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Abstract

When two or more degrees of freedom become coupled in a physical system, a number of observables
of the latter cannot be represented by mathematical expressions separable with respect to the different
degrees of freedom. In recent years it appeared clear that these expressions may display the same
mathematical structures exhibited by multiparty entangled states in quantum mechanics. In this work,
we investigate the occurrence of such structures in optical beams, a phenomenon that is often referred
to as ‘classical entanglement’. We present a unified theory for different kinds of light beams exhibiting
classical entanglement and we indicate several possible extensions of the concept. Our results clarify
and shed new light upon the physics underlying this intriguing aspect of classical optics.

1. Introduction

A composite physical system, namely one made of at least two identifiable parts, say A and B, which are denoted
subsystems, can be prepared in such a way that the latter are not independent. In the realm of classical physics
this means, for example, that the probability P (a € A, b € B) for the events a, b associated to subsystems

A, B, respectively, cannot be factoredas P(a € A, b € B) = P(a € A)P (b € B)[1]. Conversely, fora
composite quantum system, statistical dependence of the subsystems A, B means that the state vector | ¥)
describing a physical state of the whole system, cannot be decomposed in the tensor product

1¥) = |wa) ® |ws)s (1

where |y, ) represents the state of the subsystem A and |yy) represents the state of the subsystem B. Here,
we are not interested in the deep conceptual implications of equation (1) but follow, rather, the ‘die-hard
pragmatist’s’ approach [2] and denote as entangled any state vector that does not factorizes as in

equation (1); namely,

(2)

entangled = non-separable.

Traditionally, entanglement has been regarded either as a peculiar feature of quantum mechanics or,
instead, as a powerful resource especially for quantum information science [3]. In this paper we adhere to
the latter view and aim at showing how some potentially useful characteristics of quantum entanglement
can be replicated in classical systems. In fact, our ultimate goal is not to replace or simulate entangled
quantum systems with classical ones in some actual operations. Instead, the aim is to study how to make
quantum entanglement potentialities accessible to classical physics applications as recently demonstrated,
e.g., in classical polarization metrology [4].

Thus, the main purpose of this paper is to revisit the concept of the so-called ‘classical entanglement’ in
optics [5, 6], and to present a brief but comprehensive overview of it. We would like to stress that ‘classical
entanglement’ is not substitutive of bona fide quantum entanglement, but is a feature exhibited by some classical
systems. In a sense, which will become more clear later, the name classical entanglement denotes the occurrence

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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of some mathematical and physical aspects of quantum entanglement in classical beams of light. In this sense,
classical entanglement should not be confused with ‘entanglement simulations in classical optics’, namely the
use of classical fields to reproduce non-classical correlations between distinct measurement apparatuses [7, 8].
In any case, classical entanglement does not belong to the rich field of studies denoted by the name ‘quantum-—
classical analogies’ [9—11]. A precise definition of what is usually meant with ‘classical entanglement’, will be
given in section 2.

As afinal important remark, the term ‘classical’ in the name classical entanglement, indicates the non-
quantum nature of the excitation of the electromagnetic field. In this paper, typically, we deal with bright beams
oflight as, e.g., laser beams. However, whether the beam is very intense or very weak, is a factor that has not
influence upon classical entanglement, as it will be shown in section 2. Yet, it should be noticed that single-
photon excitations permit only the quantum mechanical representation as Fock states and, therefore, will not be
considered here. However, it has been recently demonstrated that single photons can be prepared in a quantum
state entangled with the vacuum [12—-16]. Single-photon-vacuum entanglement resembles classical
entanglement in that there is only one individual physical system, a single-photon in the quantum caseand a
single bright beam in the classical one, and two (or more) entangled modes of the electromagnetic field [17-19].
This concept will be further discussed in the next section.

