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Abstract

We report on measurements and modeling of the mode structure of tunable Fabry—Pérot optical
microcavities with imperfect mirrors. We find that non-spherical mirror shape and finite mirror size
leave the fundamental mode mostly unaffected, but lead to loss, mode deformation, and shifted
resonance frequencies at particular mirror separations. For small mirror diameters, the useful cavity
length is limited to values significantly below the expected stability range. We explain the observations
by resonant coupling between different transverse modes of the cavity and mode-dependent
diffraction loss. A model based on resonant state expansion that takes into account the measured
mirror profile can reproduce the measurements and identify the parameter regime where detrimental
effects of mode mixing are avoided.

1. Introduction

Fabry-Pérot optical microcavities built from micro-machined concave mirrors [ 1-7] offer a powerful
combination of small mode cross section, high finesse, and open access. This has proven to be beneficial for
experiments covering a broad range of topics, including cavity quantum electrodynamics with cold atoms [8, 9],
ions [10, 11], and solid-state-based emitters [12—18], as well as cavity optomechanics [19-21] and scanning
cavity microscopy [22]. Various techniques have been developed to produce concave, near-spherical profiles as
mirror substrates, including CO, laser machining [2, 6, 7, 13, 23], chemical etching [3, 24], focused ion beam
milling [5, 25], and thermal reflow [26, 27]. A small cavity mode cross section is achieved by realizing
microscopic surface profiles with radii of curvature . ~ 5—500 pm and profile diameters typically a factor 2—10
smaller. In this regime, the extent of the cavity mode can be comparable to the effective mirror diameter, and the
finite mirror size becomes relevant. Furthermore, the different fabrication processes typically yield profiles that
deviate from a spherical shape, and excessive surface roughness may be present. In addition, coating defects and
particles on the mirror surface can disturb cavity performance under real conditions. Overall, the mode
structure of open-access microcavities will be affected by the details of the mirrors, and an in-depth
understanding of the relation between mirror imperfections and cavity performance is required for the
successful application and the potential improvement of such resonators.

In this work we study the consequences of finite mirror size and non-ideal shape on the performance of
laser-machined, fiber-based Fabry—Pérot microcavities [1]. Their mirrors are characterized by surface profiles
with low microroughness in the range of 1-2 A, a near-spherical central part, and an overall shape that is well
approximated by a Gaussian.

We perform measurements of the cavity transmission and finesse across the entire stability range for several
cavities. We find that for short mirror separation, the cavities are mostly immune to mirror imperfections, and
the fundamental cavity mode closely resembles a Gaussian mode. However, at particular mirror separations, the
cavity shows a significantly reduced finesse, and the performance depends for example on the precise laser

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Schematic setup showing the machined fiber, the plane mirror, and the optical mode. (b) Mirror profile as measured
with a white-light interferometer. Dashed circle: typical mode size (1/e?-diameter) on the mirror. Black square: simulation area.
(c) Profile sections (as indicated with dashed gray lines in (b)). Red (orange): cut along x (y)-direction. Dashed lines: Gaussian fit.
(d) Residuals of the fits in (¢). (e) Residual of a 2D parabolic fit to the region of the profile typically covered by the cavity mode.

wavelength. Furthermore, for small mirror size, we observe that the distance range where the finesse remains
high is significantly smaller than the stability range expected from the mirror radius of curvature.

We accurately reproduce these observations with a model based on resonant state expansion [28—30], where
we take into account the measured mirror profile. The model shows that the observed behavior can be
consistently explained by (near-) resonant coupling between different transverse modes of the cavity, caused by
the non-ideal shape and finite size of the mirrors. The admixture of higher order modes, which suffer from
diffraction loss due to their larger size, introduces loss to the fundamental mode. Based on these results, we
identify the parameter regime for Gaussian-shaped mirrors where detrimental effects of mode mixing remain
negligible.

2. Fiber-based microcavity

The cavity design is depicted schematically in figure 1(a): the resonator consists of a curved micromirror
machined on the end-facet of a single mode optical fiber and a macroscopic plane mirror. Both the commercial
plane mirror substrate and the fiber surface are coated with a highly reflective dielectric coating for a center
wavelength of 780 nm, where a finesse of 7 &~ 60 000 can be reached. In this configuration, the planar mirror
serves as a near-ideal reference mirror, which permits us to study the effects of the micromirror alone. The light
of a grating-stabilized diode laser is coupled into the cavity through the fiber, and light transmitted through the
plane mirror is collimated and detected with an avalanche photo diode. The whole stability range of the cavity
can be covered with sub-nanometer resolution with a piezo step drive linear positioning stage (P LPS-24), onto
which the fiber is mounted. In addition, a shear piezo crystal is used for scanning the cavity length over the
resonance. The plane mirror can be laterally scanned with an XY piezo table (PI P-541.2SL) over one hundred
micrometers. A mirror mount allows for angular alignment of the cavity.

