA%E 64.3 61 17.1 17.1
STD%E 35.7 35.3 12.3 12.3
CSSD%E 74.7 71.5 21.3 21.3
MED%E 53.5 50.6 15.3 15.3
MAX%E 142.1 148.7 54.3 54.3
MIN%E -4.7 -5.1 -36.6 -36.6

LDA[O] PBE[O] RHF[O] RSHLDA[O]

MA%E 61.7 58.6 33.7 37.6
STD%E 28.3 28 21.2 20.9
CSSD%E 68.9 66 40.4 43.6
MED%E 55.8 52.7 34 34.6
MAX%E 143.3 140.4 90.3 93.6
MIN%E 13.4 13.4 -9.7 1.7

LDA2[O] PBE2[O] RHF2[O] RSHLDA2[O]

MA%E 65.9 62.7 51 51
STD%E 36.3 36.9 47.7 47.7
CSSD%E 76.3 73.8 70.5 70.5
MED%E 54.7 51.1 34 34
MAX%E 143.3 152.9 214.8 214.8
MIN%E -1.1 -1.2 -10.6 -10.6

clear from Figure 3 that the errors for the molecules contain-
ing second-row elements are considerably higher than for
most of the molecules composed of H, C, N, O and F atoms.
Notable exceptions are the N2 and N2O molecules.

The performance of the method is significantly better for
orbitals obtained by nonlocal exchange: RHF and RSHLDA.
In the latter case the long-range exchange is nonlocal, and
only the short-range exchange is described by a short-range
functional. The best performance has been achieved by the
RSHLDA[M] method. In contrast to the pure DFA calcula-
tions, the matrix and operator algebra methods differ for the
RHF and RSH methods significantly: the mean absolute er-
ror and the standard deviation of the error is increased by a
factor of 2 or 3. This deterioration of the quality of the re-
sults reflects the fact that in the operator algebra approach
the commutator of the position and non-local exchange op-
erators is neglected (see Appendix F), while this effect is
automatically taken into account in the matrix algebra cal-
culations. In view of the simplicity of the model and of its
fully ab initio character, the best ME%E of about 11% seems
to be very promising and indicates that further work in this
direction is worthwhile.

4 Conclusions, perspectives

It has been shown that, using projected dipolar oscillator or-
bitals to represent the virtual space in a localized orbital con-
text, the equations involved in long-range ring coupled clus-
ter doubles type RPA calculations can be formulated without
explicit knowledge of the virtual orbital set. The POO vir-
tuals have been constructed directly from the localized oc-
cupied orbitals. The fockian matrix elements and the elec-
tron repulsion integrals were evaluated using only the ele-
ments of the occupied block of the Fock/Kohn-Sham ma-
trix in LMO basis and from simple multipole integrals be-
tween occupied LMOs. An interesting feature of the model
is that, as far as one uses Boys localized orbitals and first-
order dipolar oscillator orbitals, practically all the emerg-
ing quantities can be expressed by the overlap integral be-
tween two oscillator orbitals, which happens to be the ma-
trix element of the dipole moment fluctuation operator. Var-
ious levels of approximations have been considered for the
long-range RPA energy leading finally to a pairwise additive
dispersion energy formula with a non-emprirical expression
for the bond-bond C6 dispersion coefficient. At this simplest
level a straightforward relationship has been unraveled be-
tween the ring coupled cluster and the dielectric matrix for-
mulations of the long-range RPA correlation energy.

Our derivation, starting from the quantum chemical RPA
correlation energy and pursuing a hierarchy of simplifying
assumptions, has led us to a dispersion energy expression
which is in a straightforward analogy with classical van der
Waals energy formulae. Our procedure produces an explicit
model, derived from the wave function of the system, for
the dynamical polarizabilities associated with the building
blocks, which are bonds, lone pairs and in general local-
ized electron pairs. Thus one arrives to the quantum chem-
ical analogs of the “quantum harmonic oscillators” (QHO)
appearing in the semiclassical theory of dispersion forces,
elaborated within a RPA framework by Tkatchenko, Am-
brosetti, di Stasio and their coworkers [72, 73].

