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PAPER
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Abstract
When two ormore degrees of freedombecome coupled in a physical system, a number of observables
of the latter cannot be represented bymathematical expressions separable with respect to the different
degrees of freedom. In recent years it appeared clear that these expressionsmay display the same
mathematical structures exhibited bymultiparty entangled states in quantummechanics. In this work,
we investigate the occurrence of such structures in optical beams, a phenomenon that is often referred
to as ‘classical entanglement’.We present a unified theory for different kinds of light beams exhibiting
classical entanglement andwe indicate several possible extensions of the concept. Our results clarify
and shed new light upon the physics underlying this intriguing aspect of classical optics.

1. Introduction

A composite physical system, namely onemade of at least two identifiable parts, sayA andB, which are denoted
subsystems, can be prepared in such away that the latter are not independent. In the realmof classical physics
thismeans, for example, that the probability ∈ ∈P a A b B( , ) for the events a b, associated to subsystems
A B, , respectively, cannot be factored as ∈ ∈ = ∈ ∈P a A b B P a A P b B( , ) ( ) ( ) [1]. Conversely, for a
composite quantum system, statistical dependence of the subsystems A B, means that the state vector Ψ∣ 〉
describing a physical state of thewhole system, cannot be decomposed in the tensor product

Ψ ψ ψ= ⊗ , (1)A B

where ψ∣ 〉A represents the state of the subsystem A and ψ∣ 〉B represents the state of the subsystem B. Here,
we are not interested in the deep conceptual implications of equation (1) but follow, rather, the ‘die-hard
pragmatist’s’ approach [2] and denote as entangled any state vector that does not factorizes as in
equation (1); namely,

= ‐entangled non separable. (2)

Traditionally, entanglement has been regarded either as a peculiar feature of quantum mechanics or,
instead, as a powerful resource especially for quantum information science [3]. In this paper we adhere to
the latter view and aim at showing how some potentially useful characteristics of quantum entanglement
can be replicated in classical systems. In fact, our ultimate goal is not to replace or simulate entangled
quantum systems with classical ones in some actual operations. Instead, the aim is to study how to make
quantum entanglement potentialities accessible to classical physics applications as recently demonstrated,
e.g., in classical polarization metrology [4].

Thus, themain purpose of this paper is to revisit the concept of the so-called ‘classical entanglement’ in
optics [5, 6], and to present a brief but comprehensive overview of it.Wewould like to stress that ‘classical
entanglement’ is not substitutive of bona fide quantum entanglement, but is a feature exhibited by some classical
systems. In a sense, whichwill becomemore clear later, the name classical entanglement denotes the occurrence
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of somemathematical and physical aspects of quantum entanglement in classical beams of light. In this sense,
classical entanglement should not be confusedwith ‘entanglement simulations in classical optics’, namely the
use of classicalfields to reproduce non-classical correlations between distinctmeasurement apparatuses [7, 8].
In any case, classical entanglement does not belong to the rich field of studies denoted by the name ‘quantum–

classical analogies’ [9–11]. A precise definition of what is usuallymeantwith ‘classical entanglement’, will be
given in section 2.

As a final important remark, the term ‘classical’ in the name classical entanglement, indicates the non-
quantumnature of the excitation of the electromagnetic field. In this paper, typically, we deal with bright beams
of light as, e.g., laser beams.However, whether the beam is very intense or veryweak, is a factor that has not
influence upon classical entanglement, as it will be shown in section 2. Yet, it should be noticed that single-
photon excitations permit only the quantummechanical representation as Fock states and, therefore, will not be
considered here.However, it has been recently demonstrated that single photons can be prepared in a quantum
state entangledwith the vacuum [12–16]. Single-photon-vacuum entanglement resembles classical
entanglement in that there is only one individual physical system, a single-photon in the quantum case and a
single bright beam in the classical one, and two (ormore) entangledmodes of the electromagnetic field [17–19].
This concept will be further discussed in the next section.

