
HAL Id: hal-01234025
https://hal.sorbonne-universite.fr/hal-01234025

Submitted on 26 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multiagent System for Integrated Detection of
Pharmacovigilance Signals

Vassilis Koutkias, Marie-Christine Jaulent

To cite this version:
Vassilis Koutkias, Marie-Christine Jaulent. A Multiagent System for Integrated Detection of Phar-
macovigilance Signals. Journal of Medical Systems, 2016, 40 (2), pp.37. �10.1007/s10916-015-0378-0�.
�hal-01234025�

https://hal.sorbonne-universite.fr/hal-01234025
https://hal.archives-ouvertes.fr


Journal of Medical Systems manuscript No.
(will be inserted by the editor)

A Multiagent System for Integrated Detection of
Pharmacovigilance Signals

Vassilis Koutkias · Marie-Christine Jaulent

Received: date / Accepted: date

Abstract Pharmacovigilance is the scientific discipline

that copes with the continuous assessment of the safety

profile of marketed drugs. This assessment relies on

diverse data sources, which are routinely analysed to

identify the so-called “signals”, i.e. potential associa-

tions between drugs and adverse effects, that are un-

known or incompletely documented. Various computa-

tional methods have been proposed to support domain

experts in signal detection. However, recent compar-

ative studies illustrated that current methods exhibit

high false-positive rates, significantly variable perfor-

mance across different datasets used for analysis and

events of interest, but also complementarity in their

outcomes. In this regard, in order to reinforce accu-

rate and timely signal detection, we elaborated through

an agent-based approach towards systematic, joint ex-
ploitation of multiple heterogeneous signal detection

methods, data sources and other drug-related resources

under a common, integrated framework. The approach

relies on a multiagent system operating based on a

collaborative agent interaction protocol, aiming to im-

plement a comprehensive workflow that comprises of

method selection and execution, as well as outcomes’

aggregation, filtering, ranking and annotation. This pa-

per presents the design of the proposed multiagent sys-

tem, discusses implementation issues and demonstrates

the applicability of the proposed solution in an example
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signal detection scenario. This work constitutes a step

towards large-scale, integrated and knowledge-intensive

computational signal detection.
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1 Introduction

The importance of drug safety is widely recognised [1].

Pharmacovigilance encompasses all data gathering and

processing activities related with the detection, assess-

ment, understanding and prevention of adverse effects

throughout the entire lifecycle of drugs [2].

One of the most important aspects in the monitor-

ing of marketed drugs is the identification and analy-

sis of new, medically important findings, so-called sig-

nals that might influence the use of a medicine. Signals

have been defined1 by the Council for International Or-

ganisations of Medical Sciences (CIOMS) VIII Working

Group as “information that arises from one or multi-

ple sources (including observations and experiments),

which suggests a new potentially causal association, or

a new aspect of a known association, between an in-

tervention and an event or set of related events, either

adverse or beneficial, that is judged to be of sufficient

likelihood to justify verificatory action” [4]. In the scope

of this work, we focus on adverse events.

In the pre-market stage, clinical trials of newly de-

veloped drugs constitute the main procedure for identi-

1 For a list of comprehensive definitions in the domain of
pharmacovigilance the reader is referred to [3].
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fying Adverse Drug Reactions2 (ADRs) resulting from

their use. However, due to time constraints, the lim-

ited sample population size as well as potential bias,

clinical trials do not enable the detection of all possi-

ble ADRs. Consequently, post-marketing surveillance is

necessary to identify new or incompletely documented

ADRs throughout the time a drug is actively prescribed

[5]. Active and systematic surveillance requires constant

assessment of all drugs for any outcome [2].

Given the necessity to identify as early as possible

signals, it has become evident that all the available data

sources have to be explored [6]. In the post-marketing

context, these sources vary, spanning from spontaneous

reports, electronic health records [7], scientific litera-

ture [8], and even social media [9]. The availability of

this data deluge dictates the need to introduce high-

throughput computational methods that will enable ef-

ficient knowledge extraction and management, compen-

sating the underlying heterogeneity and complexity.