A promising perspective of the projected oscillator or-
bital approach concerns the description of dispersion forces
in plane wave calculations for solids. Much effort has been
spent recently in finding a compact representation of the di-
electric matrix in plane wave calculations, [10] but it still
remains a bottleneck for a really fast non-empirical calcu-
lation of the long-range correlation energy. Projected os-
cillator orbitals may offer an opportunity to construct ex-
tremely compact representations of a part of the conduc-
tion band, which contributes the most to the local dipo-
lar excitations at the origin of van der Waals forces. How-
ever, this approach is probably limited to relatively large gap
semiconductors, where the construction of the maximally
localized Wannier functions (MLWF), [74, 75] which are
the solid-state analogs of the Boys localized orbitals, is a
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convergent procedure. Such a methodology could become a
fully non-empirical variant of Silvestrelli’s extension of the
Tkatchenko-Scheffler approach for MLWFs [46–50].

The main purpose of the present work has been to de-
scribe the principal features of the formalism, without ex-
tensive numerical applications. However, the first rudimen-
tary numerical tests on the molecular C6 coefficients have
indicated that the results are quite plausible in spite of the
simplifying approximations and it is reasonable to expect
that more sophisticated variants of the method will improve
the quality of the model. In view of the modest computa-
tional costs and the fully ab initio character of the projected
oscillator orbital approach applied at various approximation
levels of the RPA, which is able to describe dispersion forces
even beyond a pairwise additive scheme, the full numerical
implementation of the presently outlined methodology have
certainly a great potential for the treatment of London dis-
persion forces in the context of density functional theory.

A Dipolar oscillator orbitals in local frame

Let RRRi be the rotation matrix which transforms an arbitrary vector v
from the laboratory frame to the vector vloc in the local frame defined
as the principal axes of the second moment tensor of the charge distri-
bution associated with a given localized occupied orbital i,RRRi ·v = vloc.
The expression in the local frame of a POO iα constructed from the
LMO i is then:

|iloc
α 〉 =

Î −
occ.∑
m

|m〉〈m|

 (RRRi · (r − Di)
)
α |i〉

=
(
RRRi · r

)
α |i〉 −

occ.∑
m

(
RRRi · 〈m| r |i〉

)
α |m〉

=
∑
β

Ri
αβrβ |i〉 −

occ.∑
m

∑
β

Ri
αβ〈m| rβ |i〉 |m〉 (39)

B Riccati equations in POO basis

The first order wave function Ψ (1) can be written in terms of Slater
determinants | . . . ab . . . | formed with LMOs and canonical virtual or-
bitals a and b on the one hand, and on the other hand in terms of Slater
determinants | . . .mαnβ . . . | formed with LMOs and POOs mα and nβ.
That is to say that:

Ψ (1) =

occ∑
i j

virt∑
ab

T i j
ab| . . . ab . . . | ≈

occ∑
i j

POO∑
mαnβ

T i j
mαnβ | . . .mαnβ . . . |. (40)

The canonical virtual orbitals and the POOs in question are related by
(see Eq. 6):

|mα〉 =

virt.∑
a

|a〉Vamα
and: |nβ〉 =

virt.∑
b

|b〉Vbnβ . (41)

This allows us to write:

Ψ (1) =

occ∑
i j

virt∑
ab

T i j
ab| . . . ab . . . |

≈

occ∑
i j

POO∑
mαnβ

T i j
mαnβ | . . .mαnβ . . . |

=

occ∑
i j

POO∑
mαnβ

virt∑
ab

Va mα
T i j

mαnβV
†

nβ b| . . . ab . . . |, (42)

and leads to the transformation rule between the amplitudes in the
VMO and in the POO basis:

Ti j = V Ti j
POO V†. (43)

Multiplication of the Riccati equations of Eq. 9 by V† and V from
the left and from the right respectively, and expressing the amplitudes
in POOs using Eq. 43 leads to:

V† Ri j V = V† Bi j V + V† (εεε + A)im
(
V Tm j

POO V†
)

V

+ V†
(
V Tim

POO V†
)

(εεε + A)m j V

+ V†
(
V Tim

POO V†
)