2. Two types of quantum entanglement

Consider a quantum system Smade of two parts, denotedwith S1 and S2, which are dubbed ‘subsystems’. For
example, two particles ofmassm constrained tomove along a linewith coordinates x x,1 2, respectively, tied to

the equilibriumpoint by two equal springs of elastic constant ω=k m 2, constitute a composite (bipartite)
systemwhose dynamics is governed by theHamiltonian = +H H Hˆ ˆ ˆ

1 2, where

ω α= + =α α αH
m

p m xˆ 1

2
ˆ 1

2
ˆ , ( 1, 2). (3)2 2 2

In this case the two subsystems S S,1 2 are naturally identifiedwith the two particles
5.

As a second example, consider now a single particle ofmassmmoving upon the plane x x( , )1 2 and tied to the

equilibriumpoint = =x x01 2 by a spring of elastic constant ω=k m 2. This is a two-dimensional harmonic
oscillator withHamiltonian

ω= + + +

= +

( ) ( )H
m

p p m x x

H H

ˆ 1

2
ˆ ˆ 1

2
ˆ ˆ

ˆ ˆ , (4)

1
2

2
2 2

1
2

2
2

1 2

where αĤ is again given by the expression in equation (3). In this case the two subsystems S S,1 2 are clearly
identifiedwith the twoCartesian coordinates of the single particle. Not surprisingly, theHamiltonian Ĥ is the
same in both cases and the generic state vector Ψ∣ 〉 satisfying the Schrödinger equation Ψ Ψ∂∣ 〉 ∂ = ∣ 〉 t Hi ˆ ,
belongs to aHilbert space ℋ made as the tensor product of spaces associated to each subsystem: ℋ = ℋ ⊗ ℋ1 2.

The fundamental difference between the two cases considered above is that in the first case the two
subsystems are identifiedwith two distinct physical objects, the two particles, which can be spatially separated.
Conversely, in the second case there are not two individual physical objects to set apart but only two orthogonal
coordinates attached to a single physical object: the sole particle. This simple fact has serious consequences when
the state vector Ψ∣ 〉 is entangled, namelywhen Ψ ψ ψ∣ 〉 ≠ ∣ 〉 ⊗ ∣ 〉1 2 . In thewords of Spreeuw [20]:

“(there is) a profound difference between two types of entanglement: (i) true,multiparticle
entanglement and (ii) a weaker formof entanglement between different degrees of freedomof a
single particle. Although these two types look deceptively similar inmany respects, only type (i)
can yield non-local correlations. Only the type (ii) entanglement has a classical analogy.”

In this paper, borrowing from the jargon of the theory of optical coherence functions [21], we denote
entanglement of type (i) and (ii) as intersystem and intrasystem entanglement, respectively. As remarked by
Spreeuw, intersystem entanglement can occur only in quantum systems andmay lead to the so-called quantum
non-locality [22, 23], a fundamental aspect of quantummechanics that should not be confusedwith quantum
entanglement [24]. Conversely, intrasystem entanglementmay appear in both quantumand classical systems

5
In this qualitative discussionwe are intentionally oversimplifying the situation in order to keep simple the language.More properly, one

should identify the two subsystemswith the two harmonic oscillators.
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and has a local nature by definition because the two ormore entangled degrees of freedom are localizedwithin
the same physical object.

In the last two decades it became clear that intrasystem entanglement also occurs frequently in classical
optics. In this case intrasystem entanglement is usually dubbed classical entanglement [6, 25–28] 6. A typical
example thereof is given by a collimated optical beamwith non-uniform polarization pattern. The electric field of
a generic paraxial beamof light can bewritten as ρ ρ= −z t z k z c tE U( , , ) 2 Re { ( , )exp[i ( )]}, where ρ zU( , ) is
the complex amplitude of the field (technically called: analytic signal [29]), ρ = +x yx yˆ ˆ denotes the transverse
position vector, k is thewave-number and the axis z is taken along the direction of propagation of the beam.
Then, the analytic signal of a non-uniformly polarized paraxial beam can be represented by a non-separable
vector function of the form

ρ ρ ρ= +a az b z b zU( , ) ( , ) ( , ), (5)1 1 2 2

where a a,1 2 are two constant vectors perpendicular to the propagation axis z, the functions ρ ρb z b z( , ), ( , )1 2

denotes two distinct solutions of the paraxial equation. In this instance the polarization vectors a a,1 2 and the
spatialmode functions ρ ρb z b z( , ), ( , )1 2 describe two independent degrees of freedom,which play the role of
the two subsystems in quantummechanics. The degrees of freedom are independent in the sense that it is
possible to assign arbitrary values to the polarization of a paraxial beamof light irrespective of its spatialmode
function and vice versa.

