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Abstract
Glioblastoma multiforme (GBM) is the most aggressive and malignant among brain tumors.

In addition to uncontrolled proliferation and genetic instability, GBM is characterized by a dif-

fuse infiltration, developing long protrusions that penetrate deeply along the fibers of the

white matter. These features, combined with the underestimation of the invading GBM area

by available imaging techniques, make a definitive treatment of GBM particularly difficult. A

multidisciplinary approach combining mathematical, clinical and radiological data has the

potential to foster our understanding of GBM evolution in every single patient throughout

his/her oncological history, in order to target therapeutic weapons in a patient-specific man-

ner. In this work, we propose a continuous mechanical model and we perform numerical

simulations of GBM invasion combining the main mechano-biological characteristics of

GBM with the micro-structural information extracted from radiological images, i.e. by elabo-

rating patient-specific Diffusion Tensor Imaging (DTI) data. The numerical simulations high-

light the influence of the different biological parameters on tumor progression and they

demonstrate the fundamental importance of including anisotropic and heterogeneous

patient-specific DTI data in order to obtain a more accurate prediction of GBM evolution.

The results of the proposed mathematical model have the potential to provide a relevant

benefit for clinicians involved in the treatment of this particularly aggressive disease and,

more importantly, they might drive progress towards improving tumor control and patient’s

prognosis.
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Introduction
Malignant brain tumors are among the most aggressive and lethal forms of cancer, with and
estimated prevalence of 138,054 cases in 2010 in the United States [1]. Malignant gliomas
(MG), which are derived from transformed glial cells, represent almost 80% of primary brain
tumors, with an incidence of 4.11 new cases every 100,000 inhabitants in adult population, that
increases two to four times in people from the sixth to eighth decades of life [2]. Glioblastoma
multiforme (GBM), World Health Organization grade IV [3], is the most common and biologi-
cally aggressive type of MG. Characteristic features of GBM are uncontrolled cellular prolifera-
tion, diffuse infiltration and invasion, necrosis, angiogenesis and genetic instability. These
conditions, together with a putative role of a subpopulation of Cancer Stem Cells (CSCs), make
a definitive treatment particularly difficult. In particular, the infiltrated nature of tumoral glial
cells, with difficulty in distinguishing intraoperatively the viable tumor tissue at the margin of
the resection [4], makes a complete surgical resection feasible only in a low percentage of cases
[5, 6]. Some advances in technology, in particular the use of fluorophore like 5-ALA [7] or fluo-
rescein [8, 9], or intraoperative MRI [10] have led to an increase in resection percentage. How-
ever, GBM still harbors a very poor prognosis with a median survival of only 18 months even
when maximal therapy consisting of complete surgical removal, radiotherapy (RT) and chemo-
therapy (CHT) is performed [11]. In fact, GBM almost invariably recurs at the margin of the
resection cavity, independently from the post-operative treatment administered. The biological
characteristics of the GBM together with the tight relationship of the tumor with eloquent areas
of the brain make it difficult to develop aggressive local therapies that could theoretically allow
a better local tumor control. In addition, the impossibility to predict the areas where tumor cells
will regrow after treatment is one of the factors that limit the chance of targeting the therapies
toward these areas immediately at the beginning of the clinical history and during disease pro-
gression. A multidisciplinary approach including new strategies of radiological diagnosis associ-
ated with mathematical modeling of tumor growth in a patient-specific manner would
probably allow a better definition of the therapeutic options in every single patient with GBM,
with a possible impact on tumor control and survival. Indeed, biomathematical modeling could
be helpful to clinicians in developing therapeutic strategies as it potentially offers a predictive
tool for investigating the dynamics of cancer formation and evolution. In particular, the ulti-
mate goal of biomathematics for cancer is the identification of the most suitable theoretical
models and simulation tools, both to describe the biological complexity of carcinogenesis and
to predict tumor evolution, in order to improve therapeutic strategies and, ultimately, patients’
quality of life. Therefore, during the last decades, the capability of tumor to grow and invade the
surrounding tissue has gained the attention of the mathematical and the physical research com-
munities and numerous mathematical models have been proposed. Without loss of general
characteristics, GBM growth models can be classified into three categories, based on their
observation scale [12, 13]: cellular and microscopic models (discrete models), that describe the
behavior of individual cells and eventually the interactions between cells and their environment
[14, 15]; hybrid discrete-continuous models [16, 17], in which a continuous deterministic model
is coupled with a discrete cellular automata-like approach and, finally,macroscopic (continu-
ous)models [13, 17, 18, 19, 20, 21], in which tissue level processes are described by macroscopic
averaged quantities, e.g. volumes, densities or flows. A more exhaustive description on mathe-
matical modeling in tumor research is reported by the extensive reviews [22, 23, 24, 25].

The most widely used continuous GBMmodels are reaction-diffusion models, encapsulat-
ing a simple diffusion-reaction equation for the tumor cells [19, 26, 27]. These diffusive models
can eventually account for the heterogeneity of the brain tissue thanks to a space-dependent gli-
oma diffusion coefficient [20, 28, 29], whose value in the white and in the grey matter can be
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estimated using in vivo post-contrast T1- weighted and T2-weighted MRI data [30, 31]. These
reaction-diffusion models, despite their simplicity, have been applied also for predicting sur-
vival of individual patients following resection or other treatments, such as RT or CHT [21, 30,
31, 32, 33, 34].

Some efforts to include the anisotropic motion of cells, which have been shown to play an
important role in brain tumor invasion [35, 36], can be found in the reaction-diffusion GBM
model proposed in [37], where the cancer cell diffusion tensor was estimated using the diffu-
sion tensor imaging (DTI), an imaging technique introduced in the early 90s [38]. DTI is
based on Diffusion Weighted Magnetic Resonance Imaging (DWMRI), which measures the
magnitude of water diffusion in biological tissues and provides indirect information on fibers
structure, since the random brownian motion of water molecules is highly restricted by the
surrounding geometry. In the DW images, the local magnitude of water diffusion along a
specific direction is described by an apparent diffusion coefficient. For anisotropic tissues,
such as white matter, a single coefficient is not sufficient to describe the whole diffusive pro-
cess and at least six independent components are required, which are encapsulated in the
symmetric diffusion tensor D. Therefore, DTI is nowadays the only non-invasive method for
characterizing the micro-structural architecture of the brain bundles, for deriving the prefer-
ential direction of water diffusion and, at the same time, of cell migration. Indeed, Deisboeck
et al. [35, 39] experimentally proved that also the motion of glioma cells, as the one of water
molecules, follows white matter fiber tracts.