Bmn
(
V Tn j

POO V†
)

V = 0, (44)

where implicit summation conventions are supposed on m and n. Rec-
ognizing the expression for the overlap matrix, SPOO = V†V, we ob-
tain:

Ri j
POO = Bi j

POO + (εεεPOO + APOO)im Tm j
POO SPOO

+ SPOO Tim
POO (εεεPOO + APOO)m j

+ SPOO Tim
POO Bmn

POO Tn j
POO SPOO = 0, (45)

which defines Ri j
POO, εεε i j

POO, Ai j
POO and Bi j

POO and which are the Riccati
equations seen in Eq. 12.

C Solution of the Riccati equations in POO basis

To derive the iterative resolution of the Riccati equations seen in
Eq. 12, we write explicitly the fock matrix contributions hidden in the
matrix εεε. The matrix elements in canonical virtual orbitals, ε i j

ab, read:

ε
i j
ab = δi j fab − δab fi j, (46)

so that the matrix element in POOs is (we omit the “POO” indices):

ε
i j
mαnβ = V†mαaε

i j
abVbnβ = δi j fmαnβ − S mαnβ fi j. (47)

The terms in the Riccati equations containing the matrix εεε then read
(we use implicit summations over m and n):

εεε im Tm j S = f Ti jS − fim S Tm jS (48)

S Tim εεεm j = S Ti jf − S Tim S fm j. (49)

We this in mind, the Riccati equations of Eq. 12 yield:
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Ri j = Bi j +
(
f − fii S

)
Ti jS + S Ti j (f − S f j j

)
−

∑
m,i

fim S Tm jS −
∑
m, j

S Tim S fm j

+ Aim Tm jS + S TimAm j + S TimBmnTn jS = 0. (50)

Remember that the matrices are of dimension NPOO×NPOO. Due to the
nonorthogonality of the POOs and the non diagonal structure of the
fock matrix, the usual simple updating scheme for the solution of the
Riccati equations should be modified in a similar fashion as in the local
coupled cluster theory [29]. The fock matrix in the basis of the POOs
will be diagonalized by the matrix X obtained from the solution of the
generalized eigenvalue problem:

f X = S Xεεε. (51)

Note that the transformation X† f X does not brings us back to the
canonical virtual orbitals. We can write the transformation by the or-
thogonal matrix X as X†

a iα
fiα jβ X jβ b = δab εb, where a and b are pseudo-

canonical virtual orbitals that diagonalize the fock matrix expressed in
POOs. The Riccati equations of Eq. 50 are transformed separately for
each pair [i j] in the basis of the pseudo-canonical virtual orbitals that
diagonalize fPOO:

X† Ri j X = X† Bi j X +
(
X† f − fii X† S

)
Ti j S X + X† S Ti j(f X − S X f j j

)
−

∑
m,i

fim X† S Tm j S X −
∑
m, j

X† S Tim S X fm j

+ X† Aim Tm j S X + X† S Tim Am j X

+ X† S Tim Bmn Tn j S X = 0, (52)

which can be simplified by the application of the generalized eigen-
value equation Eq. 51 and the use of the relationships I = S X X† =

X X† S:

R
i j

= B
i j

+
(
εεε − fii I

)
T

i j
+ T

i j(
εεε − f j j I

)
−

∑
m,i

fim T
m j
−

∑
m, j

T
im

fm j

+ A
im

T
m j

+ T
im

A
m j

+ T
im

B
mn

T
n j

= 0, (53)

with the notations:

R
i j

= X† Ri j X

A
i j

= X† Ai j X

B
i j

= X† Bi j X

T
i j

= X† S Ti j S X.