2. Two types of quantum entanglement

Consider a quantum system S made of two parts, denoted with S; and S,, which are dubbed ‘subsystems’. For
example, fwo particles of mass m constrained to move along a line with coordinates x;, x,, respectively, tied to
the equilibrium point by two equal springs of elastic constant k = maw?, constitute a composite (bipartite)
system whose dynamics is governed by the Hamiltonian H = H; + H,, where
) 1, 1 L.,
H, = —7p + —mw™x;, (=1, 2). (3)
2m Y 2

In this case the two subsystems S,, S, are naturally identified with the two particles’.

As asecond example, consider now a single particle of mass m moving upon the plane (x;, x,) and tied to the
equilibrium point x; = 0 = x, by a spring of elastic constant k = ma?. This is a two-dimensional harmonic
oscillator with Hamiltonian

= 2 (b2 +p2) + 2mo? (42 + 22)
2m \T T2 T b
= H + H, (4)

where H,, is again given by the expression in equation (3). In this case the two subsystems Sy, S, are clearly
identified with the two Cartesian coordinates of the single particle. Not surprisingly, the Hamiltonian H is the
same in both cases and the generic state vector | ¥) satisfying the Schrodinger equation i%0|¥)/d t = H |¥),
belongs to a Hilbert space % made as the tensor product of spaces associated to each subsystem: # = 7 ® 7.

The fundamental difference between the two cases considered above is that in the first case the two
subsystems are identified with two distinct physical objects, the two particles, which can be spatially separated.
Conversely, in the second case there are not two individual physical objects to set apart but only two orthogonal
coordinates attached to a single physical object: the sole particle. This simple fact has serious consequences when
the state vector |¥') is entangled, namely when | ¥') # |y;) ® |y, ). In the words of Spreeuw [20]:

“(there is) a profound difference between two types of entanglement: (i) true, multiparticle
entanglement and (ii) a weaker form of entanglement between different degrees of freedom of a
single particle. Although these two types look deceptively similar in many respects, only type (i)
can yield non-local correlations. Only the type (ii) entanglement has a classical analogy.”

In this paper, borrowing from the jargon of the theory of optical coherence functions [21], we denote
entanglement of type (i) and (ii) as infersystem and intrasystem entanglement, respectively. As remarked by
Spreeuw, intersystem entanglement can occur only in quantum systems and may lead to the so-called quantum
non-locality [22, 23], a fundamental aspect of quantum mechanics that should not be confused with quantum
entanglement [24]. Conversely, intrasystem entanglement may appear in both quantum and classical systems

In this qualitative discussion we are intentionally oversimplifying the situation in order to keep simple the language. More properly, one
should identify the two subsystems with the two harmonic oscillators.
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and has alocal nature by definition because the two or more entangled degrees of freedom are localized within
the same physical object.

In the last two decades it became clear that intrasystem entanglement also occurs frequently in classical
optics. In this case intrasystem entanglement is usually dubbed classical entanglement 6, 25-28] °. A typical
example thereof is given by a collimated optical beam with non-uniform polarization pattern. The electric field of
a generic paraxial beam of light can be writtenas E(p, z, t) = 2 Re {U(p, z)exp[ik (z — ¢ t)]}, where U(p, z)is
the complex amplitude of the field (technically called: analytic signal [29]), p = %x + yy denotes the transverse
position vector, k is the wave-number and the axis zis taken along the direction of propagation of the beam.
Then, the analytic signal of a non-uniformly polarized paraxial beam can be represented by a non-separable
vector function of the form

Ulp, z) = a\bi(p, 2) + a,b,(p, 2), (5)

where a,;, a, are two constant vectors perpendicular to the propagation axis z, the functions b, (p, z), b, (p, z)
denotes two distinct solutions of the paraxial equation. In this instance the polarization vectors a;, a, and the
spatial mode functions b; (p, z), b, (p, z) describe two independent degrees of freedom, which play the role of
the two subsystems in quantum mechanics. The degrees of freedom are independent in the sense that it is
possible to assign arbitrary values to the polarization of a paraxial beam of light irrespective of its spatial mode
function and vice versa.