Despite providing the preferential direction of cell migration, DTI does not give a direct
measurement of the extent of cell motion and growth along the fiber paths, which is regulated
by different chemical and mechanical cues [40, 41, 42]. Since the interaction of tumor cells
with white matter fiber bundles is far more complex than simple water diffusion, a pure reac-
tion-diffusion model such as the one proposed in [30, 32, 37] cannot take into account the gen-
eration and accumulation of forces occurring between the host and the malignant tissue and
within the tumor itself [43].

Mechanical and biochemical interactions occurring inside the tumor cells and between the
solid tumor and the external environment can be easily incorporated in discrete/hybrid models
and in continuous mechanical models. In particular, at the cellular scale, notable examples can
be found in the discrete patient-specific agent-based glioma model proposed by Chen et al.
[14] and in the hybrid model defined in [16] by the coupling of a cellular automaton model for
brain tumor growth and the diffusion of nutrients. Even if the limitation in the number of enti-
ties (and thus in the tumor dimension) that can be simulated by a discrete/hybrid model might
be circumvented considering that a single voxel represents several thousand cells [14], a contin-
uous representation of the tumor evolution might still be preferable, since it allows modeling
with low computational costs the temporal and spatial macro-scale evolution of the tumour,
which is the key feature required in clinical practice.

Indeed, continuous mechanical models and multiphase models [44, 45], based on the theory
of mixture [46], seem more suitable to correctly describe tumor growth process at a macro-
scopic scale, as they incorporate the mass, momentum and energy balances that drive the sys-
tem evolution [47, 48, 49, 50]. Even though some recent attempts to include mechanical
balance laws into the mathematical description of GBM growth and evolution have been done
[13, 51, 52], patient-specif heterogeneous and anisotropic data in continuous mechanical mod-
els have never been considered.

Therefore, in the present paper, starting from the work done in [47, 53], we propose and
numerically simulate a patient-specific mechanical model of glioblastoma tumor growth with
diffuse interface. The model is derived considering the mass and momentum balance of a
binary mixture composed by tumor cells and healthy environment (including interstitial
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liquid and healthy cells) and it consists of a fourth order non-linear advection-reaction-diffu-
sion equation for the tumor phase coupled with a reaction-diffusion equation for the nutri-
ents. Enforcing thermodynamic consistency, the model takes into account the viscous
interactions among the phases and the mechanical interactions responsible of cell-cell and
cell-matrix adhesion forces. An interesting aspect of the proposed approach is the introduc-
tion of the directed motion of tumor cells towards increasing gradient of nutrients (i.e. che-
motaxis) and along fibers path, that leads to the definition of a modified chemotactic flux
[54]. In this way, patient-specific heterogeneous and anisotropic DTI data not only define the
components of the diffusion tensorD representing nutrients’ diffusion, but they also describe
the tensor of preferential directions, T used to describe the local cell motility in response to the
diffusing nutrients [54]. Consequently, the model is not only capable of describing the differ-
ent advective and diffusive behavior of cancer cells into the white and gray matter, but it also
directly represents the active motion of cells along preferential directions in response to nutri-
ents’ concentration.

Materials and Methods

Collection of Clinical Data
Image acquisition. Imaging data of a patient with a right parietal GBM were acquired in

the context of normal clinical practice at the Fondazione IRCCS Istituto Neurologico Besta by
using a 3T Magnetic Resonance (MR) imaging scanner (Achieva; Philips Healthcare) equipped
with a 32-channel phased array coil. Clinical imaging sequences included pre- and post-con-
trast axial volumetric T1 spin echo (SE) sequences, axial volumetric T2-turbo spin echo
(T2-TSE) and a sagittal volumetric fluid attenuated inversion recovery (FLAIR). Pre-contrast
whole-brain DTI data-sets were acquired using a single shot spin-echo echo planar imaging
(EPI) sequence (TR shortest (4687 ms), TE 80 ms, voxel 2.20×2.20×2.20 (mm3), slices 90,
SENSE 2, FAT SAT SPIR 200 Hz). The DTI protocol was multi-shell. Diffusion gradient
encoding was applied in 44 noncollinear directions with maximum b-value = 1100 smm−2, in
12 noncollinear directions with b-values = 50, 250, 350, 600, 800 smm−2 and 3 noncollinear
directions with b-value = 0 smm−2 (107 imaging volumes total). The patient signed a written
consent to the MRI test in the context of normal clinical practice, including clinical researches.
The patient was not submitted to any specific procedure different from normal clinical practice
and the collected patient data was anonymized and de-identified prior to analysis, so that no
specific approval by Ethical Committee was considered necessary. Anonymization was per-
formed by the neuroradiology unit of the Besta Neurological Institute, independently from the
researchers involved in the paper. Furthermore, the authors involved in this study did not act
as treating doctors for the clinical case from which the neurological images were taken.

Data processing. Diffusion data were processed using a comprehensive correction pipe-
line with TORTOISE [55]. T2-TSE images were used as the structural target for DTI data pro-
cessing. T2-TSE image were aligned to the hemispheric mid line and the anterior and posterior
commissure planes using MIPAV [56]. DTI dataset were corrected to reduce the effects of rigid
body motion, eddy current distortions [57], and EPI distortions [58]. Corrections were per-
formed in the native space, and appropriate rotations will be applied to the b-matrix [57, 59].
Then, robust estimation of tensors by outlier rejection (RESTORE) [60] were used to estimate
the diffusion tensor and tensor derived metrics. The RESTORE algorithm have been selected
for its ability to detect and remove artifactual data points on a voxel-wise basis, correcting for
subtle artifacts such as cardiac pulsation and respiration signal drop-outs, which has been
shown to be an important consideration in clinical analyses of DTI data [61].
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The Mathematical Model
The tumor lesion and the surrounding environment are described though incompressible
binary mixture model, composed by a cellular phase of proliferating cancerous cells, with vol-
ume fraction ϕc and a liquid phase, with volume fraction ϕℓ, modeling the host cells, the extra-
cellular matrix, the interstitial fluid environment and necrotic cells. Assuming that these two
phases fill all the available space, the saturation relation ϕc + ϕℓ = 1 holds.