The new Riccati equations of Eq. 53 can be solved by the iteration
formula:

T
i j (n)
ab = −

B
i j
ab + ∆R

i j
ab(T

(n−1)
)

εa − fii + εb − f j j
, (54)

where ∆R
i j

(T) is

∆R
i j

(T) = −
∑
m,i

fim T
m j
−

∑
m, j

T
im

fm j

+ A
im

T
m j

+ T
im

A
m j

+ T
im

B
mn

T
n j
. (55)

As presented here, the update of the “non-diagonal” part of the
residue is done in the pseudo-canonical basis. After convergence, we
could transform the amplitudes back to the original POO basis accord-
ing to:

Ti j =
(
X† S

)−1 T
i j (

S X
)−1

= S−1(X†)−1 T
i j

X−1 S−1

= X X†(X†)−1 T
i j

X−1 X X†

= X T
i j

X†. (56)

However, this back-transformation is not necessary since the correla-
tion energy can be obtained directly in the pseudo-canonical basis, as:

occ∑
i j

tr
{
B

i j
T

i j}
=

occ∑
i j

tr
{
X† Bi j X X† S Ti j S X

}
=

occ∑
i j

tr
{
Bi j Ti j S X X†

}
=

occ∑
i j

tr
{
Bi j Ti j}. (57)

D Riccati equations in the local excitation
approximation

The local excitation approximation imposes that in the matrices R, εεε,
A and B, the excitations remain on the same localized orbitals. In this
approximation the Riccati equations of Eq. 12, with explicit virtual
indexes, read:

Ri j
iα jβ

= Bi j
iα jβ

+ (ε + A)im
iαmγ

T m j
mγ pδ S pδ jβ

+ S iα pγ T im
pγmδ

(ε + A)m j
mδ jβ

+ S iα pγ T im
pγmδ

Bmn
mδnτ T n j

nτqζ S qζ jβ = 0. (58)

In this context, the terms containing the matrix εεε are (with explicit POO
indexes):

ε im
iαmγ

T m j
mγ pδ S pδ jβ = fiα iγ T i j

iγ pδ
S pδ jβ − fim S iαmγ

T m j
mγ pδ S pδ jβ (59)

S iα pγ T im
pγmδ

ε
m j
mδ jβ

= S iα pγ T i j
pγ jδ

f jδ jβ − S iα pγ T im
pγmδ

S mδ jβ fm j. (60)

Inserting this in Eq. 58 and using the shorthand notation Ri j
iα jβ
≡ Ri j

αβ,

Bi j
iα jβ
≡ Bi j

αβ, fiα jβ ≡ f i j
αβ and S iα jβ ≡ S i j

αβ, (note the matrix elements T i j
iγ pδ

cannot yet be translated to the shorthand notation) one obtains:

Ri j
αβ = Bi j

αβ + f ii
αγ T i j

iγ pδ
S p j
δβ − fim S im

αγ T m j
mγ pδ S p j

δβ + Aim
αγ T m j

mγ pδ S p j
δβ

+ S ip
αγ T i j

pγ jδ
f j j
δβ − S ip

αγ T im
pγmδ

S m j
δβ fm j + S ip

αγ T im
pγmδ

Am j
δβ

+ S ip
αγ T im

pγmδ
Bmn
δτ T n j

nτqζ S q j
ζβ = 0. (61)

It is then a further approximation to tell that the POOs coming
from different LMOs have a negligible overlap, i.e. that S i j

αβ = δi jS ii
αβ.

The Riccati equations become:

Ri j
αβ = Bi j

αβ + f ii
αγ T i j

iγ jδ
S j j
δβ − fii S ii

αγ T i j
iγ jδ

S j j
δβ + Aim

αγ T m j
mγ jδ

S j j
δβ

+ S ii
αγ T i j

iγ jδ
f j j
δβ − S ii

αγ T i j
iγ jδ

S j j
δβ f j j + S ii

αγ T im
iγmδ

Am j
δβ

+ S ii
αγ T im

iγmδ
Bmn
δτ T n j

nτ jζ
S j j
ζβ = 0, (62)
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which, in turn, allows us to use the shorthand notation Tiα jβ ≡ T i j
αβ to

arrive at:

Ri j = Bi j + fii Ti j S j j − fii Sii Ti j S j j + Aim Tm j S j j

+ Sii Ti j f j j − Sii Ti j S j j f j j + Sii Tim Am j

+ Sii Tim Bmn Tn j S j j = 0, (63)

