T. Abe and T. Fujimori, Reporter Mouse Lines for Fluorescence Imaging, Development, Growth & Differentiation, vol.94, issue.4, pp.390-405, 2013.
DOI : 10.1111/dgd.12062

T. Becker and S. Rinkwitz, Zebrafish as a genomics model for human neurological and polygenic disorders, Developmental Neurobiology, vol.16, issue.Suppl 1, pp.415-428, 2012.
DOI : 10.1002/dneu.20888

P. Babin, C. Goizet, and D. Raldúa, Zebrafish models of human motor neuron diseases: Advantages and limitations, Progress in Neurobiology, vol.118, pp.36-58, 2014.
DOI : 10.1016/j.pneurobio.2014.03.001

K. Pratt and A. Khakhalin, Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets, Disease Models & Mechanisms, vol.6, issue.5, p.23929939, 2013.
DOI : 10.1242/dmm.012138

S. Schmitt, M. Gull, and A. Brändli, Engineering Xenopus embryos for phenotypic drug discovery screening, Advanced Drug Delivery Reviews, vol.69, issue.70, pp.225-271, 2014.
DOI : 10.1016/j.addr.2014.02.004

K. Howe, M. Clark, C. Torroja, J. Torrance, and C. Berthelot, The zebrafish reference genome sequence and its relationship to the human genome, Nature, vol.19, issue.7446, pp.498-503, 2013.
DOI : 10.1038/nature12111

U. Hellsten, R. Harland, M. Gilchrist, D. Hendrix, and J. Jurka, The Genome of the Western Clawed Frog Xenopus tropicalis, Science, vol.328, issue.5978, pp.633-636, 2010.
DOI : 10.1126/science.1183670

I. Detrich, . Hw, M. Westerfield, and L. Zon, The zebrafish: genetics, genomics and informatics, 2011.

W. Hwang, Y. Fu, D. Reyon, M. Maeder, and S. Tsai, Efficient genome editing in zebrafish using a CRISPR-Cas system, Nature Biotechnology, vol.31, issue.3, pp.227-229, 2013.
DOI : 10.1093/nar/gkg595

L. Vouillot, A. Thélie, T. Scalvenzi, and N. Pollet, Genomics and Genome Engineering in Xenopus, Xenopus Development, pp.383-402, 2014.

S. Grillner and T. Jessell, Measured motion: searching for simplicity in spinal locomotor networks, Current Opinion in Neurobiology, vol.19, issue.6, pp.572-586, 2009.
DOI : 10.1016/j.conb.2009.10.011

H. Flanagan-steet, M. Fox, D. Meyer, and J. Sanes, Neuromuscular synapses can form in vivo by incorporation of initiallyaneural postsynaptic specializations, Development, vol.132, issue.20, pp.4471-4481, 2005.
DOI : 10.1242/dev.02044

S. Higashijima, Y. Hotta, and H. Okamoto, Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer, J Neurosci, vol.20, pp.206-218, 2000.

J. Shin, H. Park, J. Topczewska, D. Mawdsley, and B. Appel, Neural cell fate analysis in zebrafish using olig2 BAC transgenics, Methods in Cell Science, vol.25, issue.1/2, pp.7-14, 2003.
DOI : 10.1023/B:MICS.0000006847.09037.3a

D. Pelzer, L. Mcdermott, and K. Dorey, Characterisation of a transgenic Xenopus tropicalis line (Hb9- GFP) for the analysis of motor neuron regeneration. 15 th International Xenopus Conference, 2014.

H. Park, J. Shin, and B. Appel, Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling, Development, vol.131, issue.23, pp.5959-5969, 2004.
DOI : 10.1242/dev.01456

V. Korzh, T. Edlund, and S. Thor, Zebrafish primary neurons initiate expression of the LIM homeodomain protein Isl-1 at the end of gastrulation, Development, vol.118, pp.417-425, 1993.