An expression of the form (5) is clearly non-separable, namely it is not possible to rewrite it as the simple
product between one constant polarization vector @ and one mode function b (p, z): U(p, z) # a b(p, z).In
this sense, equation (5) has the same mathematical structure (isomorphism) of a two-qubit entangled state
vector | ) belonging to a bipartite Hilbert space # = %, ® 7, of dimension 4 [3]. Itis well known that such
state |¥) can always be written in terms of a Schmidt decomposition of the form [30, 31]

1) = YA ) n) + Ay |u2)|va), (6)

where {|u;), |up)}and {|w1), |v,)} are orthonormal bases for 7] and 7, respectively, and 4, > A, > Oare real
non-negative coefficients. If the state is normalized to 1, then 4; + 1, = 1.Ifeither 4; = 0 or 4, = 0 the stateis
factorable and the two subsystems are independent. Vice versa, if 41, A, # 0, the state vector | ¥') is entangled.
The amount of entanglement can be quantified by the Schmidt number (or participation ratio) K defined as:

2
i (21 + 42) .
PR
with 1 < K < 2[32,33]. K=1 characterizes factorable state vectors, while K = 2 denotes maximal entanglement
occurring whenever 4, = 1,.In asimilar manner, it is not difficult to show that a non-separable vector function
of the form (5) can always be rewritten as

Ulp, 2) = JAi v (p, 2) + 42 tv2(p, 2), (8)
where
[06.2) - Ul ) =y + 1o, (9)

denotes the total intensity of the beam and the integration extended upon the whole xy plane with d*p = dxdy.
Here we use the notation (s, 1g)p = #,, - iy = 645, with @, § € {1, 2},and

(s vi)s = [0, D0, 2) Bp = 5, (10)

where (1, 1,)p and (;, v»)s symbolize the scalar product in the polarization (subscript P) and in the spatial
(subscript S) Hilbert spaces ] and 7, respectively. Given the decomposition (8), one can again formally
quantify the amount of ‘classical entanglement’ via the Schmidt number K given in equation (7) which holds
irrespective of the normalization of the state. Therefore, the total intensity of the beam 4; + 1, does not affect
classical entanglement.

3. Three kinds of classical entanglement
Nowadays, three methods to prepare optical beams exhibiting intrasystem entanglement are quite popular. In all
the three cases the goal is to prepare beams of light possessing some properties of entangled states of two qubits.

This is achieved by manipulating two relevant binary degrees of freedom of the electromagnetic field, each qubit

6 . , ¢ . qes .
The names ‘nonquantum entanglement’ [26] and ‘structural inseparability’ [27, 28] are also sometimes used.

3
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|H) [up)

|77y |down)

Figure 1. Polarization and intensity patterns in the transverse plane z = 0, of the twofold optical beam represented by equation (13).
The black arrows denotes the polarization of light.

being encoded in one degree of freedom. According to what pair of binary degrees of freedom are chosen, one
can have (1) polarization-position entanglement, (2) position—position entanglement and (3) polarization-
spatial entanglement. In the remainder of this section we shall illustrate and compare these three kinds of
classical entanglement within the framework of paraxial optics that allows for a unified description of these
cases.

3.1. Polarization-position entanglement

The first example of intrasystem entanglement in optical beams was given by Peres [31], Spreeuw [5] and
Cerf et al [34]. Consider an unpolarized beam of light passing through a Calcite crystal. Crossing the
crystal, the beam splits in two beams traveling along two different paths (say ‘up’ and ‘down’), with
orthogonal linear polarization (say, ‘Horizontal’ and ‘Vertical’), as shown in figure 1. Therefore, the beam
can be described in terms of two significant binary degrees of freedom: the polarization and the position of
the path. As shown in section 2, the paraxial twofold beam exiting the crystal can be represented by the
non-separable vector field