An expression of the form (5) is clearly non-separable, namely it is not possible to rewrite it as the simple
product between one constant polarization vector a and onemode function ρb z( , ): ρ ρ≠ az b zU( , ) ( , ). In
this sense, equation (5) has the samemathematical structure (isomorphism) of a two-qubit entangled state
vector Ψ∣ 〉belonging to a bipartiteHilbert space ℋ = ℋ ⊗ ℋ1 2 of dimension 4 [3]. It is well known that such
state Ψ∣ 〉 can always bewritten in terms of a Schmidt decomposition of the form [30, 31]

Ψ λ λ= +u v u v , (6)1 1 1 2 2 2

where ∣ 〉 ∣ 〉u u{ , }1 2 and ∣ 〉 ∣ 〉v v{ , }1 2 are orthonormal bases for ℋ1 and ℋ2, respectively, and λ λ⩾ ⩾ 01 2 are real
non-negative coefficients. If the state is normalized to 1, then λ λ+ = 11 2 . If either λ = 01 or λ = 02 the state is
factorable and the two subsystems are independent. Vice versa, if λ λ ≠, 01 2 , the state vector Ψ∣ 〉 is entangled.
The amount of entanglement can be quantified by the Schmidt number (or participation ratio)K defined as:

λ λ

λ λ
=

+

+
( )

K , (7)
1 2

2

1
2

2
2

with ⩽ ⩽K1 2 [32, 33].K=1 characterizes factorable state vectors, whileK=2denotesmaximal entanglement
occurringwhenever λ λ=1 2. In a similarmanner, it is not difficult to show that a non-separable vector function
of the form (5) can always be rewritten as

ρ ρ ρλ λ= +u uz v z v zU( , ) ˆ ( , ) ˆ ( , ), (8)1 1 1 2 2 2

where

∫ ρ ρ ρ λ λ= +z zU U*( , ) · ( , ) d , (9)2
1 2

denotes the total intensity of the beam and the integration extended upon thewhole xy planewith ρ = x yd d d2 .
Herewe use the notation δ= =α β α β αβu u u u( ˆ , ˆ ) ˆ · ˆP * , with α β ∈, {1, 2}, and

∫ ρ ρ ρ δ= =α β α β αβv v v z v z( , ) ( , ) ( , ) d , (10)S * 2

where u u( ˆ , ˆ )P1 2 and v v( , )S1 2 symbolize the scalar product in the polarization (subscriptP) and in the spatial
(subscript S)Hilbert spaces ℋ1 and ℋ2, respectively. Given the decomposition (8), one can again formally
quantify the amount of ‘classical entanglement’ via the Schmidt numberK given in equation (7) which holds
irrespective of the normalization of the state. Therefore, the total intensity of the beam λ λ+1 2 does not affect
classical entanglement.

3. Three kinds of classical entanglement

Nowadays, threemethods to prepare optical beams exhibiting intrasystem entanglement are quite popular. In all
the three cases the goal is to prepare beams of light possessing some properties of entangled states of two qubits.
This is achieved bymanipulating two relevant binary degrees of freedomof the electromagnetic field, each qubit

6
The names ‘nonquantum entanglement’ [26] and ‘structural inseparability’ [27, 28] are also sometimes used.
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being encoded in one degree of freedom.According towhat pair of binary degrees of freedomare chosen, one
can have (1) polarization-position entanglement, (2) position–position entanglement and (3) polarization-
spatial entanglement. In the remainder of this sectionwe shall illustrate and compare these three kinds of
classical entanglementwithin the framework of paraxial optics that allows for a unified description of these
cases.