S. Seredick, L. Van-ryswyk, S. Hutchinson, and J. Eisen, Zebrafish Mnx proteins specify one motoneuron subtype and suppress acquisition of interneuron characteristics, Neural Development, vol.7, issue.1, p.23122226, 2012.
DOI : 10.1371/journal.pone.0025841

H. Tostivint, F. Quan, M. Bougerol, N. Kenigfest, and I. Lihrmann, Impact of gene/genome duplications on the evolution of the urotensin II and somatostatin families, General and Comparative Endocrinology, vol.188, pp.110-117, 2013.
DOI : 10.1016/j.ygcen.2012.12.015

H. Tostivint, O. Daza, D. Bergqvist, C. Quan, F. Bougerol et al., MOLECULAR EVOLUTION OF GPCRS: Somatostatin/urotensin II receptors, Journal of Molecular Endocrinology, vol.52, issue.3, pp.61-86, 2014.
DOI : 10.1530/JME-13-0274

Y. Coulouarn, I. Lihrmann, S. Jégou, Y. Anouar, and H. Tostivint, Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord, Proceedings of the National Academy of Sciences, vol.95, issue.26, pp.15803-15808, 1998.
DOI : 10.1073/pnas.95.26.15803

Y. Coulouarn, S. Jegou, H. Tostivint, H. Vaudry, and I. Lihrmann, Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors, FEBS Letters, vol.103, issue.1, pp.28-32, 1999.
DOI : 10.1016/S0014-5793(99)01003-0

S. Dun, G. Brailoiu, Y. J. Chang, J. Dun, and N. , Urotensin II-immunoreactivity in the brainstem and spinal cord of the rat, Neuroscience Letters, vol.305, issue.1, pp.9-12, 2001.
DOI : 10.1016/S0304-3940(01)01804-3

T. Sugo, Y. Murakami, Y. Shimomura, M. Harada, A. M. et al., Identification of urotensin II-related peptide as the urotensin II-immunoreactive molecule in the rat brain, Biochemical and Biophysical Research Communications, vol.310, issue.3, pp.860-868, 2003.
DOI : 10.1016/j.bbrc.2003.09.102

G. Pelletier, I. Lihrmann, H. Vaudry, and . Pmid, Role of androgens in the regulation of urotensin II precursor mRNA expression in the rat brainstem and spinal cord, Neuroscience, vol.115, issue.2, pp.525-532, 2002.
DOI : 10.1016/S0306-4522(02)00413-X

G. Pelletier, I. Lihrmann, C. Dubessy, V. Luu-the, and H. Vaudry, Androgenic down-regulation of urotensin II precursor, urotensin II-related peptide precursor and androgen receptor mRNA in the mouse spinal cord, Neuroscience, vol.132, issue.3, pp.689-696, 2005.
DOI : 10.1016/j.neuroscience.2004.12.045

C. Dubessy, D. Cartier, B. Lectez, C. Bucharles, and N. Chartrel, Characterization of urotensin II, distribution of urotensin II, urotensin II-related peptide and UT receptor mRNAs in mouse: evidence of urotensin II at the neuromuscular junction, Journal of Neurochemistry, vol.42, issue.2, pp.361-374, 2008.
DOI : 10.1111/j.1471-4159.2008.05624.x

N. Konno, Y. Fujii, H. Imae, H. Kaiya, and T. Mukuda, Urotensin II receptor (UTR) exists in hyaline chondrocytes: A study of peripheral distribution of UTR in the African clawed frog, Xenopus laevis, General and Comparative Endocrinology, vol.185, pp.44-56, 2013.
DOI : 10.1016/j.ygcen.2013.01.015

S. Douglas, D. Dhanak, and D. Johns, From ???gills to pills???: urotensin-II as a regulator of mammalian cardiorenal function, Trends in Pharmacological Sciences, vol.25, issue.2, pp.76-85, 2004.
DOI : 10.1016/j.tips.2003.12.005

H. Vaudry, D. Rego, J. , L. Mevel, J. Chatenet et al., Urotensin II, from fish to human, Annals of the New York Academy of Sciences, vol.117, issue.1, pp.53-66, 2010.
DOI : 10.1111/j.1749-6632.2010.05514.x

URL : https://hal.archives-ouvertes.fr/pasteur-00819531

H. Vaudry, J. Leprince, D. Chatenet, A. Fournier, and D. Lambert, International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, Urotensin II-Related Peptide, and Their Receptor: From Structure to Function, Pharmacological Reviews, vol.67, issue.1, 2014.
DOI : 10.1124/pr.114.009480

URL : https://hal.archives-ouvertes.fr/pasteur-01352677

I. Lihrmann, H. Tostivint, H. Bern, and H. Vaudry, Urotensin II and urotensin II-related peptides Handbook of Biologically Active Peptides, pp.957-965, 2013.