U(p) z) = éy Uup(p) z) + éVUdown(p> z), (11)

where the polarization vectors are orthogonal by definition (ép, éy)p = 0,and (U, Udown)s = 0 when the two
paths are non-overlapping and therefore fully distinguishable. Thus, equation (11) has a Schmidt form
analogous to equation (8), with 4; = 1, = 1 and represents a classical optics analogue of a maximally entangled
state of two qubits of the form

|H)|up) + [V)[down). (12)

For the sake of definiteness, let us choose Uy, (p, z) = U (x, y — a, z) and Ugown (9> 2) = U (x, y + a, 2),
where 2a > 0 quantifies the distances between the two beams and U (p, z) denotes any solution of the paraxial
equation. By definition, U (x, y F a, z) represents a beam displaced up and down by +a along the (vertical) y-
axis. Thus, equation (11) can be rewritten as

Up,z)=eyU(x,y—a,z) + ey U(x, y + a, z). (13)
The orthogonality requirement (Uyp, Ugown)s = 0 now becomes I (a) = 0, where I (a) is the overlap integral

I(a) =/U*(x,y—a, 2)U (x, y + a, z)dxdy. (14)

This condition is trivially satisfied when the two beams are non-overlapping, namely when the functions
U(x,y — a, z)and U (x, y + a, z) have spatially disjoint supports’ and, therefore, Usp Udown = 0, namely:

U(x,y—a,2)U(x,y +a,z) =0. (15)

7 Letus briefly remind the concept of support of a function. Let f: X — C bea complex-valued function defined in the arbitrary domain X.
The support of f, written supp (f), is the set of points in X where fis non-zero: supp (f) = {x € X | f (x) # 0}.

4
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lup) |left) [up) |right)

|down) |left) |down) [right)

Figure 2. [llustration of a fourfold optical beam in the transverse plane z= 0 described by equation (18). The two yellow square spots
along the diagonal constitute a twofold beam described by equation (21) and represent the entangled vector state (20).

For example, for a fundamental Gaussian beam of waist (spot size) w, and normalized amplitude

kL 1 ik |p]?
Up,z)=,[]———o — , 16
> 2) nz—iLeXp(Zz—iL (16)

where L = kw;/2 is the Rayleigh range of the beam, it is not difficult to show that

(a) “ (17)

I(a) = exp| — . 17
P wil2

As expected, one obtains I (a) ~ 0 only when the separation between the two beams is much bigger than the

beam waist: a > wy. Conversely, when I (a) # 0 the spatial mode functions U (x, y — a, z) and

U (x, y + a, z)are not reciprocally orthogonal and, therefore, equation (13) is no longer in a Schmidt form. In

this case a new Schmidt decomposition must be performed to bring U (p, z) to the form (8).

3.2. Position—position entanglement

A second way to encode two qubits in optical beams was proposed by Puentes et al [35] (a similar method to
process optical beams was previously proposed by Caulfield and Shamir [36] and by Spreeuw and coworkers
[37]) and found numerous applications in recent years [38—42]. The key idea is to encode two qubits in the
transverse positions of four non-overlapping beams of light propagating along a common axis, say z. In the xy-
plane of equation z= 0, these beams form an array of four bright spots with the same polarization, say e, but
different phase and intensity, as shown in figure 2. The first qubit is encoded in the vertical position (‘up’ and
‘down’) of such fourfold beam, and the second qubit in the horizontal position (‘left’ and ‘right’). Then, the
fourfold beam at z= 0 can be described by the analytic signal U(p, 0) = eU (x, y), where [41]

U, y)= ApU(x+a,y—a) + AgU(x—a,y — a)
+A0Ux+a,y+a)+AnU(x—a,y+a), (18)

with A; € C, (i, j = 0, 1) being numerical constants settling the intensity and the phase of each of the four
beams, and the four functions

U(x + (=1)a, y - (—l)ia) = rect(#]rect[%—_l)]a], (19)

fix the position and the (square) spatial profiles of the beams where, again, i, j = 0, 1. In equation (19),
0 < b < 2aisthehorizontal and vertical width of each of the four beams, and the rectangle function rect (&) is
equalto1for|é| < 1/2,to1/2for|£] = 1/2 andto O for |E| > 1/2 [43].