A white-light interferometric image of the laser-machined depression on the fiber surface is shown in
figure 1(b). The image is taken with a home-built instrument with a lateral resolution of 560 nm and a vertical
resolution of 0.1 nm (rms). The dashed white circle illustrates the 1/e%-diameter of the fundamental mode for a
mirror separation d = 1./4, the black square shows the area used for the simulation. A Gaussian fit to the surface
data (lines in figure 1(c)) shows good agreement, and only nanometer-scale deviations can be seen from the
residuals (figure 1(d)). The central part of the profile can be well approximated by a parabola. Figure 1(e) shows
the residual of a two-dimensional parabolic fit to the data. Certain localized imperfections are present on the
fiber surface, as well as an overall shape deviation.

Figure 1(c) also illustrates that the profile is not rotationally symmetric but rather has elliptical contour lines.
This leads to Hermite—Gauss modes to closely resemble the eigenmodes of the cavity, and to a splitting of higher-
order transverse modes of equal order. Additionally, the ellipticity splits each cavity resonance into a linear
polarization doublet [23]. We use polarization optics before the fiber to select one of the modes for evaluation.
The surface shown in figure 1(b) is rotated such that the principal axes of the profile coincide with the coordinate
axes. The minimal radius of curvature in the center is found to be r® = 161 ym inx-and ) = 201 ym in
y-direction. This is in the range of typical values for laser machined mirror profiles.
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Figure 2. Cavity finesse as a function of axial mode order determined from measurements at 25 different positions within an area of
30 X 30 ym on alarge planar mirror and taking the most prevalent values. Wavelength: 780 nm.

3. Experimental results

We study the cavity performance by measuring the finesse for each accessible axial mode order. To ensure that
local variations of the mirror coating of the planar mirror do not influence the result, we determine the finesse at
25 different positions within an area of 30 X 30 ym on the planar mirror and evaluate the most prevalent value.
Diffraction loss, which arises as result of mode mixing, leads to a decreased finesse according to

2

F=r, (1)
T+A+D

where T denotes the total transmission of both mirrors, A the total absorption loss, and D the diffraction loss due
to the micromirror. In our experiment T + A & 100 ppm.

A typical measurement of the finesse of the fundamental mode as a function of mirror separation is shown in
figure 2. To obtain the quality factor Q of the cavity, we imprint sidebands as frequency markers usingan EOM.
The exact cavity length needed for determining the finesse from Q is inferred from the transmission spectra of
two lasers of known wavelength. In such measurements, we typically observe three different regimes: for small
mirror separation d < r*)/4, (axial mode number g < 130 for the measurement shown), the finesse stays
approximately constant with only a slight overall decline. For intermediate mirror separations, individual axial
mode numbers g show large additional loss. For mirror separations d 2 % / 2, an abrupt drop of the cavity
transmission and finesse is observed, with few moderately-working mode orders appearing for larger d.

We observe that increased loss appears mainly when higher-order transverse modes become degenerate with
the fundamental mode. Therefore it is instructive to study cavity transmission spectra for different mirror
separations. A typical spectrum of a cavity at high finesse is shown in figure 3(a), where we probe the cavity with a
narrow-band laser and tune the mirror separation across one free spectral range. To map out the mode profile,
we raster-scan a nanoparticle placed on the large mirror using the cavity mode and evaluate the introduced loss
from the cavity transmission of each of the modes [22]. The mode shapes clearly resemble those of Hermite—
Gaussian modes orientated along the principal axes of the mirror profile. For a given mode with transverse mode
order (m, n)and axial mode order g, the cavity resonance frequencies for a spherical mirror cavity are given by