To this end, various computational signal detection

methods have been proposed to explore the above types

of data sources [10]. However, these methods are de-

signed for application in a single data source and typ-

ically demonstrate high false-positive rates in the pro-

vided results. In addition, the task of assessing the out-

comes of analysis methods is currently performed man-

ually and requires significant effort. Overall, accurate,

timely and evidence-based signal detection remains a

challenge [11].

The current work concerns integrated signal detec-

tion, i.e. a systematic, joint exploitation of multiple het-

erogeneous signal detection methods, data and other

drug-related resources under a common framework, ad-

dressing methods’ selection and execution, as well as

outcomes’ aggregation, filtering, ranking and annota-

tion. Heterogeneity refers both to the methods’ under-

lying computational models and the data that they can

analyse. This paper presents an agent-based approach

for the construction of a knowledge-intensive platform

to accommodate these requirements, relying on a mul-

tiagent system that operates based on a collaborative

agent interaction protocol.

The paper is structured as follows: In section 2, we

provide background information concerning computa-

tional signal detection and comment on the motivation

of this work. In section 3, we describe the challenges

that this work implies and we justify the adoption of

the agent paradigm. We then present the architecture of

the proposed multiagent system, including agent classes

2 ADR: response that is noxious and unintended, and that
occurs at doses normally used in humans for the prophylaxis,
diagnosis, or therapy of disease, or for the modification of
physiological function [3].

and the overall integrated signal detection strategy. In

section 4, we provide details for our prototype imple-

mentation as regards the material and the development

tools that have been employed. Equally important, we

also illustrate the functionality of the multiagent system

through an example signal detection scenario. In section

5, we discuss our contribution in comparison with re-

lated works and highlight current limitations and future

work plans. Finally, section 6 concludes the paper.

2 Computational Signal Detection: Background

and Motivation

Computational analysis methods constitute a well es-

tablished support tool for signal detection [10]. Com-

putationally extracted signals can be considered as po-

tential causal relations that have to be verified. As such,

they are perceived as early indications informing drug

safety experts for appraisal actions, which require the

review/analysis of scientific literature, clinical trial data,

biological properties of drugs, etc., before concluding at

causality.

The output of computational signal detection meth-

ods is a list of drug-event pairs, which shall be ideally

ranked based on significance factors (statistical or prob-

abilistic), in order to drive the focus of appraisal ac-

tions. Since these actions are typically performed man-

ually, they require significant effort and, given the large

amount of generated indications, they result in a bot-

tleneck in the pharmacovigilance process [12]. Thus, be-

sides highly accurate detection methods, filtering mech-

anisms are necessary, in order to exclude: (a) known

ADRs, but also (b) associations containing conditions

corresponding to the drugs’ indicated use, which can

be also generated as potential signals, according to the

data being explored.

As the volume of data for signal detection is con-

stantly increasing with new sources being considered for

analysis (like patient-generated content in social media

platforms), the need for advanced computational signal

detection frameworks becomes imperative [13]. Based

on their nature and the computational analysis that

they require, the main data sources for signal detection

can be categorised into: a) spontaneous reporting sys-

tems, b) structured, longitudinal observational health-

care databases, and c) unstructured / free-text data

sources.

In particular, spontaneous reporting systems (SRSs)

constitute the dominant source of signals through which

suspected cases are voluntarily reported by healthcare

professionals (and in some cases by patients) to reg-

ulatory authorities and other bodies. Prominent SRSs

are the Food and Drug Administration (FDA) Adverse
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Event Reporting System (FAERS [14]) in US, EudraVig-

ilance maintained by the European Medicines Agency

[15], and VigiBase R© maintained by the Uppsala Mon-

itoring Centre [16]. The main type of signal detection

methods for analysing SRS data relies on the statis-

tical investigation of “disproportionality” (i.e. assess-

ing whether a specific event is reported more frequently

for a drug than would be expected if randomly occur-

ring) [17]. Another category of methods exploiting SRS

data are the so-called “multivariate” [10], such as logis-

tic regression-based and unsupervised machine learning

methods, which are able to analyse more complex drug

safety incidents compared to disproportionality-based

methods.

Structured observational healthcare data originate

mostly from Electronic Health Record (EHR) and ad-

ministrative claim systems. These data sources have

been considered in terms of secondary use for the iden-

tification of potential causal relations between drugs

and adverse conditions [7], [18]. Compared to sponta-

neous reports, observational data contain more infor-

mation, such as diagnosis and lab examination results.