We consider a bounded domain O 2 R
3 representing the whole brain, with boundary @O,

and a time period [0, T], T<1, representing the time interval in which the tumor is evolving.
We define the tumor region Ot(t) = {x 2 O : ϕc(x, t)� εt}, with εt > 0, and the healthy host tis-
sue region Oh(t) = O\Ot(t). The two regions Ot(t) and Oh(t) evolve in time, accordingly to the
dynamics of the cellular phase. We associate a convective velocity vi, i = {c, ℓ}, to each phase
and we treat the cellular and the water phases as incompressible fluids whose true mass densi-
ties [46] are constant and equal to water density γ. The mathematical model is obtained defin-
ing the mass balances for both phases

g
@�i

@t
þr � ð�iviÞ

� �
¼ Gi þr � Ki; with i ¼ fc; ‘g: ð1Þ

In Eq (1), Γi and Ki represent the volumetric source of mass production/loss and the non-
convective mass flux of the i-phase, respectively. Since the mixture is closed, we impose Γc =
−Γℓ and Kc = −Kℓ in order to guarantee the conservation of mass and flux exchanged among
the phases. For instance, the liquid phase contains both dead cells and healthy living cells:
when a cancerous cell dies, it becomes part of the liquid phase and, vice versa.

Since growth processes and mass transport phenomena in living materials are driven by the
local concentration of nutrients and growth factors, we introduce proper constitutive equations
for Γi and Ki based on nutrient availability. We consider oxygen as the main nutrient source
for tumor cells and, defining n its concentration and ρc = γϕc the apparent cell mass density
[46], we model the net cell proliferation rate Γc with

Gc

g
¼ nc

rc

g
n
ns

� dc

� �
ð1� �cÞ ¼ nc�c

n
ns

� dc

� �
ð1� �cÞ:

In the above equation, νc is the cancer cell proliferation rate, ns is the physiological concen-
tration of oxygen inside the tissue and δc is the rate of apoptosis in hypoxic conditions. The fac-
tor (1 − ϕc) mimics the decrease of the cellular proliferation rate due to contact inhibition, as
the tumor approaches the saturation condition.

Furthermore, the mass flux Kc, which represents the chemotactic movements up to an
increasing gradient of nutrients, is expressed by

Kc ¼ �knrcTrn; ð2Þ

where kn is the chemotactic coefficient and T is a tensor defining the alignment of fibers. The
expression in Eq (2) has the same form of the chemotactic term introduced by [54] and widely
used in mathematical models of cell motion [62, 63]. Here, we modify the original Keller-Segel
model [54] including the tensor T into the original expression, so that we are able to model the
biased motion of cells along fibers. The introduction of T in the chemotactic term is particu-
larly important in tumors growing in an highly heterogeneous environment, such as the prefer-
ential paths of GBM cell motion along the white matter fibers. In other words, Kc is able to
describe, at the same time, both the directional motion of glial cells in response to nutrient con-
centration and their tendency to anisotropically move along the white matter fibers.
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In order to close the equation system, it is necessary to define proper laws for the convective
velocities vc and vℓ, appearing in Eq (1). Following the work done in [53], we make use of a
thermodynamically-consistent approach, modeling the viscous interactions and mechanical
forces resulting from the cells’ ability to adhere to each other or to the extracellular matrix,
through adhesion molecules called CAMs located at the cellular membrane [64]. Thus, we
define a Helmholtz free energy which takes into account both local and long-range interactions
among the components and we assume that the energy dissipation in the system is due only to
the viscous interactions between the phases. Then, we use Rayleigh’s variational principle to
derive the system dynamics, minimizing the Rayleighian with respect to vc and vℓ as in [65].
Thus, we obtain the following relation between the convective velocities:

vc � vl ¼ �Kð�cÞrðf ð�cÞ � �2D�cÞ : ð3Þ

In Eq (3), the motility coefficient Kð�cÞ ¼ ð1��cÞ2
M

is related to the inverse of the friction

parameterM, f(ϕc) is the derivative of the bulk free-energy per unit of volume, ψ, with
respect to the cellular volume fraction, i.e. f(ϕc) = @ψ/@ϕc, and the term in �2 represents a sur-
face potential energy penalizing large gradients of cellular volume fraction [47]. If we call
S = f(ϕc) − �2Δϕc the excess of pressure exerted by the cells and we assume that no external
forces act on the highly viscous mixture, the center of mass does not move and the velocity of
the cellular phase can be expressed by a Darcy-like law vc = −K(ϕc)rS. A proper expression
for f(ϕc) can be empirically defined considering that, for physical and biological consistency,
the cell-cell interaction should be attractive within a certain low range of cell density and
repulsive at higher values. Therefore, it is possible to mathematically define a threshold value
ϕe, called state of natural equilibrium [45], for which f(ϕe) = 0 and no excess pressure is
exerted on neighbors, whereas for ϕc< ϕe cells are attracted to each other, i.e. f(ϕc)< 0, and for
ϕc > ϕe, cells experience a repulsive force, i.e. f(ϕc)> 0. Therefore, a suitable form of f(ϕc) is
[45, 48, 53]

f ð�cÞ ¼ E
�c

2ð�c � �eÞ
1� �c

; ð4Þ

where E is the Young’s Modulus of the brain matter, as sketched in Fig 1.
Finally, we propose a time dependent diffusion-reaction equation for the nutrient concen-

tration. We assume that the vasculature is homogeneously distributed in the whole domain
and we do not take into account the angiogenesis, i.e. the formation of new blood vessels. In
this situation, tumor cells receive oxygen and growth factors only via diffusion inside the brain
tissue. We assume also that the net nutrient uptake in the healthy tissue and in the fluid region
is negligible compared to the uptake in the tumoral environment and, whenever oxygen is con-
sumed by the host cells, it is instantaneously replaced by the normal vasculature supply. On the
contrary, the cellular uptake generally exceeds the supply in the tumor region. Thus, calling δn
the rate of consumption of nutrients by tumor cells, Sn the nutrient transfer rate between blood
and tissue, the evolution in space and time of the nutrient concentration can be described by
the following partial differential equation

@n
@t

¼ r � ðDrnÞ þ Snðns � nÞ � dn�cn ; ð5Þ
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that, substituting the mass balance of the cellular phase, simplifies as

@�

@t
¼ r � �ð1� �Þ2

M
rðf ð�Þ � �2D�Þ

� �
þ

þ n�ðn
ns

� dÞð1� �Þ � r � ðknT�rnÞ :
ð6Þ

For the sake of simplicity, hereafter we drop the subscript c to denote the cellular tumor
fraction.