X. Long and J. Miano, Remote Control of Gene Expression, Journal of Biological Chemistry, vol.282, issue.22, pp.15941-15945, 2007.
DOI : 10.1074/jbc.R700010200

H. Sive, R. Grainger, and R. Harland, Inducing Ovulation in Xenopus laevis, Cold Spring Harbor Protocols, vol.2007, issue.10, p.4734, 2007.
DOI : 10.1101/pdb.prot4734

P. Nieuwkoop and J. Faber, Normal Table of Xenopus Laevis (Daudin), Copeia, vol.1958, issue.1, 1994.
DOI : 10.2307/1439568

N. Copeland, N. Jenkins, and D. Court, MOUSE GENOMIC TECHNOLOGIES: RECOMBINEERING: A POWERFUL NEW TOOL FOR MOUSE FUNCTIONAL GENOMICS, Nature Reviews Genetics, vol.2, issue.10, pp.769-779, 2001.
DOI : 10.1038/35093556

E. Lee, D. Yu, J. Martinez-de-velasco, L. Tessarollo, and D. Swing, A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA, Genomics, vol.73, issue.1, pp.56-65, 2001.
DOI : 10.1006/geno.2000.6451

B. Blagoev, S. Ong, I. Kratchmarova, and M. Mann, Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics, Nature Biotechnology, vol.22, issue.9, pp.1139-1145, 2004.
DOI : 10.1021/ac026117i

I. Kratchmarova, B. Blagoev, M. Haack-sorensen, M. Kassem, and M. Mann, Mechanism of Divergent Growth Factor Effects in Mesenchymal Stem Cell Differentiation, Science, vol.308, issue.5727, pp.1472-1477, 2005.
DOI : 10.1126/science.1107627

A. Farfsing, F. Engel, M. Seiffert, E. Hartmann, and G. Ott, Gene knockdown studies revealed CCDC50 as a candidate gene in mantle cell lymphoma and chronic lymphocytic leukemia, Leukemia, vol.31, issue.11, pp.2018-2026, 2009.
DOI : 10.1080/10428190902763533

A. Schedl, Z. Larin, L. Montoliu, E. Thies, and G. Kelsey, A method for the generation of YAC transgenic mice by pronuclear microinjection, Nucleic Acids Research, vol.21, issue.20, pp.4783-4787, 1993.
DOI : 10.1093/nar/21.20.4783

C. Parmentier, E. Hameury, I. Lihrmann, J. Taxi, and H. Hardin-pouzet, Comparative distribution of the mRNAs encoding urotensin I and urotensin II in zebrafish, Peptides, vol.29, issue.5, pp.820-829, 2008.
DOI : 10.1016/j.peptides.2008.01.023

L. Djenoune, H. Khabou, F. Joubert, F. Quan, N. Figueiredo et al., Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates, Frontiers in Neuroanatomy, vol.254, p.24834029, 2014.
DOI : 10.1007/BF00226503

URL : https://hal.archives-ouvertes.fr/hal-01321299

Q. Ymlahi-ouazzani, O. Bronchain, E. Paillard, C. Ballagny, and A. Chesneau, Reduced levels of survival motor neuron protein leads to aberrant motoneuron growth in a Xenopus model of muscular atrophy, neurogenetics, vol.14, issue.1, pp.27-40, 2010.
DOI : 10.1007/s10048-009-0200-6

URL : https://hal.archives-ouvertes.fr/hal-00506551

C. Forehand and P. Farel, Spinal cord development in anuran larvae: I. Primary and secondary neurons, The Journal of Comparative Neurology, vol.67, issue.4, pp.386-394, 1982.
DOI : 10.1002/cne.902090408

P. Van-mier, R. Van-rheden, and H. Ten-donkelaar, The development of the dendritic organization of primary and secondary motoneurons in the spinal cord of Xenopus laevis, Anatomy and Embryology, vol.73, issue.3, pp.311-324, 1985.
DOI : 10.1007/BF00318979

A. Roberts, A. Walford, S. Soffe, and M. Yoshida, Motoneurons of the axial swimming muscles in hatchling Xenopus tadpoles: features, distribution, and central synapses, 3%3C472::AID-CNE9%3E3.0.CO;2-B PMID, pp.472-486, 1999.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, and M. Longair, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-682, 2012.
DOI : 10.1038/nmeth.2019