c 1724+ m 1/2+n
Vgmn = _( q+ €(X) + 5(}’))) (2)
2d T T

where £57) = arccosy/1 — d/r*" . Note that the degeneracy of modes with the same transverse mode order
m + nislifted by the ellipticity of the profile, leading to families of modes with m + n + 1 members. In this
regard, the mirror ellipticity is useful since it allows to study the impact of the modes separately. Figure 3(b)
shows spectra like the one in (a) as a function of cavity length for 856 nm probe light, where 7 = 1200 to
improve the visibility of the resonances. The logarithmic color scale is set for each cavity length to optimize the
signal-to-background ratio. With increasing mirror separation, the spacings between the transverse modes
increase and eventually, higher-order modes can become resonant with the next fundamental mode. This is
given when the differential Gouy phase fulfills

mé® 4+ nEY) = jr, (3)

where jis an integer.
When evaluating the measured transverse modes, we find that their frequencies deviate from the spectrum
given by equations (2), and (3) fails to predict the positions of the observed resonances. An accurate description

3
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Figure 3. (a) Cavity transmission spectrum as a function of relative cavity detuning covering one free spectral range, where

F =~ 60.000. The insets show the mode functions as measured by scanning cavity microscopy. Wavelength: 780 nm. (b) Cavity
transmission spectra as a function of axial mode order g for F &~ 1200. Logarithmic color scale. Wavelength: 856 nm. White: model
for modes (0, m + n)and (m + n, 0).

is possible by the model discussed in the next section. The white lines in figure 3(b) show the predicted
resonances of the modes (0, m + n)and (m + n, 0) for the lowest few mode orders m + n.

A closer look at the crossover of modes 04 and 13 with the fundamental mode is taken as an example for the
typical avoided crossing behavior found when mode coupling occurs. Figure 4 (a) shows spectra covering the
region around the fundamental mode for every axial mode order from g = 198 to g = 220 for F =~ 1200. Close to
resonance, the transmission of the fundamental mode decreases (see figure 4(b)), while the transmission of the
higher order mode increases until both have approximately equal height and minimal separation at the point of
resonant coupling. The coupling is accompanied with an increased linewidth and thus a reduced finesse. At the
anticrossing between the 00 and 04 mode, we observe a mode splitting of 8.6 GHz. We have modeled the
coupling of the particular mode pair (see below) and find a value of 8.6 GHz, matching the measurement within
errors.

4. Modeling

For cavity mirrors where the surface profile can be treated as a perturbation of a spherical shape, an effective
approach is to describe the real eigenmodes ¥ as a series expansion of Hermite—Gauss modes &y,
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Figure 4. (a) Measured cavity transmission spectra as a function of relative cavity detuning. Wavelength: 856 nm. Avoided crossings
between the fundamental mode and the fourth order modes 04 and 13 are visible. (b) Maximal transmission of each of the spectra
shown in (a), normalized to the largest value.

¥ = Ecik(bk, k= (m, n). (4)
k

Following the approach of Kleckner et al [29], we determine the new eigenmodes and the corresponding
resonance frequency and loss. Introducing the mode-mixing matrix M, which accounts for the change a mode
undergoes during one round trip through the cavity, the task reduces to an eigenvalue problem

r¥ = MY, (5)

The mixing matrix My = exp (—4ind /A) I x By ;- has elements given by mode overlap integrals taken over the
finite extent of the micromirror

X0 b :
By = f fo QD e AN Adxdy| (6)
—X0 Yo

Z=Zm

Here, (x, J,) denote the extent of the mirror, + indicates the sign of the phase factor of &y, A (x, y)isthe
deviation of the mirror profile from a planar surface, and z,,, is the location of the micromirror on the optical
axis. We assume that the respective expression for the planar mirror is an identity matrix.

Using the Hermite—Gauss modes for the expansion implies the paraxial approximation, where the isophase
surface is parabolic (with some deviation due to the Gouy phase) rather than spherical. However, the paraxial
approximation does not hold at large separation from the optical axis where the two shapes differ. In fact, when
including non-paraxial terms, one finds that a spherical geometry is indeed the most desirable [31]. Fora
spherical mirror which covers an entire half-space, By - = I, and the eigenvalues y, corresponding to the
eigenmodes ¥ are unity. As soon as A (x, y) deviates from spherical or x,, y, is finite, M has off-diagonal
elements and transverse-mode mixing occurs.