The system of Eqs (5) and (6) allows to determine the evolution of the unknown fields ϕ(x,
t) and n(x, t), 8 x 2 O and 8 t 2 [0, T], if proper initial and boundary conditions are provided.
GBM differs from many solid tumors because it is characterized by a smooth gradient of tumor
cell density instead of presenting a sharp interface at the host/tumor boundary. Thus, it seems
reasonable to hypothesize that ϕ(x, 0) = ϕ0(x) follows a normal smooth distribution in space
with a maximum slightly higher than ϕe reached in the center of the tumor. In order to obtain
the initial oxygen concentration n(x, 0) = n0(x), we solve the steady version of the nutrient gov-
erning Eq (5), corresponding to the initial cellular distribution, ϕ0. The solution obtained is
equal to ns outside the tumor area and decreases getting closer to the core of the glioblastoma,
in accordance with the increase of ϕ0 in this area.

Finally, it is mandatory to define boundary conditions for the governing equations. We
impose a null Dirichlet condition and a null Neumann condition for the cell volume fraction at

Fig 1. Excesses stress Σ exerted by the cells in the case of homogeneous tissue, i.e.rϕc = 0. For
physical and biological consistency, when ϕc < ϕe cells experience an adhesive force (f(ϕc) < 0), whereas for
ϕc > ϕe, as cells are very close, a repulsive force acts among them and f(ϕc) > 0. The threshold value ϕe is
called state of mechanical equilibrium. The repulsive force becomes infinite in the limit that cells fill the whole
volume.

doi:10.1371/journal.pone.0132887.g001
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the boundary of the cranial skull:

� ¼ 0; on @O; 8 t 2 ½0;T� ð7Þ

r� � n̂ ¼ 0; on @O; 8 t 2 ½0;T� ð8Þ
where n̂ is the outward boundary normal. For the nutrients, we impose the Dirichlet condition

8 t 2 ½0;T� n ¼ ns; on @O; ð9Þ

since we suppose that the brain boundary is far enough from the tumor location and conse-
quently the oxygen concentration is maintained equal to the physiological value by the
vasculature.

Numerical Implementation
Mesh Generation. The creation of computational grids able to reproduce the patient-spe-

cific brain geometry without exceeding in the computational costs is a challenging task. The
first step to generate a patient-specific computational mesh is the medical image segmentation,
which is the process of identifying and labeling regions of interest within an image. To generate
the anatomical mesh of the brain and tumor we use the post-contrast T1-MR sequence (Fig 2
(A)). Using an expectation maximization approach [66] implemented in the open source soft-
ware package 3D Slicer [67], the anatomical structures are automatically segmented and the
four areas of interest (i.e. gray matter, white matter, cerebrospinal (CSF) fluid and background)
are identified and labeled. The segmented image obtained is depicted in Fig 2(B). Once the
brain segmentation is done, we manually segment the GBM region, since voxels occupied by
the tumor have an intensity comparable to ones occupied by grey matter an automatic process
cannot be implemented.

Fig 2. Post-contrast T1-MR of a patient affected by GBM and corresponding segmented slices. (A)
Axial, sagittal and coronal slices of post-contrast T1-MR in a patient with right parietal GBM (white arrow),
used for image segmentation. (B) In the segmented brain image, the white region represents the white
matter, the grey areas indicate the grey matter, while the cerebrospinal fluid is labeled by the blue color.

doi:10.1371/journal.pone.0132887.g002
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After the creation of the brain labeled map and the identification of the tumor region, the
computational mesh is obtained first by extracting the external brain surface using the march-
ing cube algorithm, then operating a Taubin surface smoothing and a uniform mesh refine-
ment with the scripts implemented in The Vascular Modeling Toolkit (www.vmtk.org) [68].
Thirdly, we build the tetrahedral mesh using the TetGen library [69]. The mesh is then refined
near the area of interest (e.g. in the region in which the tumor grows) in order to control the
numerical error without exceeding in computational costs. After the mesh refinement, we
assign the information contained in the labeled map to the computational grid in order to
obtain a labeled mesh. This procedure is implemented in Python using the Visualization
Toolkit (www.vtk.org) library.

Finite Element discretization. Once the brain mesh is created, it is possible to proceed to
the spatio-temporal discretization of the system Eqs (5) and (6). In particular, we perform a
spatial discretization with linear tetrahedron P1 elements and a time discretization with the
Crank-Nicholson algorithm [70]. Once the equations are discretized, they can be easily imple-
mented using the open source software FEniCS [71], using Python as programming language.
The only required mathematical trick is to rephrase the fourth-order Eq (6) as the following
second-order equations

@�

@t
�r � ð�Kð�ÞrSÞ � n�ðn

ns

� dÞð1� �Þ þ r � ðkn�TrnÞ ¼ 0 ð10Þ

S ¼ f ð�Þ � �2D�: ð11Þ

One of the main advantage of using FEniCS as computational resource is that it offers built-
in classes and an automatic approach to nonlinear variational problems. Furthermore FEniCS
allows the introduction of real patient-specific data, taken from the medical images, as dis-
cussed in the next subsection.