3.1. Polarization-position entanglement
The first example of intrasystem entanglement in optical beams was given by Peres [31], Spreeuw [5] and
Cerf et al [34]. Consider an unpolarized beam of light passing through a Calcite crystal. Crossing the
crystal, the beam splits in two beams traveling along two different paths (say ‘up’ and ‘down’), with
orthogonal linear polarization (say, ‘Horizontal’ and ‘Vertical’), as shown in figure 1. Therefore, the beam
can be described in terms of two significant binary degrees of freedom: the polarization and the position of
the path. As shown in section 2, the paraxial twofold beam exiting the crystal can be represented by the
non-separable vector field

ρ ρ ρ= +e ez U z U zU( , ) ˆ ( , ) ˆ ( , ), (11)H Vup down

where the polarization vectors are orthogonal by definition =e e( ˆ , ˆ ) 0H V P , and =U U( , ) 0Sup down when the two
paths are non-overlapping and therefore fully distinguishable. Thus, equation (11) has a Schmidt form
analogous to equation (8), with λ λ= = 11 2 and represents a classical optics analogue of amaximally entangled
state of two qubits of the form

+H up V down . (12)

For the sake of definiteness, let us choose ρ = −U z U x y a z( , ) ( , , )up and ρ = +U z U x y a z( , ) ( , , )down ,
where >a2 0 quantifies the distances between the two beams and ρU z( , )denotes any solution of the paraxial
equation. By definition, ∓U x y a z( , , ) represents a beamdisplaced up and downby ±a along the (vertical) y-
axis. Thus, equation (11) can be rewritten as

ρ = − + +e ez U x y a z U x y a zU( , ) ˆ ( , , ) ˆ ( , , ). (13)H V

The orthogonality requirement =U U( , ) 0Sup down nowbecomes =I a( ) 0, where I a( ) is the overlap integral

∫= − +I a U x y a z U x y a z x y( ) *( , , ) ( , , )d d . (14)

This condition is trivially satisfiedwhen the two beams are non-overlapping, namelywhen the functions
−U x y a z( , , ) and +U x y a z( , , )have spatially disjoint supports7 and, therefore, =U U 0up

* down , namely:

− + =U x y a z U x y a z*( , , ) ( , , ) 0. (15)

Figure 1.Polarization and intensity patterns in the transverse plane z=0, of the twofold optical beam represented by equation (13).
The black arrows denotes the polarization of light.

7
Let us briefly remind the concept of support of a function. Let → f X: be a complex-valued function defined in the arbitrary domainX.

The support of f, written fsupp( ), is the set of points inXwhere f is non-zero: = ∈ ∣ ≠f x X f xsupp( ) { ( ) 0}.

4
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For example, for a fundamental Gaussian beamofwaist (spot size)w0 and normalized amplitude

ρ ρ
π

=
− −

U z
kL

z L

k

z L
( , )

1

i
exp

i

2 i
, (16)

2⎛
⎝⎜

⎞
⎠⎟

where =L kw 20
2 is the Rayleigh range of the beam, it is not difficult to show that

= −I a
a

w
( ) exp

2
. (17)

2

0
2

⎛
⎝⎜

⎞
⎠⎟

As expected, one obtains ≃I a( ) 0 onlywhen the separation between the two beams ismuch bigger than the
beamwaist: ≫a w0. Conversely, when ≠I a( ) 0 the spatialmode functions −U x y a z( , , ) and

+U x y a z( , , ) are not reciprocally orthogonal and, therefore, equation (13) is no longer in a Schmidt form. In
this case a new Schmidt decompositionmust be performed to bring ρU z( , ) to the form (8).

3.2. Position–position entanglement
A secondway to encode two qubits in optical beamswas proposed by Puentes et al [35] (a similarmethod to
process optical beamswas previously proposed byCaulfield and Shamir [36] and by Spreeuw and coworkers
[37]) and found numerous applications in recent years [38–42]. The key idea is to encode two qubits in the
transverse positions of four non-overlapping beams of light propagating along a common axis, say z. In the xy-
plane of equation z=0, these beams form an array of four bright spots with the same polarization, say e, but
different phase and intensity, as shown infigure 2. Thefirst qubit is encoded in the vertical position (‘up’ and
‘down’) of such fourfold beam, and the second qubit in the horizontal position (‘left’ and ‘right’). Then, the
fourfold beamat z= 0 can be described by the analytic signal ρ = eU x yU( , 0) ( , ), where [41]

= + − + − −
+ + + + − +

U x y A U x a y a A U x a y a

A U x a y a A U x a y a

( , ) ( , ) ( , )

( , ) ( , ), (18)
00 01

10 11

with ∈ =A i j, ( , 0, 1)ij being numerical constants settling the intensity and the phase of each of the four
beams, and the four functions