E Screened dipole interaction tensor

Any interaction L(r) can be expanded in multipole series using a dou-
ble Taylor expansion around appropriately selected centers, here Di

and D j, such that, with r = ri − r j = (ri − Di) + Di j − (r j − D j) where
Di j = Di − D j:

L(r) = Li j(Di j) +
∑
α

(r̂i
α − Di

α) Li j
α (Di j) +

∑
α

(r̂ j
α − D j

α) Li j
α (Di j)

+
∑
αβ

(r̂i
α − Di

α)(r̂ j
β − D j

β)L
i j
αβ(D

i j) + . . . , (64)

where the definitions of Li j
α (Di j), Li j

αβ(D
i j) are obvious. For example, in

the case of the long-range interaction, L(r) will be defined according
to the RSH theory as:

L(r) =
erf(µr)

r
, (65)

with r = |r|. The multipolar expansion of the long-range interaction
leads to the following first and second order interaction tensors:

Li j
α (Di j) = −

Di j
α

Di j3

(
1 −

2
√
π

Di j µ e−µ
2 Di j2

− erf(µDi j)
)

(66)

Li j
αβ(D

i j) =
3 Di j

αDi j
β

Di j5

(
erf(µDi j) −

2
3
√
π

Di j µ e−µ
2 Di j2

(
3 + 2Di j2µ2

))
−
δαβDi j2

Di j5

(
erf(µDi j) −

2
√
π

Di j µ e−µ
2 Di j2

)
. (67)

Remembering that the full-range Coulomb interaction tensor reads
T i j
αβ(D

i j) =
(
3 Di j

αDi j
β − δαβDi j2

)
Di j−5, the long-range interaction ten-

sor can be written in an alternate form which clearly shows the damped
dipole-dipole interaction contribution:

Li j
αβ(D

i j) = T i j
αβ(D

i j)
(
erf(µDi j) −

2
3
√
π

Di j µ e−µ
2 Di j2

(
3 + 2Di j2µ2

))
− δαβ e−µ

2 Di j2 4 µ3

3
√
π
. (68)

The trace of the tensor product (used for the spherically averaged C6)
then reads:

∑
αβ

Li j
αβLi j

αβ =
6

Di j6

(
4e−2Di j2

µ2
Di jµ

( Di jµ
(
3 + 4Di j2µ2 + 2Di j4µ4

)
3π

−

(
3 + 2Di j2µ2

)
erf(Di jµ)

3
√
π

)
+ erf(Di jµ)2

)
=

6

Di j6
Fµ

damp(Di j). (69)

F Fock matrix element in POO basis

The occupied-occupied block of the fock matrix, fi j, is known. The
POOs are orthogonal to the occupied subspace of the original basis set,
they satisfy the local Brillouin theorem, i.e. the occupied-virtual block
is zero. As a result, in the local excitation approximation, we need only
to deal with the fock matrix elements f ii

αβ:

f ii
αβ = 〈iα| f̂ |iβ〉 = 〈i| r̂αQ̂ f̂ Q̂ r̂β |i〉, (70)

from which we directly derive the quantity f i
[M] of Eq. 36:

f i
[M] =

∑
α

f ii
αα =

virt∑
ab

〈i| r̂α |a〉 fab 〈b| r̂α |i〉. (71)

Since we would like to express everything in occupied orbitals, we
expand the projector Q̂ and use that the occupied-virtual block of the
fock matrix is zero to obtain the following expression:

f ii
αβ = 〈i| r̂α f̂ r̂β |i〉 −

occ∑
mn

〈i| r̂α |m〉 fmn 〈n| r̂β |i〉. (72)

In order to transform the triple operator product, r̂α f̂ r̂β, let us consider
the following double commutator:

[
r̂α, [r̂β, f̂ ]

]
= −δαβ. (73)

Note that this holds provided that the fockian contains only local po-
tential terms, which commute with the coordinate operator: see later
for the more general case. In this special case, the double commutator
can be written as

[
r̂α, [r̂β, f̂ ]

]
= r̂α r̂β f̂ − r̂α f̂ r̂β − r̂β f̂ r̂α + f̂ r̂β r̂α = −δαβ, (74)

which allows us to express the two triple products:

r̂α f̂ r̂β + r̂β f̂ r̂α = δαβ + r̂α r̂β f̂ + f̂ r̂β r̂α. (75)