Reconstruction of patient-specific data and parameters’ estimation. The clinical useful-
ness of mathematical models mainly relies on the identification of the correct biological parame-
ters to be included in the model. Indeed, a model is potentially predictive if all parameters are
measured or estimated from specific biological experiments on the system under study. Further-
more, as the evolution of a tumor can be significantly affected by the different environmental
conditions, the possibility to specify the mathematical model on a single patient, through the
introduction of patient-specific data, is a mandatory request for a clinical use. In principle, all
the parameters appearing in Eqs (5) and (6) can be either estimated from in-vitro and in-vivo
biological experiments or extracted from clinical exams, as forD and T, whose components can
be obtained from the DTI images of the patient. In particular, assuming that the oxygen diffuses
coherently with the water molecules, its behavior can be described by the water diffusion and
thus the nutrients’ diffusion tensorD, appearing in Eq (5), can be directly obtained from the
DTI measurements. Being the tensorD symmetric, i.e.Dij = Dji, all the necessary information on
the diffusion coefficients is provided by the six DTI-maps in greyscale, each of which represents
a component of the diffusion tensor. In Fig 3(A) we report, as an illustrative example, the com-
ponents of the tensorD on a slice along the xy-plane in the middle point of the z-axis of the
brain, as they are obtained from the DTI medical examination. In Fig 3(A), brighter voxels (e.g.
the ones in the ventricles area) correspond to higher diffusion values, while darker ones repre-
sent lower values of the corresponding Dij component. Once the six DTI images are registered
with the T1-MRI image used for creating the computational mesh [67], we associate each value
of a specific voxel in the DTI image to the tetrahedron which occupies the same location of the
voxel in the computational mesh. The resulting data, which are reported in Fig 3(B) for the same
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slices considered in Fig 3(A), are then simply included in the model thanks to a specific FEniCS
function. Besides, supposing that cells can chemotactically move along the same fiber paths of
water diffusion, the tensor of the preferential directions T can be obtained from the same DTI
maps, defining each component as

Tij ¼
Dij

Dn

¼ Dij

1=3ðDxx þ Dyy þ DzzÞ
; with i; j ¼ x; y; z : ð12Þ

The mean diffusivity Dn: = 1/3Tr(D) is a scalar denoting the measure of the total amount of
diffusion inside a voxel and it is related to the inverse of the local tissue density. Dn does not
contain any information on the anisotropicity of the region under consideration and it is thus
very similar for both grey matter and white matter, whereas it is higher in the CSF region,
where water diffusion is unconstrained. Thus, rewriting the diffusion tensor asD = Dn T, it is
clear that the tensor T takes into account the preferential directions of the biased random
movements of water molecules and, thus, it can also be used to describe the chemotactic
motion. Fig 3(C) illustrates the components of tensor T on a slice clipped along the xy-plane in
the middle point of the z-axis of the brain.

In Table 1, we summarize the values (or the ranges of values) for the different parameters
appearing in the equation system Eqs (5) and (6). Let us now briefly discuss how we extrapo-
lated the parameters in those cases in which the desired values were not explicitly found in lit-
erature. First of all, we dealt with the friction parameterM, that can be computed as the inverse
of the hydraulic conductivity studied by [72], and we obtained values between 1377.9 and
4286.7 mm−2 Pa day. In order to estimate � appearing in Eq (5), we referred to the measure-
ments of the interstitial fluid pressure (IFP) χ and to the characteristic distance of interaction
between cells, modeled by �=

ffiffiffi
w

p
and typically estimated to be in the order of the cell size [53].

In particular, [73] reported a IFP for healthy brain of 106.64 Pa, while [74] reported a mean
IFP of 960 Pa for brain tumors by averaging the IFPs for meningiomas, glioblastomas and

Fig 3. Patient-specific medical and numerical DTI data, depicted on a slice cut along the plane xy. (A) A single component of the tensorD, obtained
from the DTI medical images, is represented for each image: the intensity of the voxels is related to the diffusion coefficient along the relative direction (see
the gray-scale at the bottom). (B) Numerical patient-specific components of the diffusion tensor D depicted on the same slice of the medical images: the
diffusion coefficient is higher in the region occupied by the cerebrospinal fluid (red colored areas), where the diffusion is unconstrained. (C) Corresponding
patient-specific components of the tensor of preferential directions T: in isotropic region, e.g. the cerebrospinal fluid and the grey matter, Txx� Tyy� Tzz � 1
and Txy� Txz � Tyz � 0, while in the white matter, instead, 0 < Tii < 3 with i = (x, y, z) and 0 < Tij < 1 with i, j = (x, y, z) and i 6¼ j, denoting an anisotropic region.

doi:10.1371/journal.pone.0132887.g003
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brain metastases. Consequently, knowing the values of χ and the size of a cell, which was exper-
imentally estimated to be between 10 and 20 μm [75, 76], it was possible to obtain the value of
�. The proliferation parameter νc varies between 24 h and 48 h [77, 78] for well oxygenated glio-
blastoma cells in vitro. However, since the proliferation rate relies significantly on the nutrient
availability, also smaller value seems to be biologically admissible in the real condition and
thus, in the case study presented in the following we hypothesized νc = 0.3 day−1. Regarding the
threshold for cell death rate due to anoxia, its value is given in the range of 0.28–0.5 [75, 77,
79]. Accordingly, we used the value of 0.3 in the numerical simulations. The mean uptake rate
can be extrapolated from biological measurements of the oxygen diffusion coefficient Dn in
human brain and the distance, ln, covered by a molecule of oxygen before being uptake by a
cancerous cell. The mean oxygen diffusion coefficient Dn in human brain reported in literature
varies between 86.4 mm2day−1 [76, 77, 80] (which is also in agreement with the maximum
mean diffusivity recorded in the DTI data in Fig 3(A)) and 156.5 mm2day−1 [79], while [77]
estimated ln � 100 μm. Thus, being dn ¼ Dn=l

2
n, an admissible range for δn is 8640–15650

day−1. The parameter Sn is quite difficult to be estimated from biological experiments, we
referred to the value of 104 day−1 reported in [53] for the human skin and we assume the same
value for human brain. The physiological oxygen concentration ns has been evaluated to be in
the range 0.07–0.28 mM in [81]. Unfortunately, data on the chemotactic coefficient kn of gli-
oma cells in response to oxygen concentration are not present in literature and we had to refer
to the typical chemotactic coefficient found for bacterial cells in response to glucose. Finally,
[13] reported a Young’s Modulus E for both grey matter and white matter of about 694 Pa.

Results

Sensitivity Analysis
In this section, we focus both on testing the physical soundness of the proposed model and on
identifying which parameters in the model play a key role in the diffusion of nutrients and in
the anisotropic growth of the tumor, evaluated measuring the ratio between the major semi-

Table 1. Estimation of the biological parameters.