+ − − − =
− − + −( )U x a y a

y a

b

x a

b
( 1) , ( 1) rect

( 1)
rect

( 1)
, (19)j i

i j⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

fix the position and the (square) spatial profiles of the beamswhere, again, =i j, 0, 1. In equation (19),
< <b a0 2 is the horizontal and vertical width of each of the four beams, and the rectangle function ξrect( ) is

equal to 1 for ξ∣ ∣ < 1 2, to1 2 for ξ∣ ∣ = 1 2 and to 0 for ξ∣ ∣ > 1 2 [43].
By selecting only two spots along the diagonal + =x y 0, one achieves the position–position optical beam

representation of the two-qubit entangled state

+up left down right , (20)

Figure 2. Illustration of a fourfold optical beam in the transverse plane z=0 described by equation (18). The two yellow square spots
along the diagonal constitute a twofold beamdescribed by equation (21) and represent the entangled vector state (20).

5
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where the spatial separation >a b 2 between the beams guarantees that 〈 ∣ 〉 = = 〈 ∣ 〉up down 0 left right . The
analytic signal of such twofold beam can bewritten as

= + − + − +

=
− + +

+ −
U x y U x a y a U x a y a

y a

b

x a

b

y a

b

x a

b

( , ) ( , ) ( , )

rect rect rect rect , (21)⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where − ∼ ∣ 〉 + ∼ ∣ 〉y a brect[( ) ] up , rect[(y a) b] down and + ∼ ∣ 〉x a brect[( ) ] left ,
− ∼ ∣ 〉rect[(x a) b] right .

The functions + −U x a y a( , ) and − +U x a y a( , ) in equation (21) are non-overlapping only if <b a2 .
In this case the vertical and horizontal positional degrees of freedomare binary and the equation (21) is
automatically in a Schmidt form anddisplaysmaximumentanglement.

3.3. Polarization-spatial entanglement
The third method to achieve intrasystem entanglement in optical beams, exploits polarization and the so-
called first-order spatial modes [44] of the electromagnetic field, as binary degrees of freedom. It is a well
established result of polarization optics that the polarization vector space can be represented by the
polarization Poincaré sphere [45]. It is also known that the vector space formed by the first-order spatial
mode can be mapped into a Poincaré sphere [46]. The direct product of polarization and spatial vector
spaces contains a subspace spanned by the so-called cylindrically polarized beams of light and can be
represented as the direct sum of two ‘hybrid’ Poincaré spheres [47, 48]. In recent years, many fundamental
and applied researches upon polarization-spatial entanglement in optical beams have been carried out
[4, 6, 25–28, 47, 49–56].

The analytic signal of themore general paraxial beam in this polarization-spatial space takes the form

ρ ρ ρ ρ ρ= + + +e e e ez A U z A U z A U z A U zU( , ) ( , ) ( , ) ( , ) ( , ), (22)H H V V00 10 01 01 10 10 11 01

where ∈ ∈A i j, ( , {0, 1})ij are numerical constants, and ρU z( , )nm denotes theHermite–Gauss solution of
the paraxial wave equation of order = +N n m withN=1. These solutions are also known as transverse
electromagnetic (TEMnm)modes and are orthogonal with respect to the spatial scalar product:

δ δ=′ ′ ′ ′U U( , )nm n m S nn mm , with ′ ′ ∈ …n n m m, , , {0, 1, 2, } [57].
Choosing = =A A100 11 and = =A A010 01 in equation (22), one obtains a representation of the so-called

radially polarized beamof light

ρ ρ ρ= +e ez U z U zU( , ) ( , ) ( , ), (23)H V10 01

illustrated infigure 3. The beam in equation (23) is automatically in a Schmidt form and furnishes the
polarization-spatial optical representation of the two-qubit entangled state

+H VTEM TEM . (24)10 01

Non-uniformly polarized beams of light exhibition classical entanglement have recently found practical
applications in quantum information [28] and polarizationmetrology [4, 26].

3.4. Comparison
The three kinds of classically entangled optical beams considered in this section have a quite different
nature. First of all, both polarization-position and polarization-spatial entanglement are consequences of a
natural partition between different degrees of freedom, namely polarization and position/spatial. Conversely,
position–position entanglement occurs because of an arbitrarily chosen partition of the 2 plane, being the
two binary positional degrees of freedom of the same type. This means, for example, that it is possible to
represent the vector field (21) in a separable form by simply choosing a 45°-rotated Cartesian reference
frame.