F. De-chaumont, S. Dallongeville, N. Chenouard, N. Hervé, and S. Pop, Icy: an open bioimage informatics platform for extended reproducible research, Nature Methods, vol.9, issue.7, pp.690-696, 2012.
DOI : 10.1038/nmeth.2075

H. Straka, E. Gilland, and R. Baker, Rhombomeric Organization of Brainstem Motor Neurons in Larval Frogs, The Biological Bulletin, vol.195, issue.2, pp.220-222, 1998.
DOI : 10.2307/1542849

P. Van-mier, H. Joosten, R. Van-rheden, and H. Ten-donkelaar, The development of serotonergic raphespinal projections in Xenopus laevis, International Journal of Developmental Neuroscience, vol.4, issue.5, pp.465-475, 1986.
DOI : 10.1016/0736-5748(86)90028-6

H. Zhang, J. Issberner, and K. Sillar, Development of a spinal locomotor rheostat, Proceedings of the National Academy of Sciences, vol.108, issue.28, pp.11674-11679, 2011.
DOI : 10.1073/pnas.1018512108

K. Ampatzis, J. Song, J. Ausborn, E. Manira, and A. , Pattern of Innervation and Recruitment of Different Classes of Motoneurons in Adult Zebrafish, Journal of Neuroscience, vol.33, issue.26, pp.10875-10886, 2013.
DOI : 10.1523/JNEUROSCI.0896-13.2013

J. Gabriel, J. Ausborn, K. Ampatzis, R. Mahmood, and E. Eklöf-ljunggren, Principles governing recruitment of motoneurons during swimming in zebrafish, Nature Neuroscience, vol.88, issue.1, pp.93-99, 2011.
DOI : 10.1242/dev.02826

URL : https://hal.archives-ouvertes.fr/hal-00596593

D. Mclean, J. Fan, S. Higashijima, M. Hale, and J. Fetcho, A topographic map of recruitment in spinal cord, Nature, vol.88, issue.7131, pp.71-75, 2007.
DOI : 10.1038/nature05588

V. Hartenstein, Early pattern of neuronal differentiation in theXenopus embryonic brainstem and spinal cord, The Journal of Comparative Neurology, vol.64, issue.2, pp.213-231, 1993.
DOI : 10.1002/cne.903280205

M. Suster, G. Abe, A. Schouw, and K. Kawakami, Transposon-mediated BAC transgenesis in zebrafish, Nature Protocols, vol.126, issue.12, pp.1998-2021, 2011.
DOI : 10.1016/j.gene.2006.04.018

L. Kelly, B. Davy, N. Berbari, M. Robinson, and H. El-hodiri, RecombineeredXenopus tropicalis BAC expresses a GFP reporter under the control ofArx transcriptional regulatory elements in transgenicXenopus laevis embryos, genesis, vol.130, issue.4, pp.185-191, 2005.
DOI : 10.1002/gene.20113

R. Tsien, THE GREEN FLUORESCENT PROTEIN, Annual Review of Biochemistry, vol.67, issue.1, pp.509-553, 1998.
DOI : 10.1146/annurev.biochem.67.1.509

G. Schlosser, N. Koyano-nakagawa, and C. Kintner, Thyroid hormone promotes neurogenesis in theXenopus spinal cord, Developmental Dynamics, vol.4, issue.4, pp.485-498, 2002.
DOI : 10.1002/dvdy.10179

A. Hughes, Cell degeneration in the larval ventral horn of Xenopus laevis (Daudin), J Embryol Exp Morphol, vol.9, pp.269-284, 1961.

M. Prestige, The control of cell number in the lumbar ventral horns during the development of Xenopus laevis tadpoles, J Embryol Exp Morphol, vol.18, pp.359-387, 1967.

N. Marsh-armstrong, L. Cai, and D. Brown, Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis, Proceedings of the National Academy of Sciences, vol.101, issue.1, pp.165-170, 2004.
DOI : 10.1073/pnas.2136755100

G. Zhang, V. Gurtu, and S. Kain, An Enhanced Green Fluorescent Protein Allows Sensitive Detection of Gene Transfer in Mammalian Cells, Biochemical and Biophysical Research Communications, vol.227, issue.3, pp.707-711, 1996.
DOI : 10.1006/bbrc.1996.1573

S. Lee, B. Lee, E. Ruiz, and S. Pfaff, Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells, Genes & Development, vol.19, issue.2, pp.282-294, 2005.
DOI : 10.1101/gad.1257105