Parameter Values References

ϕe, cell volume fraction at mechanical equilibrium 0.39 [82]

M, interphase friction 1377.9–4286.7 mm−2 Pa day [72]

χ, IPF in healthy brain 106.64 Pa [73]

χ, IPF in brain GBM 960 Pa [74]

ð�= ffiffiffi
w

p Þ, GBM cell size 10–20 μm [75, 76]

νc, GBM cell proliferation rate 0.5–1 day−1 [77, 78]

δc, threshold for death cell rate due to anoxia 0.28–0.5 [75, 79]

Dn, oxygen diffusion coefficient in brain 86.4 mm2day−1 [77]

δn, oxygen consumption rate of the brain 8640 day−1 [77]

Sn, blood tissue transfer rate of oxygen 104 day−1 [53]

ns, oxygen concentration in brain vessels 0.07–0.28 nM [81]

ln, oxygen penetration length 100 μm [77]

kn, chemotactic coefficient 1296 mm2 mM−1 day−1 [83]

E, Young’s modulus 694 Pa [13]

Estimation of the biological model parameters from the experimental data on healthy brain tissue and

glioblastoma.

doi:10.1371/journal.pone.0132887.t001
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axis and the minor ones of the grown tumor ellipsoid (see Fig 4). Thus, we perform two sensi-
tivity tests studying the combined effects ofM and kn on one hand, and of Sn and δn on the
other, whilst keeping the other parameters fixed. The parametersM and kn weight, respectively,
the isotropic and the anisotropic expansion of the tumor, whereas the ratio between Sn and δn
determines the oxygen availability in the tissues and, consequently, the tumor expansion
through chemotactic motion. For the sake of simplicity, we locate a spherical tumor in the cen-
ter of the brain and we impose the x-axis to be the preferential direction for oxygen diffusion
and cell chemotaxis, setting Dxx = Dn, Dii = 0 for i = {y, z} and the off-diagonal components Dij

= 0. Fig 5 reports the ϕ distribution on the xy-plane at time t = 6th day, for different values of
the parameters kn andM, whereas Fig 6 reports the ϕ and n distribution on the xy-plane at
time t = 9th day, for different values of the parameters Sn and δn. The nutrient concentration
has been normalized with respect to the physiological concentration ns, so that the numerical
solution for n will range between 0 and 1. In all the simulations, we set Dn = 86.4 mm2day−1, ν
= 1 day−1, ns = 0.07 mM, δ = 0.3, χ = 900 Pa, E = 694 Pa and ϕe = 0.389.

Both in Figs 5 and 6, the grown tumor shape is analyzed in terms of the ratio between the
maximum final cellular volume fraction over the maximum initial one, the ratio between the
final and the initial volume of the tumor and the ratio between the major semi-axis of the
tumor ellipsoid (Δx) and the two smaller ones (Δy and Δz), which are good markers of the level
of anisotropicity. The values of Δx, Δy and Δz have been obtained defining the tumor ellipsoid
as the region of the brain in which the cellular volume fraction is over a given threshold �t and
computing the lengths of its semi-axes, as illustrated in Fig 4.

From the tumor data reported in Fig 5, we observe that the ratio of maximum cell volume
fraction at the final and the initial time increases asM increases, while the ratio of the major
semi-axis on the minor semi-axes and the total volume of the tumor ellipsoid are not signifi-
cantly affected. Indeed, higher values ofM inhibit the isotropic diffusive motion of cells (weight-
ing the function f) and the repulsive interactions among them (weighting the term ε2rϕ), and
consequently, cancerous cells tend to accumulate (increased ϕM). Furthermore, the interface
host/tumor gets sharper asM increases. Indeed, as observed also in [47], the ratio �2/M is related
to the sharpness of the interface host/tumor. Regarding the chemotactic parameter, instead, it is
possible to notice that, for small values of kn (e.g. kn = 1 mm2mM−1day−1), the tumor is almost

Fig 4. Tumor size parameters. The anisotropic growth of an initially spherical tumor is evaluated measuring
the ratio between the major semi-axis and the minor ones of the grown tumor ellipsoid.

doi:10.1371/journal.pone.0132887.g004
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Fig 5. Sensitivity analysis of the parameters kn andM. The influence of the parameters kn andM on the cells volume fraction distribution at time t = 6 days
is studied. The resulting tumor are characterized in terms of: the ratio between the maximum volume fraction at the final time, ϕM, and maximum initial volume
fraction, �M

0 ; the ratio between the final and the initial volume; the ratio between the major semi-axis, Δx, and the two minor semi-axes, Δy and Δz, defined as
in Fig 4.

doi:10.1371/journal.pone.0132887.g005

Fig 6. Sensitivity analysis of the parameters Sn and δn. The influence of the parameters Sn and δn on the
cell volume fraction and on the dimensionless nutrient concentration is reported at time t = 9 days.

doi:10.1371/journal.pone.0132887.g006
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spherical. On the contrary, as kn increases the tumor acquires an ellipsoidal configuration, char-
acterized by an increasingly bigger ratio between the longer and smaller semi-axes. Indeed, kn
weights the components of the tensor T: an increase of kn has the effect of intensifying the move-
ment of the cells along that preferential direction (i.e. the x-axis in the depicted cases). Conse-
quently, considering a fixed proliferation rate of tumor cells, the maximum value ϕM reached at
a given time decreases, for increasing value of kn, due to the higher chemotactic response experi-
enced by tumor cells, which is also represented by the increase of the total volume occupied by
the tumor. Therefore we found that the parameterM affects the distribution of ϕ inside the
tumor region and its maximum value, along with the smoothness of the tumor/host interface,
whereas it does not affect tumor sizes at a given time step. On the other hand, the tumor isotro-
pic/anisotropic expansion is strongly regulated by the chemotactic parameter kn.