By selecting only two spots along the diagonal x + y = 0, one achieves the position—position optical beam
representation of the two-qubit entangled state

|up)|left) + |down) |right), (20)
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where the spatial separation a > b/2 between the beams guarantees that (up|down) = 0 = (left|right). The
analytic signal of such twofold beam can be written as

U, )= Ux+a,y—a)+U(x—a,y+a)

= rect(y —_ a)rect(x + a) + rect(y + a)rect(x — a)) (21)
b b b b

where rect[(y — a)/b] ~ |up), rect[(y + a)/b] ~ |down)and rect[(x + a)/b] ~ |left),
rect[(x — a)/b] ~ |right).

The functions U (x + a, y — a)and U (x — a, y + a) in equation (21) are non-overlapping onlyif b < 2a.
In this case the vertical and horizontal positional degrees of freedom are binary and the equation (21) is
automatically in a Schmidt form and displays maximum entanglement.

3.3. Polarization-spatial entanglement
The third method to achieve intrasystem entanglement in optical beams, exploits polarization and the so-
called first-order spatial modes [44] of the electromagnetic field, as binary degrees of freedom. It is a well
established result of polarization optics that the polarization vector space can be represented by the
polarization Poincaré sphere [45]. It is also known that the vector space formed by the first-order spatial
mode can be mapped into a Poincaré sphere [46]. The direct product of polarization and spatial vector
spaces contains a subspace spanned by the so-called cylindrically polarized beams of light and can be
represented as the direct sum of two ‘hybrid” Poincaré spheres [47, 48]. In recent years, many fundamental
and applied researches upon polarization-spatial entanglement in optical beams have been carried out
(4, 6, 25-28, 47, 49-56)].

The analytic signal of the more general paraxial beam in this polarization-spatial space takes the form

U(p, z) = Aer Uio(p, 2) + Aoren Uni (p, 2) + Agey Uy (p, 2) + Aney Upi (p, 2), (22)

where A;; € C, (i, j € {0, 1})are numerical constants, and U,,,, (p, z) denotes the Hermite—Gauss solution of
the paraxial wave equation of order N = n + m with N= 1. These solutions are also known as transverse
electromagnetic (TEM,,,,,) modes and are orthogonal with respect to the spatial scalar product:
(Uim> Uprm')s = Oun' Oy withm, v, m, m’ € {0, 1, 2, ...} [57].

Choosing Agy = 1 = Ajjand Ay = 0 = Ay in equation (22), one obtains a representation of the so-called
radially polarized beam of light

Ulp, z) = eg U (p, 2) + ey Upi (p, 2), (23)

illustrated in figure 3. The beam in equation (23) is automatically in a Schmidt form and furnishes the
polarization-spatial optical representation of the two-qubit entangled state

|H)|TEMyo) + [V)|TEMoy). (24)

Non-uniformly polarized beams oflight exhibition classical entanglement have recently found practical
applications in quantum information [28] and polarization metrology [4, 26].

3.4. Comparison

The three kinds of classically entangled optical beams considered in this section have a quite different
nature. First of all, both polarization-position and polarization-spatial entanglement are consequences of a
natural partition between different degrees of freedom, namely polarization and position/spatial. Conversely,
position—position entanglement occurs because of an arbitrarily chosen partition of the R? plane, being the
two binary positional degrees of freedom of the same type. This means, for example, that it is possible to
represent the vector field (21) in a separable form by simply choosing a 45°-rotated Cartesian reference
frame.