The diagonal matrix element of the triple operator product is then:

〈i| r̂α f̂ r̂β |i〉 = 1
2 δαβ + 1

2

(
〈i| r̂α r̂β f̂ |i〉 + 〈i| f̂ r̂β r̂α |i〉

)
. (76)

Since the localized orbitals satisfy local Brillouin theorem, we finally
obtain for the matrix elements of the fock operator with multiplica-
tive potential (typically Kohn-Sham operator with local or semi-local
functionals) between two oscillator orbitals:

f ii
αβ = 1

2 δαβ + 1
2

occ∑
m

(
〈i| r̂α r̂β |m〉 fmi + fim〈m| r̂α r̂β |i〉

)
−

occ∑
mn

〈i| r̂α |m〉 fmn 〈n| r̂β |i〉. (77)

From this, we obtain the quantity f i
[O] of Eq. 38:

f i
[O] =

∑
α

f ii
αα = 3

2 + 1
2

occ∑
m

(
〈i| r̂2 |m〉 fmi + fim〈m| r̂2 |i〉

)
−

occ∑
mn

∑
α

〈i| r̂α |m〉 fmn 〈n| r̂α |i〉. (78)
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In the more general case, i.e. when the fockian contains a nonlocal
exchange operator, like in hybrid DFT and in Hartree-Fock calcula-
tions, the relation seen Eq. 73 does not hold any more and the com-
mutator of the position operator with the fockian contains an exchange
contribution [76, 77], which gives rise to an additional term:

〈i|
[
r̂α, [r̂β, K̂]

]
|i〉 =

occ∑
m

〈im|
(
r̂α − r̂′α

)
w(r, r′)

(
r̂β − r̂′β

)
|mi〉, (79)

where the nonlocal exchange operator is defined as

K̂ =

occ∑
m

∫
dr′ φ†m(r′) w(r, r′) P̂rr′ φm(r′), (80)

where P̂rr′ is the permutation operator that changes the coordinates r′
appearing after K̂ to r, and we recall that w(r, r′) is the two-electron in-
teraction. Hence, the diagonal blocks of the POO fockian in the general
case can be written as:

〈iα| f̂ |iβ〉 = 1
2 δαβ −

1
2

occ∑
m

〈im|
(
r̂α − r̂′α

)
w(r, r′)

(
r̂β − r̂′β

)
|mi〉

+ 1
2

occ∑
m

(
〈i| r̂α r̂β |m〉 fmi + fim〈m| r̂α r̂β |i〉

)
−

occ∑
mn

〈i| r̂α |m〉 fmn 〈n| r̂β |i〉. (81)

In the present work, the exchange contribution, which is present
only in the case of Hartree-Fock or hybrid density functional fockians
and which would give rise to non-conventional two-electron integrals,
is not treated explicitly. Possible approximate solutions for this prob-
lem will be discussed in forthcoming works. Although we do not use
the elements of the off-diagonal (i , j) blocks of the POO fock opera-
tor, for the sake of completeness we give its expression:

〈iα| f̂ | jβ〉 = −〈i| r̂α∇̂β | j〉 +
occ∑
m

〈im| r̂α w(r, r′)
(
r̂β − r̂′β

)
|m j〉

+

occ∑
m

〈i| r̂α r̂β |m〉 fmi

−

occ∑
mn

〈i| r̂α |m〉 fmn 〈n| r̂β |i〉. (82)

To derive this, instead of the double commutator of Eq. 73, one
needs to consider the product of the commutator with a coordinate op-
erator

r̂α[r̂β, f̂ ] = r̂α[r̂β, T̂ ] − r̂α[r̂β, K̂], (83)

where T̂ is the kinetic energy operator, and [r̂β, T̂ ] = ∇̂β.
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29. P. J. Knowles, M. Schütz, and H.-J. Werner, in Modern Methods

and Algorithms of Quantum Chemistry, edited by J. Grotendorst
(John von Neumann Institute for Computing, Jülich, 2000).
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