The corresponding signal detection methods typically

involve the application of data mining techniques in

large datasets [19]. A number of methods have been

also proposed having their origin from statistical epi-

demiology, relying on case-control design [20], cohort

design [21], self-controlled case series design [22], self-

controlled cohort design [23], etc. Notably, the Obser-

vational Medical Outcomes Partnership (OMOP) gath-

ered an open-source library of such methods [24].

In the category of unstructured free-text data, typ-

ical sources include clinical narratives, scientific liter-

ature and patient self-reports. Clinical narratives re-

main a significant part of EHR systems, in which in-

formation concerning diagnosis and patient treatment

(including drugs) is documented [25]. Scientific litera-

ture may also provide indications for pharmacovigilance

signals [12] as well as evidence to support the evalua-

tion of findings obtained by other sources. Patient self-

reports about drug concerns/problems that are shared

among networked communities using social media are

an emerging source of signals [26]. However, the subjec-

tive nature and the lack of quality control in the gener-

ated data constitute important limitations for reliable

signal detection. Independently of the data source that

is being employed, computational signal detection us-

ing unstructured text relies on information extraction

and natural language processing (NLP) techniques [27].

Interestingly, recent comparative studies of compu-

tational signal detection methods have highlighted [28]-

[31]: (a) high false-positive rates, (b) significantly vari-

able performance across different datasets used for anal-

ysis and events of interest, but also (c) complementar-

ity among methods’ outcomes. These findings reinforce

the argument for the joint exploration of as many data

sources as possible through diverse computational sig-

nal detection methods. Another argument for combined

signal detection is that potential signals replicated in

multiple data sources may indicate increased confidence

in establishing a causal relation among drugs and ad-

verse effects and, thus, they are more likely to be true.

For example, this hypothesis has been successfully eval-

uated in [32], combining EHR and SRS data.

To this end, the motivation of this work concerns

the design and development of a systematic framework

enabling large-scale combinatorial signal detection as

described in the following section.

3 An Agent-based Approach for Integrated

Signal Detection

3.1 Challenges and Adoption of the Agent Paradigm

Our view for computational signal detection concerns

an integrated framework in which joint exploitation of

multiple heterogenous drug safety data sources can be

performed through relevant computational signal detec-

tion methods, as well as other drug information sources.

However, this broader exploitation increases the com-

plexity of the signal detection procedure for the end-

users and requires a technical framework to be set.

More specifically, from the users’ perspective, the

technical complexity caused for example by many pa-

rameters offered by some detection models3, has to be

addressed. Similarly, users could be interested in ex-

ploring only specific data sources, e.g. based on their

origin, coverage and / or content, thus, selection shall

be facilitated. In this respect, support in study setup

and selection of the resources that will be used is im-

portant.

Since the focus in signal detection concerns new

ADRs, noisy indications (e.g. known ADRs or associ-

ations linking the drug with its indicated use) have to

be filtered by accessing reference knowledge. Given the

fact that computational signal detection methods typ-

ically generate many potential indications for ADRs,

the remaining findings shall be ranked to prioritise their

subsequent assessment by drug safety experts. In addi-

tion, supportive information on the findings would in-

crease their comprehension, beyond just providing sta-

tistical measures on each drug-event pair. Such informa-

3 An indicative example concerning the variety of analy-
sis options is illustrated in [33], in which 14 signal detection
methods were tested and the number of different combina-
tions of analysis parameters varied from 48 to 162.
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Fig. 1 Elaborated workflow for integrated signal detection.

tion may constitute, for example, the toxicity profile of

the drug of interest, recent relevant published studies,

as well as information about potentially relevant clini-

cal trials. At a lower level, technical challenges include

the development of efficient mechanisms for interfacing

with data sources and signal detection methods, as well

as aggregating and synthesising method outcomes.

In this regard, Figure 1 depicts the overall signal

detection workflow elaborated in this work, starting

from study setup and concluding with outcomes an-

notation and enrichment with supportive information.

For the implementation of this workflow, we elaborate

on a software platform, in order to address two major

aspects. First, the semantic harmonisation of key con-

cepts / information models of signal detection methods

available through the platform. Second, the aggrega-

tion of the methods’ outcomes and the assessment of

the findings’ strength. For the first part we developed

the Pharmacovigilance Signal Detectors Ontology (PV-

SDO), which has been presented in [34], while the sec-

ond part is addressed via a multiagent system that is

presented in the current paper.