Now, let us compare polarization-position (PP) and polarization-spatial (PS) entanglement. To
begin with, it is clear that equation (23) has the same form of equation (13). Both expressions are
written as a Schmidt sum. Each term in the sums is given by the product of a polarization vector
times a scalar function. The two scalar functions in equation (13) are orthogonal to each other and
the same applies to the two scalar functions in equation (23). However, and here is the profound
difference, the functions in equation (13) are ‘trivially’ orthogonal simply because they are non-zero
in different spatially disjoint regions, as shown by equation (15), i.e., the beams are non-overlapping.
Conversely, the functions U;q and Uy, in equation (23) have the same support(see footnote 7) and
(LJIO: UOI)S = 0, although
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|H) ITEM ;o) + [V} ITEMq1)

Figure 3. Polarization (black arrows) and intensity pattern of a radially polarized optical beam in the transverse plane z=0, as
described by equation (23).

Uro (p> 2) Un1 (p, 2) # 0. (25)

Therefore, in the polarization-spatial entanglement there is a single beam of light, the radially polarized one,
encoding both qubits. This is very different from the polarization-position case where one needs two spatially
separated (therefore, fully distinguishable) beams to encode two entangled qubits.

This concept may be further clarified noticing that equation (23) represents a coherent superposition of
beams with orthogonal polarization, while equation (13) represents, de facto, an incoherent superposition of
orthogonally polarized beams. To be more quantitative, we may calculate the covariance matrix [29] of both PP

and PS beams defined as
%= [7%,2) &, (26)
with X € {P, S},and
UuP ’ UuP Ugown ‘ Uup ’ 0
I, 2)= & (27)
Ul:p Udown | Udown |2 0 | Udown |2

where the last line is a straightforward consequence of equation (15), and

Ul UoUs
I¥(p, 2y = | Ul Uolir| (28)
UioUor Ui

Spatial integration in equation (26) has the physical meaning of disregarding the position/spatial degrees of
freedom. It is the analogous of the ‘trace’ operation in quantum mechanics, with respect to the unobserved
subsystem. A straightforward calculation shows that in both cases one obtains J** = I,, where I, denotes
the 2 X 2 identity matrix. This is expected because both beams represents maximally entangled states

[58, 59] and the corresponding covariance matrix must describe completely unpolarized light. However,
the diagonal form of equation (27) reveals that equation (13) is in some sense more similar to an
incoherent superposition already before integration. In this respect, polarization-spatial entanglement is the
‘closest’ one, amongst the three types of entanglement considered here, to bona fide quantum
entanglement.

4. Outlook: from 2 qubits to 3 qubits entanglement and more

In the case of polarization-spatial entanglement, we have considered each Hermite—Gauss mode U,,,, (p, z) asa
single function. However, from the case of position—position entanglement we have learned that the Cartesian
coordinates x and y may be also considered as independent degrees of freedom. In this section, we combine these
two concepts to build optical beam representations of tripartite states of qubits, each party being associate to a
specific degree of freedom.
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We begin with the simple observation that an Hermite—Gauss mode can be always factorized as

Ui (ps 2) = un (X, 2)up (y; 2), (29)
where n, m = 0, 1, 2, .... This means, for example, that the radially polarized beam (23), can be rewritten in
the form

Ulp, 2) = equi(x, 2)uo(y, z) + ey ug(x, 2)u(y, 2), (30)

which is isomorphic to the three-qubit state vector
10)p11)x10)y + [1)p[0)x 1)y, (31)

where ey ~ [0),, ey ~ [1),, u1(x, 2) ~ [1)y, uo(y, 2) ~ |0),and ug (x, z) ~ |0)c, u;(y, z) ~ |1),,and the
label ‘p’ stands for ‘polarization’. The state vector (31) lives in a Hilbert space with 2 X 2 X 2 dimensions,
namely it represents a tripartite system. Of course, a state of the form (31) can be easily generalized to a vector
stateactingina 2 X N X M Hilbert space. The idea of considering entanglement between xand y Cartesian
coordinates in paraxial beams has been also recently exploited by Agarwal and coworkers [60]. A tripartite
representation of an optical beam like the one in equation (30) can be used, for example, to implement a
quantum-like teleportation scheme. Moreover, polarization/spatial coupled modes have recently found
applications in decoherence-free subspaces studies [61], quantum cryptography [62], quantum computing [63]
and quantum logic gates [64]. Further examples of possible applications are briefly illustrated below. However,
before proceeding, we remark that key to the use of classically entangled beams, is the experimenter’s capability
to create and to manipulate (especially in unitary manner) optical modes®. Such operations can be performed by
means of different schemes as, e.g., the ones presented in [56, 65] and references therein.

