P. Harris and S. Rossetti, Molecular diagnostics for autosomal dominant polycystic kidney disease, Nature Reviews Nephrology, vol.185, issue.4, pp.197-206, 2010.
DOI : 10.1038/nrneph.2010.18

J. Brown, M. Bihoreau, S. Hoffmann, B. Kranzlin, I. Tychinskaya et al., Missense Mutation in Sterile ?? Motif of Novel Protein SamCystin is Associated with Polycystic Kidney Disease in (cy/+) Rat, Journal of the American Society of Nephrology, vol.16, issue.12, pp.3517-3543, 2005.
DOI : 10.1681/ASN.2005060601

S. Neudecker, R. Walz, K. Menon, E. Maier, M. Bihoreau et al., Transgenic Overexpression of Anks6(p.R823W) Causes Polycystic Kidney Disease in Rats, The American Journal of Pathology, vol.177, issue.6, pp.3000-3009, 2010.
DOI : 10.2353/ajpath.2010.100569

S. Hoff, J. Halbritter, D. Epting, V. Frank, T. Nguyen et al., ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3, Nature Genetics, vol.91, issue.8, pp.951-957, 2013.
DOI : 10.1021/ac0341261

E. Taskiran, E. Korkmaz, S. Gucer, C. Kosukcu, F. Kaymaz et al., Mutations in ANKS6 Cause a Nephronophthisis-Like Phenotype with ESRD, Journal of the American Society of Nephrology, vol.25, issue.8, pp.1653-61, 2014.
DOI : 10.1681/ASN.2013060646

P. Czarnecki, G. Gabriel, D. Manning, M. Sergeev, K. Lemke et al., ANKS6 is the critical activator of NEK8 kinase in embryonic situs determination and organ patterning, Nature Communications, vol.1, 2015.
DOI : 10.1161/CIRCIMAGING.113.000451

Z. Bakey, M. Bihoreau, R. Piedagnel, L. Delestré, C. Arnould et al., The SAM domain of ANKS6 has different interacting partners and mutations can induce different cystic phenotypes, Kidney International, vol.88, issue.2
DOI : 10.1038/ki.2015.122

E. Stagner, D. Bouvrette, J. Cheng, and E. Bryda, The polycystic kidney disease-related proteins Bicc1 and SamCystin interact. Biochemical and biophysical research communications, pp.16-21, 2009.

N. Piazzon, C. Maisonneuve, I. Guilleret, S. Rotman, and D. Constam, Bicc1 links the regulation of cAMP signaling in polycystic kidneys to microRNA-induced gene silencing, Journal of Molecular Cell Biology, vol.4, issue.6, pp.398-408, 2012.
DOI : 10.1093/jmcb/mjs027

C. Leettola, M. Knight, D. Cascio, S. Hoffman, and J. Bowie, Characterization of the SAM domain of the PKD-related protein ANKS6 and its interaction with ANKS3, BMC Structural Biology, vol.14, issue.1, p.4105859, 2014.
DOI : 10.1186/1472-6807-14-17

J. Semple, G. Prime, L. Wallis, C. Sanderson, and D. Markie, Two-hybrid reporter vectors for gap repair cloning, BioTechniques, vol.38, issue.6, pp.927-961, 2005.
DOI : 10.2144/05386RR03

K. Fluiter, O. Mook, and F. Baas, The Therapeutic Potential of LNA-modified siRNAs: Reduction of Off-target Effects by Chemical Modification of the siRNA Sequence, Methods Mol Biol, vol.487, pp.189-203, 2009.
DOI : 10.1007/978-1-60327-547-7_9

M. Kerroch, D. Guerrot, S. Vandermeersch, S. Placier, L. Mesnard et al., Genetic inhibition of discoidin domain receptor 1 protects mice against crescentic glomerulonephritis, The FASEB Journal, vol.26, issue.10, pp.4079-91, 2012.
DOI : 10.1096/fj.11-194902

URL : https://hal.archives-ouvertes.fr/inserm-00919121

X. Cui, J. Zhou, J. Qiu, M. Johnson, and M. Mrug, Validation of Endogenous Internal Real-Time PCR Controls in Renal Tissues, American Journal of Nephrology, vol.30, issue.5, pp.413-420, 2009.
DOI : 10.1159/000235993

A. Toye, M. Dumas, C. Blancher, A. Rothwell, J. Fearnside et al., Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice, Diabetologia, vol.78, issue.9, pp.1867-79, 2007.
DOI : 10.1007/s00125-007-0738-5

G. Guron and P. Friberg, An intact renin ??? angiotensin system is a prerequisite for normal renal development, Journal of Hypertension, vol.18, issue.2, pp.123-160, 2000.
DOI : 10.1097/00004872-200018020-00001

T. Yakulov, T. Yasunaga, H. Ramachandran, C. Engel, B. Müller et al., Anks3 interacts with nephronophthisis proteins and is required for normal renal development, Kidney International, vol.87, issue.6
DOI : 10.1038/ki.2015.17

P. Czarnecki and J. Shah, The ciliary transition zone: from morphology and molecules to medicine, Trends in Cell Biology, vol.22, issue.4, p.3331593, 2012.
DOI : 10.1016/j.tcb.2012.02.001

C. Haycraft, B. Banizs, Y. Aydin-son, Q. Zhang, E. Michaud et al., Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function, PLoS Genet, vol.1, issue.4, 2005.