We adopted the “software agent” paradigm, as it of-

fers a favourable way to consider complex systems with

multiple distinct and independent components. Agents

enable the aggregation of different functionalities in a

conceptually embodied and situated whole, while at

the same time may exhibit autonomous, social, reac-

tive and/or proactive features [35]. This offers appro-

priate abstractions for the design and development of

large systems of individual agents and of ways in which

agents may interact, while taking into account organi-

sational or macro-level issues. Especially through task

decomposition and coordination, software agents can

contribute in the accomplishment of complex goals and

tasks. In the current work, agents provided us with a

way of structuring a system around autonomous com-

municative elements [36], through which we develop

mechanisms for automating and improving signal detec-

tion in an integrated framework, supporting drug safety

experts in accomplishing this task.

Since our ultimate goal is the development of an ex-

tensible platform in which new methods, raw data and

other relevant data/information sources can be incor-

porated, the modularity and reusability offered by the

agent paradigm [37] enable us to design a sustainable

and scalable architecture comprising of diverse compo-

nents as presented in the following subsection.

3.2 System Architecture: Resources and Agent Classes

In order to implement the workflow presented in Fig. 1,

we defined a system architecture comprising of software

agents, non-agent software components, data / informa-

tion sources, and a knowledge component. Non-agent

software components correspond to implementations of

signal detection methods, while data sources provide

the raw data employed for signal detection (e.g. spon-

taneous reports, EHR data, etc.). Information sour-ces

provide reference data on known ADRs and other drug-

related information, while the knowledge component

corresponds to an ontology-based Semantic Registry

describing all the resources of the framework based on

PV-SDO [34].

We formulated a collaborative agent team, which

operates according to an agent interaction protocol that

we defined [38], corresponding to the implementation

of each step of the integrated signal detection workflow

of Fig. 1. In this regard, agents exploit the resources

available in the system, so that signal detection meth-

ods are appropriately selected and launched, using the

Semantic Registry, while their results are aggregated

and post-processed via filtering (to discard noisy indi-

cations) and ranking (based on their significance) mech-

anisms, using the reference ADR and drug information

sources, respectively.

Appropriate agent classes were defined to support

this functionality. Initially, the main principle for defin-

ing these classes was task decomposition and distri-

bution [39], so that each agent is delegated a specific

and simple task to accomplish, and the computational

burden underlying integrated signal detection is dis-

tributed among agents. In the overall analysis and de-

sign phase, we followed the principles of MOBMAS [40],

a comprehensive methodology that covers the main ac-

tivities of developing multiagent systems (analysis, mul-

tiagent organisation design, agent internal design, agent

interaction design, and agent architecture), which is rel-

evant with the development of ontology-based multia-

gent systems. Based on the collaborative agent interac-
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Fig. 2 The proposed system architecture for integrated signal detection.

tion protocol, agent activities are coordinated and re-

sult in a multiagent system that performs the proposed

integrated signal detection via teamwork.

Figure 2 depicts the proposed system architecture,

discriminating between an aggregation scheme and a

reasoning scheme. In this respect, let us consider that

the architecture comprises of h SRS-based signal detec-

tion methods denoted by the set:

SR = {SR1, SR2, . . . , SRh}, (1)

j methods appropriate for signal detection in structured

longitudinal observational healthcare data sources cor-

responding to:

OD = {OD1, OD2, . . . , ODj}, (2)

and k detection methods for unstructured text sources

denoted as:

UT = {UT1, UT2, . . . , UTk}. (3)

The architecture includes also means to access l

ADR reference data sources:

RS = {RS1, RS2, . . . , RSl}, (4)

as well as m drug information sources:

DI = {DI1, DI2, . . . , DIm}. (5)

O depicted in Figure 2 denotes the ontology-based

Semantic Registry of Signal Detection Resources [34].

The following agent classes were defined:

– User Agent : an interface agent responsible to sup-

port the end-user in defining and conducting an in-

tegrated signal detection experiment.

– Aggregation Agent : a mediator agent which controls

the agent interaction protocol.