The other two considered parameters, Sn and δn (see Fig 6), are primarily responsible of the
nutrient spatio-temporal evolution and, as a consequence, of the evolution of the tumor frac-
tion ϕ. Indeed, Sn is the parameter that regulates nutrients supply from blood vessels to tumor
cells: thus, if its value is not high enough to overcome the nutrients consumption, regulated by
the parameter δn, the tumor does not receive enough nutrients to further expand. First of all,
we observe that if the value of Sn increases, then the maximum value ϕM reached inside the
tumor region at a given time step increases while the total volume occupied by the tumor
decreases. Conversely, considering the same value of Sn but increasing δn, we observe that the

ratio between ϕM and �M
0 decreases and the total tumor volume increases. Moreover, for high

values of Sn and small values of δn the tumor grows almost spherically. To explain the behavior
observed in tumor evolution, it is useful to look at the nutrient distribution inside the domain.
As a matter of fact, the ratio between production and consumption of nutrients, i.e. Sn/δn,
determines the minimum value nmin reached by the dimensionless nutrient concentration at a
given time step and consequently the gradient of n. For the same value of δn, it is found that as
the production term governed by Sn decreases, nmin decreases too and, consequently,rn,
which drives the chemotaxis, increases. Therefore in the case of a small Sn, tumor cells prolifer-
ate less and move more, leading to a bigger but less populated (i.e. having a smaller ϕM) tumor
region. At the same time, keeping fixed Sn and increasing δn, nmin decreases andrn increases,
leading to a bigger final tumor volume also in this case. Therefore, besides determining the spa-
tio-temporal distribution of nutrients, both Sn and δn affect the expansion of the tumor, favor-
ing the anisotropic growth in the case of low values of Sn and high values of δn.

Effect of Local Anisotropy in GBM: A Case Study
The sensitivity analysis allowed to understand the model behavior under different sets of
parameters and it is essential in order to check the mathematical validity of the proposed
approach. However it was performed under simplified conditions for the diffusivity tensor,
therefore it is not suitable for clinical use. In the following, we integrate patient-specific radio-
logical data in order to study the effects of the brain micro-structure on GBM evolution.

We assume a virtual diagnosed tumor located in a brain region characterized by high anisot-
ropy, such as the region occupied by the corpus callosum (i.e. between the lateral ventricles,
above the thalamus and under the cerebrum). In Fig 7, we illustrate the tensor components Tii,
with i = x, y, z, over a mesh clipped along each plane, and we indicate the tumor location with a
white cross. Observing the collected snapshots reported in Fig 7, we highlight that, in the region
of interest, Txx is the component with the highest value: in fact it ranges between two and three,
while Tyy and Tzz are close to zero. Consequently, the cancerous cells confined in that region
will tend to move along the x-direction snd we expect that the tumor will grow anisotropically,
losing its initial spherical shape.
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The results obtained considering patient-specificD and T tensors (anisotropic simulations)
are then compared in Fig 8 to the isotropic growth paths obtained in the case in which no
information on the underlying brain structure is considered (isotropic simulations), i.e. setting
T = I andD = Dn I, where Dn is defined as in Table 1 and I is the identity tensor. All the other
parameters in the anisotropic and isotropic simulations are kept the same:M = 5000 mm−2 Pa,
Sn = 104 day−1, δn = 1000 day−1, ν = 0.25 day−1, kn = 100 mm2 mM−1 day−1, � = 0.02. We per-
form the simulation until the 25th day after the virtual diagnosis.

Fig 8 reports the spatial distributions of ϕ and n over the computational mesh cut along the
xy-plane at time steps t = 5, 15, 25 day, both for the anisotropic and the isotropic simulations.
We observe that, in the anisotropic simulation, the expanding GBMmass loses its initial spher-
ical shape and it assumes a configuration that reflects the structure of the tensor T, whereas in
the isotropic simulation the glioblastoma maintains the spherical configuration. The maximum
values reached by the cellular concentration at a given time step are comparable, with a ϕM

slightly higher in the anisotropic simulation.
For what concerns the dimension of the glioblastoma at the final time t = 25th day, in the

anisotropic simulation, we measure an extension along the preferential direction of motion
(i.e. the x-axis) equal to Δx = 10.6 mm, whereas in the other directions we have Δy = 8.85 mm
and Δz = 8.4 mm. In the isotropic simulation, on the other hand, the final tumor area is almost
perfectly spherical and smaller, being Δx = 8.8 mm, Δy = 8.95 mm and Δz = 9.15 mm.

Fig 7. Diagonal components of the tensor T over the brain mesh cut along each plane. The
components Tii are represented over the brain mesh cut along the xy, xz and yz planes. The initial location of
the virtual tumor, that corresponds to the corpus callosum, is indicated by a white cross.

doi:10.1371/journal.pone.0132887.g007
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Plotting the projection of the tumor volume on the xy-plane in the anisotropic (red lines in
Fig 8) an the isotropic case (blue lines in Fig 8), we notice that the mathematical model under-
estimates the total volume of the cancer if the anisotropic effect of fiber orientation are
neglected. In fact, the resulting tumor shape in anisotropic simulations strongly affected by the
underlying fiber orientation: plotting the thresholded ϕ at t = 5th, 15th, 25th day overlapped to
the Txx components on a mesh cut along the plane xy (Fig 9(A)), we can notice that the tumor
expansion follows the x-axis in the region in which Txx is higher (red region) assuming a coni-
cal configuration. Observing the tumor volume at the final time step reported in Fig 9(B), it is
clear that the tumor presents an elongated shape along the x-direction with a flat top due to the
fact that Tzz is almost null in that region and thus the cells are not allowed to move along the z-
direction.

Discussion
In this work, we introduced a 3D continuous mechanical model, able to simulate the growth of
a glioblastoma and the invasion of the surrounding tissue. In particular, we took into account
patient-specific structural heterogeneity and anisotropicity and the evolution of nutrients
inside the brain. Unlike other solid tumours, GBM consists of cells that can infiltrate deeply
into the surrounding environment, so that the host/tumor interface is often not sharp and the
density of GBM cells in the stroma at the tumor margin may not be detectable using existing

Fig 8. Comparison between anisotropic and isotropic growth. For both the anisotropic and the isotropic simulations, we report the tumor volume fraction
distribution, the dimensionless nutrient concentration and the tumor contour plot at t = 5 day, t = 15 day and t = 25 day over the computational mesh cut along
the xy-plane. In the anisotropic simulation the tensorD and T are the one reported in Fig 3(B)–3(C), respectively, whereas in the isotropic simulation we set D
= Dn I and T = I.

doi:10.1371/journal.pone.0132887.g008
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imaging modalities. Thus, we considered a diffuse interface model for the GBM, in which no
boundary conditions at the interface between the normal and the diseased region are required.
Despite the diffused nature of the interface, the model is purely mechanical, substantially dif-
fering from reaction-diffusion models, such as the ones proposed in [20, 21, 28, 29, 30, 31, 34],
since the equation governing the tumor evolution and motion are determined by thermodina-
mically-consistent mass and momentum balances. Furthermore, the motion of cells is not dic-
tated by pure diffusion, but a chemotactic flux is introduced. This term not only represents the
preferential motion of cells towards increasing concentration of nutrients, but it also repro-
duces cells motion along fibers directions, thanks to the introduction of the tensor of preferen-
tial directions, T.