For an accurate treatment of our experiment, we use the measured surface profile (figure 1(b)) for A (x, y).
To find a suitable basis set @y for each mirror separation, we numerically maximize | M o | by varying the mode
waist w, of @q. For a given mirror separation, the obtained optimal w, corresponds to an effective radius of
curvature 7, .¢ of a spherical mirror. The result for the profile investigated here is displayed in figure 5(c),

showing that rc(f;)ff islarger than r) = 161 ym and increases with d. Consequently, the stability range is expected
to extend beyond the limitof d = r,.
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Figure 5. (a) Data points: cavity finesse extracted from 22 500 measurements for each datapoint. Wavelength: 780 nm. Red:
simulation of the cavity finesse as a function of the mirror separation for a measured surface profile assuming mirror transmission and
absorption to be 100 ppm. Green: simulation for a Gaussian profile fitted to the measured surface. (b) Composition of the ground
mode ¥ from Hermite—Gaussian modes ®y; contributions |cox |* are shown. Black: |co|*. Black numbers denote the transverse mode
order of other important contributions. Shaded areas show impact zones of specified mode orders. Inset: | % ? for a region of low
coupling (q = 60). (c) Effective radius of curvature rf”;}f sensed by the fundamental cavity mode as a function of cavity length.

(d) Examples of mode shapes of the fundamental mode | % |* for selected mirror separations indicated by roman numbers in (b)
exhibiting large coupling. The edge length is 40 ym.

The diffraction loss D; of a mode ¥ can be directly obtained from the corresponding eigenvalue ;,
2
Di=1- |y,. \ ) (7)

Inserting this into equation (1) gives the finesse of this mode.

The obtained finesse of the fundamental mode using the profile shown in figure 1(b) is plotted in red in
figure 5(a), where we use the measured mirror transmission and loss. For direct comparison, we show a
measurement of the cavity finesse as obtained from the resonant cavity transmission (T;  F2) ata wavelength
of 780 nm. We measure the transmission rather than the finesse here because we cannot determine the finesse
reliably under mode mixing conditions as well as for low transmission. The rise of the finesse for short cavities
can be attributed to a systematic error of the measurement: we use an iris aperture to suppress the transmission
of higher order modes, which leads to clipping loss for short cavity lengths where the cavity mode radius is
smaller and its divergence larger. The overall shape, the position of localized finesse dips, and the decrease
around g = 220 can be reproduced by the simulation with a high level of detail. However, to match the data, the
lateral size of the mirror profile had to be rescaled by about 2.5% for the simulation. The same correction has
been made for the simulation of the spectrum shown in figure 3, where the normalized phase of the eigenvalues
7, is plotted. The mismatch might result from a calibration uncertainty of the interferometric surface
reconstruction. The localized finesse dips correspond to narrow mode resonances involving high mode orders
(see below), which are not resolved by the 1/2-discrete sampling. The resonance condition furthermore
depends on the exact probing wavelength and on the dispersive mirror properties which vary spatially. The
finesse values at the dips are thus somewhat arbitrary, and both measurement and simulation may miss
particular resonances. To capture the typical behavior in the measurement, we have therefore measured at
22 500 positionson a 30 X 30 um area of the plane mirror and take the most prevalent value for each data point
shown.

The computed eigenvectors contain information about the composition of the system’s eigenmodes from
Hermite—Gaussian modes according to equation (4). In figure 5(b), the coefficients | cox|* giving the
contributions to the fundamental mode are plotted as a function of mirror separation. The Gaussian mode @y is
clearly the dominant one, and for most cavity lengths, the ground mode shows negligible deviation from it (see
inset in figure 5(b)). However, for certain distinct mirror separations where resonant mode mixing occurs,
higher order modes can have significant contributions and lead to a severe distortion of the fundamental mode
(figure 5(d)). The larger spatial extent of higher-order modes with wy &~ wy~/k + 1 causes larger diffraction
loss, from which also the fundamental mode suffers under coupling conditions. Notably, the locations of high
loss and strong mode mixing do mostly but not necessarily coincide (see below and [29]).

6
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Figure 6. (a) Schematic of the cavity showing the relevant parameters. (b) Simulated finesse for different mirror profile size at fixed
radius of curvature r. using various ratios of w./a defined at d = 1./2. Solid lines: Gaussian profile. Dashed lines: parabolic profile. We
assume additional loss of 7 x 10~ for each mirror.