– Methods Selection Agent : a wrapper agent which

queries O for appropriate signal detection methods

given a specific experiment.

– Signal Detection Agent : a wrapper agent capable of

receiving requests for signal detection (along with

specific analysis parameters), launching the respec-

tive signal detection method, and returning the out-

comes4.

– Filtering Agent : a processing agent capable of ac-

cessing ADR reference sources, in order to filter the

aggregated outcome provided by Signal Detection

Agents.

– Signal Ranking Agent : a processing agent capable of

applying diverse criteria/metrics, in order to rank

the results provided by the Filtering Agent.

4 Note that for each one of the considered computational
methods (1)-(3), a Signal Detection Agent is assigned.
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– Drug Information Agent : an information retrieval

agent capable of identifying supportive information

for the outcomes of the Signal Ranking Agent.

According to the behaviour that the above agent

classes have to exhibit, we addressed design issues at

the micro-level. For example, the Aggregation Agent

encapsulates a rule-based logic, in order to implement

the agent coordination protocol, while wrapper agents

(i.e. the Methods Selection Agent and Signal Detection

Agents) incorporate a translation mechanism capable

of converting agent requests to queries in the respec-

tive resources and encapsulating the obtained results

in an agent message.

Upon a new experiment definition, instances of the

above agent classes are launched to undertake the cor-

responding signal detection workflow5.

The behaviour of each agent is presented in the de-

scription of the aggregation and reasoning schemes, in

subsections 3.3 and 3.4, respectively.

3.3 Selection of Methods and Aggregation of

Outcomes

The proposed platform aims to support two diverse us-

age scenarios, i.e.: (a) signal detection without a specific

target on drugs or health outcomes, which is performed

routinely by drug safety authorities, and (b) targeted

signal detection concerning specific drugs and poten-

tial adverse effects, which is particularly interesting for

pharmaceutical companies as a mean to identify risks

for their marketed drugs.

Upon the definition of a new analysis experiment,

in the targeted signal detection scenario the user pro-

vides as input the target of the analysis (drug and/or

health outcome of interest). In addition, in both scenar-

ios, optional input parameters can be: (a) the resources

that will be employed in the experiment (i.e. the sources

of pharmacovigilance signals, the reference data sources

on known ADRs and the drug information sources), (b)

specific values of analysis/configuration parameters of-

fered by signal detection methods, such as the rule for

signal generation6, the time-at-risk7, etc., and (c) rank-

ing criteria to be employed for the prioritisation of the

5 This practice has been followed in the current experimen-
tal implementation. However, it is also possible to share agent
instances across experiments (such as the Drug Information
Agent, the Filtering Agent, the Signal Ranking Agent, etc.).
6 A condition or a set of conditions that needs to be satisfied

by a signal detection method, in order to generate a signal.
7 The period of time a patient is considered to be ‘at-risk’

and, therefore, counting occurrence of conditions as potential
events.

generated signals. If the above optional input parame-

ters are not defined, then: (a) all the resources available

in the platform will be employed, (b) the default values

for analysis/configuration parameters defined for each

signal detection method will be used, and (c) all the

available ranking criteria will be employed, respectively.

Although explicit, the above inputs pose also im-

plicit requirements (e.g. which methods can support the

signal generation criterion) for the experiment that will

be conducted. Based on these inputs, the selection of

the signal detection methods that will be used in a given

signal detection experiment is performed by querying

the Semantic Registry O (Fig. 2). O defines the capa-

bilities, interfaces and parameterisation options of each

signal detection method, according to expert domain

knowledge and the specifications provided by the re-

spective developers. The respective query is forwarded

to the Methods Selection Agent by the Aggregation Agent,

given the input parameters provided by the User Agent.

In particular, let C denote the set of input param-

eters that the user defined for a given experiment:

C = {C1, C2, . . . , Cq}, (6)

and assume that C is met by a set of n detection meth-

ods:

P = {P1, P2, . . . , Pn}, (7)

with P denoting a subset of the available ones, i.e. P ⊆
(SR ∪ OD ∪ UT). In particular, P is determined by

applying a matchmaking query Q, between the input

parameters C and the registered detection methods in

O, through the Methods Selection Agent :

Q : C
O−→ P. (8)

According to P, the corresponding Signal Detection

Agents are requested by the Aggregation Agent to in-

voke the respective signal detection methods, taking

into account potential input parameters defined in (6).