The proposed model also differs from previous mixture models [47, 48, 77] and single-
phase mechanical models [52] because it takes into account both the heterogeneity and the
anisotropy of the brain tissues directly from DTI data.

Concerning the numerical simulations, we first created the computational mesh starting
from a MR image of a patient affected by glioblastoma and, then, we extracted the heteroge-
neous and anisotropic components of the local diffusion tensor and of the tensor of preferential
directions. Then, we discretized the resulting system of Eqs (5) and (6) using the finite elements
method and we used the open-source software FEniCS [71] to develop the numerical codes.

Considering simplified conditions, we performed the sensitivity analysis of the model with
respect to the biological parameters appearing in the governing equations to test their influence
on the anisotropic growth of the tumor. We have found that both the chemotactic coefficient
and the ratio between the nutrient supply and the consumption rate have a huge influence on
the anisotropic growth of the tumor. The latter, indeed, determines not only the availability of
nutrients in the environment but also cellular proliferation and migration, leading to an aniso-
tropic cancer expansion in the case of low Sn/δn ratios. The sensitivity analysis also demon-
strated that the parameterM affects the distribution of ϕ inside the tumor region and its

Fig 9. Influence of brain fibers’ alignment on tumor growth. (A) Tumor concentration plotted over the Txx component (in transparency), at times t = 5 day,
t = 15 day, t = 25 day: the cellular fraction shows an anisotropic distribution that follows the preferential direction determined by the Txx component. (B) Tumor
volume at t = 25 day overlapped to the maps of Txx over the brain mesh cut along xy and xz planes and to the map of Tzz over the brain mesh cut along xz-
plane: the glioblastoma assumes an elongated shape along the x direction, whereas it has a flat top in the z-direction, as Tzz is almost null there.

doi:10.1371/journal.pone.0132887.g009
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maximum value, in accordance with the smoothness of the tumor/host interface and without
affecting the tumor size.

Finally, we tested the model in a biological meaningful situation, including patient-specific
data collected from the DTI images of a patient. In the numerical simulations, we located the
tumor in a region characterized by an appreciable anisotropy and we studied its development
at different time steps, demonstrating that the tumor evolution is strongly influenced by the
preferential direction identified by the tensor T. The obtained results have been also compared
to the homogeneous and isotropic case, highlighting the importance of considering real aniso-
tropic and patient-specific data in order to achieve a more truthful prediction of the tumor evo-
lution and to possibly give indications for the clinical treatment of all those kinds of tumors,
such as the glioblastoma, that grows in highly heterogeneous and structured environments.

The results presented in this work are promising and, to our knowledge, they represent the
first implementation of a thermodynamically consistent continuous mechanical model on a 3D
real geometry with the inclusion of patient specific data. In order to check its suitability for
clinical use, the model should be tested under different biological situations (e.g. tumor resec-
tion and possible recurrences) and the numerical outcomes should be possibly compared to
clinical data, obtained from the patient follow-up. Future refinements might either include
anisotropic effects in the convective cellular velocity or introduce structural changes (e.g. fiber
remodeling and mechanical properties alterations) due to tumor progression. Moreover, the
proposed model considers a homogeneous distribution of blood vessels, through the nutrient
supply term in the reaction-diffusion equation, thus neglecting the role of angiogenesis in
GBM development, which is nowadays considered as a hallmark of the disease [84]. Accord-
ingly, future refinements shall consider a patient-specific nutrient supply term, elaborating
data on brain perfusion and vessel location, e.g. from Perfusion Weighted Imaging (PWI) tech-
niques [85], such as the Dynamic Contrast Enhancement (DCE) MRI [86] and the Dynamic
Susceptibility Contrast (DSC) MRI [86, 87].

Finally, the effect of medical therapy, such as chemotherapy or radiotherapy, on the evolu-
tion of the tumor should be introduced.

Conclusion
In summary, we developed, analyzed and numerically simulated a diffuse interface binary mix-
ture model able to describe GBM progression. The system of equations representing the spa-
tio-temporal evolution of nutrients and tumor cells’ volume fraction was solved on a patient-
specific 3D geometry, reconstructed from the MRI of a patient.

The model took into account not only biochemical factors such as nutrients availability but
also mechanical interactions occurring between the local micro-environment and the tumor,
which play a fundamental role in cancer progression and invasion. Moreover, for the first time
in literature, we succeeded in introducing in a continuous mechanical model, the heterogeneity
and the anisotropicity of the brain bundles from patient-specific DTI-images. The proposed
approach represents a relevant improvement with respect to the current state-of-the-art for
continuous mathematical models of GBM, i.e. the reaction-diffusion models developed in [21,
30, 31, 34, 51, 88], that do not provide any information on the stress that the expanding mass
of tumour cells and associated inflammation exert on the healthy brain tissue. The results pre-
sented in this work are promising and make a step towards the ambitious purpose of providing
tools to doctors in the treatment of this lethal tumor, allowing to test, along with standard treat-
ments, also new therapeutic strategies based on the modulation of the mechanical stresses [89].
Finally, the proposed continuous mechanical model can be a perfect tool for defining a multi-
scale model for glioblastoma growth [90], as it potentially allows the upscale of information
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deriving from the smaller scales. Whilst subcellular and cellular mechanisms can be easily
incorporated in GBM discrete/hybrid models [91] they cannot be incorporated in simple diffu-
sion-reaction models, since they are controlled by mechanical and chemical interactions at the
macroscopic scale. Therefore, future efforts will be devoted to the definition of a multiscale
approach in order to combine the subcellular and the cellular discrete description into the mac-
roscopic continuous representation of the whole process.

Indeed, only a multiscale and multidisciplinary approach combining clinical and radiologi-
cal data with a mathematical model able to capture phenomena occurring at different scales,
has the potential to foster our understanding on GBM evolution in every single patient
throughout his/her oncological history, in order to target therapies in a patient-specific
manner.
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