4.1. GHZ state
The state vector given in equation (31) as a form similar to the so-called GHZ state [66]:

1
GHZ) = —(]000) + |111)). 32
|GHZ) = —=(1000) + [111)) (32)
In the language of classical optics, the lowest-order implementation of the state (32) is given by the beam
1
Ucnz(p, 2) = f[eHUoo(ﬂ, z) + ey Ui (p, Z)]- (33)
The beam represented by equation (33) clearly has a non-uniform polarization pattern, as shown in figure 4.
4.2. W state
Another famous tripartite quantum state is the so-called W state [67]:
1
|[W) = —(]001) + |010) + |100}), (34)

NG

which has the same mathematical structure of the following classical beam:
1
Uw(p, 2) = NEl [eH Uoi(p, 2) + enUio(p, 2) + ev U (p, Z)]- (35)
Also Uy (p, z) describes a beam with a non-uniform polarization pattern, as illustrated in figure 5 below

4.3.NOON states
Another class of entangled quantum states that can be encoded in paraxial beams of light, are the so-called
generalized NOON states [68]:

_ ! iNg
INOON) = f(|N, 0) + ¢’ |0, N}). (36)
The classical optics representation of (36) is a purely scalar superposition of HG beams:
1 4
Unoon (p, 2) = f[UNO (p, 2) + eNUyy (p, Z)]- (37)

The real and imaginary parts of the analytic signal given in equation (37) are shown in figure 6 below for N=4
and 6 = z/3: super-resolution and super-sensitivity (see, e.g., [69] for a proper definition of the two terms), are
intriguing properties of the NOON states that could be investigated using classical beams oflight of the form
(37). While it is known that super-resolution can be achieved with classical light [69, 70], the question whether

8 . .. .
We thank an anonymous Referee for pointing out this important issue.
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Figure 4. Polarization (black arrows) and intensity pattern of the non-uniformly polarized beam described by equation (33) analogous
to the quantum GHZ vector state (32).

0.6

0.4

0.2

Figure 5. Polarization (black arrows) and intensity pattern of the non-uniformly polarized beam described by equation (35)
corresponding to the quantum W vector state (34). Differently from the pattern shown in figure 4, this beam does not exhibit
Cartesian symmetry.

super-sensitivity could be obtained by classical beams of the form (37), is perfectly open. Moreover, these optical
beams could furnish a good ‘laboratory’ to study decoherence in Schrodinger cat states under easily controllable
conditions.

5. Summary

The seemingly oxymoronic name ‘classical entanglement’ actually denotes the occurrence of some typical
quantum mechanical features in classical systems and it should not be regarded as a substitute for quantum
entanglement. In this article we have studied classical entanglement exhibited by optical beams prepared in three
different manners. Within the context of paraxial optics, we have been able to provide a theory unifying the

9
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Figure 6. Real and imaginary parts of the NOON’ beam field described by equation (37) evaluated for N=4and 6 = /3.

representation of these three kinds of beams. We also have classified the latter according to what pair of binary
degrees of freedom of the light is chosen to encode the ‘entangled qubits’. Moreover, we have demonstrated that
despite of the formal similarity between the mathematical expressions for the beams in all the three cases, the
physical characteristics of the light (coherent or incoherent) may be very different. Finally, we have suggested a
fewideas about how to enlarge the already rich phenomenology of classical entanglement.
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