The analysis results obtained from each Signal Detec-

tion Agent are gathered by the Aggregation Agent, and

correspond to a set R, with:

R = {R1,R2, . . . ,Rn}, (9)

where Ri, i = {1, . . . , n} denotes in turn a set of po-

tential signals obtained from the Pi detection method

(7). In addition, elements of R may be equal to ∅, in

case where no indication for signals is obtained by the

respective detection method(s). Next, the Aggregation

Agent encodes the obtained outcomes R into a uni-

form representation, keeping also provenance informa-

tion (i.e. which methods and data were employed and

with what parameter values) regarding the origin of

each Ri.
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3.4 Filtering, Prioritisation and Annotation of

Outcomes

This part concerns the reasoning scheme, employing the

available reference ADR and drug information sources,

i.e. RS (4), DI (5), respectively, in order to: (a) filter R

(9) for noisy indications and, subsequently, (b) priori-

tise the remaining novel indications (if any), according

to ranking criteria.

In this regard, first, the Aggregation Agent provides

its results to the Filtering Agent, which implements a

novelty assessment mechanism f1, so that from each Ri

a subset R′i (R′i ⊆ Ri) is produced containing only the

novel indications:

f1 : R
RS−→ R′. (10)

As a second step, the Aggregation Agent provides R′

to the Signal Ranking Agent, which is in turn capable

of applying a prioritisation mechanism f2 on R′ based

on a set of metrics that is denoted as:

PR = {PR1, PR2, . . . , PRw}. (11)

In PR, we discriminate two types of metrics/criteria:

1. computational metrics, e.g. prioritising the common

results within the first k among those provided by

the signal detection methods employed in a given

analysis experiment, and

2. domain criteria, like those proposed for implement-

ing triage schemas in signal detection [41], e.g. ADR

seriousness, newer drugs, data originated from mul-

tiple countries, etc.

The information to apply domain criteria may be found

either in drug information sources (e.g. the drug re-

lease date), or in the raw data employed for signal de-

tection. As an example of the latter case, spontaneous

reports typically contain a characterisation of the re-

ported event as serious or not, and may further spec-

ify seriousness according to the result (e.g. death, life

threatening condition, hospitalisation, etc.). Thus, the

Signal Ranking Agent embodies the required knowl-

edge, in order to interpret such domain criteria.

Let us consider that the end-user defined in C (6)

a set of ranking metrics PR′ (with PR′ ⊆ PR) to be

applied in a given experiment.

Then, R# corresponds to the ranking of R′ based

on PR′, i.e. R# ≡ rank(R′)|PR′, by applying f2, i.e.:

f2 : R′
PR′−→ R#. (12)

The final outcome FO provided to the end-user via

the User Agent comprises of R# along with support

information obtained from the Drug Information Agent

through DI per R# element, if available, i.e.:

FO = R# ∪DIR# . (13)

Figure 3 illustrates via a sequence diagram the col-

laborative agent interaction protocol implementing the

above signal detection strategy within the integrated

framework.

4 Implementation and Example Scenario

4.1 Material

At the current stage, the development of the proposed

integrated signal detection framework relies on publicly

available resources. In particular, we employed the fol-

lowing:

– Sources of raw data for signal detection: (a) the

FAERS spontaneous reporting system; (b) PubMed,

the reference bibliographic database in the life sci-

ences, and (c) Twitter, a popular micro-blogging

platform.

– Reference data sources for filtering the outcomes of

signal detection methods: (a) the Side Effect Re-

source (SIDER) [42], containing information on mar-

keted medicines and their recorded ADRs, which is

extracted from public documents and package in-

serts, and (b) DrugBank [43], since it provides rich

information on drug-drug interactions. Both SIDER

and DrugBank provide also the indications for each

drug’s use, which is another type of information em-

ployed for filtering.

– Drug information sources for supporting evidence

on novel findings: (a) ChEMBL [44], which contains

2-D structures, calculated properties and abstracted

bioactivities of drugs, but also (b) DrugBank, as it

combines drug data (i.e. chemical, pharmacological

and pharmaceutical) with comprehensive drug tar-

get information (i.e. sequence, structure, and path-

way), along with biointeraction information.