Now, let us compare polarization-position (PP) and polarization-spatial (PS) entanglement. To
begin with, it is clear that equation (23) has the same form of equation (13). Both expressions are
written as a Schmidt sum. Each term in the sums is given by the product of a polarization vector
times a scalar function. The two scalar functions in equation (13) are orthogonal to each other and
the same applies to the two scalar functions in equation (23). However, and here is the profound
difference, the functions in equation (13) are ‘trivially’ orthogonal simply because they are non-zero
in different spatially disjoint regions, as shown by equation (15), i.e., the beams are non-overlapping.
Conversely, the functions U10 and U01 in equation (23) have the same support(see footnote 7) and

=( )U U, 0
S

10 01 , although
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ρ ρ ≠U z U z( , ) ( , ) 0. (25)10
* 01

Therefore, in the polarization-spatial entanglement there is a single beamof light, the radially polarized one,
encoding both qubits. This is very different from the polarization-position case where one needs two spatially
separated (therefore, fully distinguishable) beams to encode two entangled qubits.

This conceptmay be further clarified noticing that equation (23) represents a coherent superposition of
beamswith orthogonal polarization, while equation (13) represents, de facto, an incoherent superposition of
orthogonally polarized beams. To bemore quantitative, wemay calculate the covariancematrix [29] of both PP
and PS beams defined as

∫ ρ ρ=J z( , ) d , (26)PX PX 2

with ∈X P S{ , }, and

 ρ = ⇔z
U U U

U U U

U

U
( , )

0

0
, (27)PP up

2
up down

*

up
* down down

2

up
2

down
2

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

where the last line is a straightforward consequence of equation (15), and

 ρ =z
U U U

U U U
( , ) . (28)PS 10

2
10 01

*

10
* 01 01

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Spatial integration in equation (26) has the physical meaning of disregarding the position/spatial degrees of
freedom. It is the analogous of the ‘trace’ operation in quantum mechanics, with respect to the unobserved
subsystem. A straightforward calculation shows that in both cases one obtains =J IPX

2, where I2 denotes
the 2 × 2 identity matrix. This is expected because both beams represents maximally entangled states
[58, 59] and the corresponding covariance matrix must describe completely unpolarized light. However,
the diagonal form of equation (27) reveals that equation (13) is in some sense more similar to an
incoherent superposition already before integration. In this respect, polarization-spatial entanglement is the
‘closest’ one, amongst the three types of entanglement considered here, to bona fide quantum
entanglement.

4.Outlook: from2qubits to 3 qubits entanglement andmore

In the case of polarization-spatial entanglement, we have considered eachHermite–Gaussmode ρU z( , )nm as a
single function.However, from the case of position–position entanglement we have learned that theCartesian
coordinates x and ymay be also considered as independent degrees of freedom. In this section, we combine these
two concepts to build optical beam representations of tripartite states of qubits, each party being associate to a
specific degree of freedom.

Figure 3.Polarization (black arrows) and intensity pattern of a radially polarized optical beam in the transverse plane z=0, as
described by equation (23).
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Webeginwith the simple observation that anHermite–Gaussmode can be always factorized as

ρ =U z u x z u y z( , ) ( , ) ( , ), (29)nm n m

where = …n m, 0, 1, 2, . Thismeans, for example, that the radially polarized beam (23), can be rewritten in
the form