Regions of impact of certain mode families (shaded areas) cover a significant fraction of the stability range.
Still, for applications where the exact mirror separation is not essential, extended regions of negligible mode
mixing remain. The different influence of e.g. mode orders 4 and 5 can be attributed to the larger values of By x
for even modes due to the symmetric mirror profile and modes with smaller mode index. Also, for larger mode
index differences, the differential Gouy phase evolves faster and the resonance condition is sharper. The
coupling strength can be directly inferred from the mode splitting at an avoided crossing.

Itis instructive to compare the results with a calculation for a profile obtained from a Gaussian fit to the
measured fiber surface (green solid line in figure 5(a)). The smooth surface does not lead to the overall weak
decline for increasing mirror separation, and the sharp features at intermediate d are missing. Yet, the finesse
decrease around d = r./2, which effectively limits the stability range, is reproduced. The difference can be
explained by the presence of additional (and in particular asymmetric) surface deviations with mostly larger
spatial frequencies and particle-like features in the measured profile. High spatial frequencies couple the
fundamental mode to many transverse modes with large mode index, causing a smooth finesse decrease and
significant resonant mixing for particular modes.

We note that in our model we do not take the vectorial character of the light field into account [23], which
together with additional non-paraxial corrections of the mode frequencies [32] is estimated to lead to relative
frequency changes $107 for our cavity geometry. The associated polarization mode splitting furthermore leads
to a polarization dependence of the mode mixing behavior, which we observe in our experiments.

The observed behavior is not limited to the particular parameters used in our experiment, but is a general
property related to the profile shape and size. Considering a Gaussian profile with 1/e radius a, depth , and
t. = a*/(2t), and assuming a cavity with d = r./2 where the mode radius on the curved mirroris w, = /Ar./x,

one finds that the relative mode size depends only on the profile depth for a given wavelength, w./a = \JA/(2xt).
The relevant quantities are visualized in figure 6(a). We perform simulations for a profile with fixed r. and
ellipticity e = /1 — r®/r%) = 0.26 [23] and vary w./a. The resulting finesse is shown in figure 6(b). While
profiles as small as a = 2 w; already achieve performance notlimited by diffraction for small mirror separation,
itrequires a profile radius a > 4 w; to extend this range to d = 1./2 and a > 10 w; to avoid mode mixing over
the entire stability range. For comparison, we also perform simulations for a rotationally symmetric parabolic
profile with . = ) and an edge length of 2a. While the overall behavior is similar, the calculation for

W, = 0.56 a shows that resonant transverse-mode mixing can also lead to a reduction of diffraction loss [29].
This can be understood by the destructive interference between the fundamental and the higher-order mode at
the outer part of the mode, reducing the effective mode size [22].

For obtaining the presented data, modes up to order m + n = 20 are included in the calculation. Using
more modes does not significantly alter the results and strongly increases the computation time, which grows
approximatelyas (m + n)*. The required minimal size of the area used for the simulation depends on the profile
details. For the example shown above, we have tested different sizes to confirm that the area chosen provides
sufficient accuracy of the simulation results and that no significant dependence on the size is present at this scale.
The pixel size is chosen such that the features of the highest mode order are still well resolved. For a fiber profile
of 400 X 400 pixels covering an area of 40 X 40 um?, the simulation of 300 mirror separations could be
conducted with a personal computer within a few hours”.

*Weare happy to provide the code.
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5. Conclusion

Our results comprise an extensive analysis of the performance of optical cavities with non-ideal mirrors. We
have shown thatlocalized reduction in cavity finesse, frequency shifts, and mode shape distortions are the
consequences of non-ideal mirror shape and finite size. The behavior can be accurately modeled with a mode
expansion method when using the measured mirror profile as an input. The demonstrated approach provides a
powerful tool for analyzing a given cavity geometry and for predicting cavity performance. This is particularly
helpful for experiments where minimal mode volume and ultimate small mirror profiles are desired, as well as
for cold atom, ion trap, and cavity optomechanics experiments, where larger mirror separations in combination
with small radii of curvature are beneficial. The calculations provide improved accuracy for the determination of
emitter-cavity coupling strength as well as detailed information about possible sample-induced scattering and
loss. Finally, the approach offers an efficient route for the design of novel cavity geometries with non-trivial
properties, such as single-transverse-mode operation [33, 34], where higher order modes can be suppressed
without significantly affecting the fundamental mode e.g.to improve spectral filtering, or mode imaging [35],
where a cavity mode is designed to avoid a scatterer to reduce loss. This opens the potential for light modes to be
individually tailored for specific applications.
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