D. Bouvrette, S. Price, and E. Bryda, K Homology Domains of the Mouse Polycystic Kidney Disease-Related Protein, Bicaudal-C (Bicc1), Mediate RNA Binding in vitro, Nephron Experimental Nephrology, vol.108, issue.1, pp.27-34, 2008.
DOI : 10.1159/000112913

Y. Fu, I. Kim, P. Lian, A. Li, L. Zhou et al., Loss of Bicc1 impairs tubulomorphogenesis of cultured IMCD cells by disrupting E-cadherin-based cell-cell adhesion, European Journal of Cell Biology, vol.89, issue.6, pp.428-464, 2010.
DOI : 10.1016/j.ejcb.2010.01.002

C. Maisonneuve, I. Guilleret, P. Vick, T. Weber, P. Andre et al., Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow, Development, vol.136, issue.17, pp.3019-3049, 2009.
DOI : 10.1242/dev.038174

D. Stapleton, I. Balan, T. Pawson, and F. Sicheri, The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization, Nature structural biology, vol.6, issue.1, pp.44-53, 1999.

M. Knight, C. Leettola, M. Gingery, H. Li, and J. Bowie, A human sterile alpha motif domain polymerizome Protein science: a publication of the Protein Society, Epub, vol.20, issue.10, pp.1697-706, 2011.

J. Kim, H. Lee, Y. Kim, S. Yoo, E. Park et al., The SAM Domains of Anks Family Proteins Are Critically Involved in Modulating the Degradation of EphA Receptors, Molecular and Cellular Biology, vol.30, issue.7, pp.1582-92, 2010.
DOI : 10.1128/MCB.01605-09

A. Johnston, G. Naselli, H. Niwa, T. Brodnicki, L. Harrison et al., Harp (harmonin-interacting, ankyrin repeat-containing protein), a novel protein that interacts with harmonin in epithelial tissues. Genes to cells: devoted to molecular & cellular mechanisms, pp.967-82, 2004.

O. Devuyst and V. Torres, Osmoregulation, vasopressin, and cAMP signaling in autosomal dominant polycystic kidney disease. Current opinion in nephrology and hypertension, pp.459-70, 2013.

H. Dweep, C. Sticht, A. Kharkar, P. Pandey, and N. Gretz, Parallel Analysis of mRNA and microRNA Microarray Profiles to Explore Functional Regulatory Patterns in Polycystic Kidney Disease: Using PKD/Mhm Rat Model, PLoS ONE, vol.438, issue.1, pp.53780-3542345, 2013.
DOI : 10.1371/journal.pone.0053780.s009

M. Riera, S. Burtey, and M. Fontes, Transcriptome analysis of a rat PKD model: Importance of genes involved in extracellular matrix metabolism, Kidney International, vol.69, issue.9, pp.1558-63, 2006.
DOI : 10.1038/sj.ki.5000309

X. Song, D. Giovanni, V. He, N. Wang, K. Ingram et al., Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks, Human Molecular Genetics, vol.18, issue.13, pp.2328-2371, 2009.
DOI : 10.1093/hmg/ddp165

W. Chen, Y. Tzeng, and H. Li, Gene expression in early and progression phases of autosomal dominant polycystic kidney disease, BMC Research Notes, vol.1, issue.1, pp.131-2632667, 2008.
DOI : 10.1186/1756-0500-1-131

M. Mrug, J. Zhou, Y. Woo, X. Cui, A. Szalai et al., Overexpression of innate immune response genes in a model of recessive polycystic kidney disease, Kidney International, vol.73, issue.1, pp.63-76, 2007.
DOI : 10.1038/sj.ki.5002627

P. Pandey, S. Qin, J. Ho, J. Zhou, and J. Kreidberg, Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease, BMC Systems Biology, vol.5, issue.1, pp.56-3111376, 2011.
DOI : 10.1101/gad.1522907

R. Mangoo-karim, M. Uchic, M. Grant, W. Shumate, J. Calvet et al., Renal epithelial fluid secretion and cyst growth: the role of cyclic AMP, FASEB journal: official publication of the Federation of American Societies for Experimental Biology, vol.3, issue.14, pp.2629-2661, 1989.

R. Mangoo-karim, M. Uchic, C. Lechene, and J. Grantham, Renal epithelial cyst formation and enlargement in vitro: dependence on cAMP., Proceedings of the National Academy of Sciences, vol.86, issue.15, pp.6007-6018, 1989.
DOI : 10.1073/pnas.86.15.6007

V. Gattone, X. Wang, P. Harris, and V. Torres, Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist, Nature Medicine, vol.9, issue.10, pp.1323-1329, 2003.
DOI : 10.1038/nm935

G. Aguiari, L. Catizone, D. Senno, and L. , Multidrug Therapy for Polycystic Kidney Disease: A Review and Perspective, American Journal of Nephrology, vol.37, issue.2, pp.175-82, 2013.
DOI : 10.1159/000346812

N. Samani, J. Erdmann, A. Hall, C. Hengstenberg, M. Mangino et al., Genomewide Association Analysis of Coronary Artery Disease, New England Journal of Medicine, vol.357, issue.5, pp.443-53, 2007.
DOI : 10.1056/NEJMoa072366

J. Shi, D. Levinson, J. Duan, A. Sanders, Y. Zheng et al., Common variants on chromosome 6p22.1 are associated with schizophrenia, Nature, vol.136, issue.7256, pp.753-760, 2009.
DOI : 10.1038/nature08192

D. Woo, D. Nguyen, N. Khatibi, and P. Olsen, Genetic identification of two major modifier loci of polycystic kidney disease progression in pcy mice., Journal of Clinical Investigation, vol.100, issue.8, pp.1934-1974, 1997.
DOI : 10.1172/JCI119724