ρ = +e ez u x z u y z u x z u y zU( , ) ( , ) ( , ) ( , ) ( , ), (30)H V1 0 0 1

which is isomorphic to the three-qubit state vector

+0 1 0 1 0 1 , (31)p x y p x y

where ∼ ∣ 〉 ∼ ∣ 〉e e0 , 1H p V p, ∼ ∣ 〉 ∼ ∣ 〉u x z u y z( , ) 1 , ( , ) 0x y1 0 and ∼ ∣ 〉 ∼ ∣ 〉u x z u y z( , ) 0 , ( , ) 1x y0 1 , and the
label ‘p’ stands for ‘polarization’. The state vector (31) lives in aHilbert spacewith × ×2 2 2 dimensions,
namely it represents a tripartite system.Of course, a state of the form (31) can be easily generalized to a vector
state acting in a × ×N M2 Hilbert space. The idea of considering entanglement between x and y Cartesian
coordinates in paraxial beams has been also recently exploited byAgarwal and coworkers [60]. A tripartite
representation of an optical beam like the one in equation (30) can be used, for example, to implement a
quantum-like teleportation scheme.Moreover, polarization/spatial coupledmodes have recently found
applications in decoherence-free subspaces studies [61], quantum cryptography [62], quantum computing [63]
and quantum logic gates [64]. Further examples of possible applications are briefly illustrated below.However,
before proceeding, we remark that key to the use of classically entangled beams, is the experimenterʼs capability
to create and tomanipulate (especially in unitarymanner) opticalmodes8. Such operations can be performed by
means of different schemes as, e.g., the ones presented in [56, 65] and references therein.

4.1. GHZ state
The state vector given in equation (31) as a form similar to the so-calledGHZ state [66]:

∣ 〉 = +GHZ
1

2
( 000 111 ). (32)

In the language of classical optics, the lowest-order implementation of the state (32) is given by the beam

ρ ρ ρ= +e ez U z U zU ( , )
1

2
( , ) ( , ) . (33)H VGHZ 00 11

⎡⎣ ⎤⎦
The beam represented by equation (33) clearly has a non-uniformpolarization pattern, as shown infigure 4.

4.2.W state
Another famous tripartite quantum state is the so-calledW state [67]:

= + +W
1

3
( 001 010 100 ), (34)

which has the samemathematical structure of the following classical beam:

ρ ρ ρ ρ= + +e e ez U z U z U zU ( , )
1

3
( , ) ( , ) ( , ) . (35)W H H V01 10 00

⎡⎣ ⎤⎦
Also ρ zU ( , )W describes a beamwith a non-uniformpolarization pattern, as illustrated infigure 5 below

4.3. NOONstates
Another class of entangled quantum states that can be encoded in paraxial beams of light, are the so-called
generalizedNOON states [68]:

= + θ( )N NNOON
1

2
, 0 e 0, . (36)Ni

The classical optics representation of (36) is a purely scalar superposition ofHGbeams:

ρ ρ ρ= + θU z U z U z( , )
1

2
( , ) e ( , ) . (37)N

N
NNOON 0

i
0

⎡⎣ ⎤⎦
The real and imaginary parts of the analytic signal given in equation (37) are shown infigure 6 below forN=4
and θ π= 3: super-resolution and super-sensitivity (see, e.g., [69] for a proper definition of the two terms), are
intriguing properties of theNOON states that could be investigated using classical beams of light of the form
(37).While it is known that super-resolution can be achievedwith classical light [69, 70], the questionwhether

8
We thank an anonymous Referee for pointing out this important issue.
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super-sensitivity could be obtained by classical beams of the form (37), is perfectly open.Moreover, these optical
beams could furnish a good ‘laboratory’ to study decoherence in Schrödinger cat states under easily controllable
conditions.

5. Summary

The seemingly oxymoronic name ‘classical entanglement’ actually denotes the occurrence of some typical
quantummechanical features in classical systems and it should not be regarded as a substitute for quantum
entanglement. In this article we have studied classical entanglement exhibited by optical beams prepared in three
differentmanners.Within the context of paraxial optics, we have been able to provide a theory unifying the
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0.1

GHZ
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w

0
/

x w0/
2

2

1

1

0

0

-1
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Figure 4.Polarization (black arrows) and intensity pattern of the non-uniformly polarized beamdescribed by equation (33) analogous
to the quantumGHZvector state (32).
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Figure 5.Polarization (black arrows) and intensity pattern of the non-uniformly polarized beamdescribed by equation (35)
corresponding to the quantumW vector state (34). Differently from the pattern shown in figure 4, this beamdoes not exhibit
Cartesian symmetry.
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representation of these three kinds of beams.We also have classified the latter according towhat pair of binary
degrees of freedomof the light is chosen to encode the ‘entangled qubits’.Moreover, we have demonstrated that
despite of the formal similarity between themathematical expressions for the beams in all the three cases, the
physical characteristics of the light (coherent or incoherent)may be very different. Finally, we have suggested a
few ideas about how to enlarge the already rich phenomenology of classical entanglement.
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