– Signal Detection Methods: implementations of well-

known methods contained in the open-source PhViD

R package [45], and an in-house signal detection

method appropriate for unstructured text.

– Semantic Registry : PV-SDO [34], an ontology ex-

pressed in OWL2 (Web Ontology Language 2) [46],

and populated with sample signal detection method

implementations, and the reference drug data and

information resources mentioned above.

While further resources will be elaborated in sub-

sequent stages of this development, the above mate-

rial has been considered adequate for a proof-of-concept

prototype implementation.
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Fig. 3 A partial view of the elaborated agent interaction protocol (for simplicity, only agents are depicted).

4.2 Development Aspects

Access to the resources mentioned in subsection 4.1 has

been realised programmatically. In particular, FAERS

data are retrieved through the openFDA Application

Programming Interface (API) [47], access to PubMed

data relies on the Web services provided by Europe

PubMed Central [48], and Twitter posts are retrieved

through the available REST (Representational State

Transfer) APIs [49]. Access to SIDER, DrugBank and

ChEMBL is made through the SPARQL (SPARQL Pro-

tocol and RDF Query Language) endpoints [50], avail-

able from Bio2RDF [51].

The multiagent system implementation is based on

the Java Agent DEvelopment framework (JADE) [52],

providing besides open source development tools, the

necessary agent execution environment. JADE is com-

pliant with the specifications for interoperable multia-

gent systems released by the Foundation for Intelligent

Physical Agents (FIPA) [53].

Signal Detection Agents invoke the respective signal

detection methods via Rserve [54], a TCP/IP server al-

lowing for third-party software to use R from various

languages and without the need to initialise R or link

against the R library. Upon initiation, each Signal De-

tection Agent is registered with the Directory Facilita-

tor, a standard agent contained in the FIPA Abstract

Architecture [55], which provides “yellow page” services

for the agents of the platform. Thus, the Aggregation

Agent queries the JADE built-in Directory Facilitator

to obtain the list of relevant Signal Detection Agents,

according to the analysis scenario.

In the current prototype, knowledge embodied in

the Signal Ranking Agent for the application and in-

terpretation of domain criteria used for signal ranking,

such as seriousness, is represented via a set of simple

rules (e.g. to encode that death is more severe than

hospitalisation). Although this is a rather simplistic ap-

proach, a generic resource providing this kind of knowl-

edge is not currently available.

Agent communication relies on message exchange.

Messages are represented in the relevant FIPA stan-

dards for agent communication, which set out the en-

coding, the semantics and the pragmatics of messages.

In this regard, messages are structured according to the

FIPA ACL Message Structure Specification [56], and

are built upon the FIPA Communicative Act Library

(e.g. request, inform, agree, etc.) [57]. The messages’

content relies on FIPA-SL [58], and on a basic appli-

cation ontology that we defined. This JADE-specific

ontology contains the respective agent actions and the

predicates to facilitate agent communication, according

to the methodology proposed in JADE and using the

Ontology BeanGenerator tool [59].

While various open-source implementations of sig-

nal detection methods are available for SRS and struc-

tured observational data, the availability of implemen-

tations for unstructured text-based signal detection meth-

ods is limited for the moment. Thus, we developed a

simple signal detection method relying on the clini-

cal Text Analysis and Knowledge Extraction System

(cTAKES) [60], and on its built-in Unified Medical Lan-

guage System (UMLS) [61] Annotator, to identify drug-

related terms and effects within PubMed abstracts and
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Twitter posts (namely, VigiText). Notably, cTAKES

is built upon the Unstructured Information Manage-

ment Architecture (UIMA) [62], thus, the development

of VigiText follows an established standard for manag-

ing unstructured data.

We illustrate the functionality of the proposed mul-

tiagent system via the following example signal detec-

tion scenario.

4.3 Example Scenario

Let us focus on a targeted signal detection scenario and

assume that the proposed platform integrates through

its multiagent system the following signal detection meth-

ods8:

– SRS-based detection methods9: BCPNN, GPS, PRR, and

ROR.

– Observational data detection methods10: ICTPD and

LGPS.

– Unstructured text detection methods: VigiText.

In this case, (1)-(3) correspond to:

SR = {BCPNN, GPS, PRR, ROR},
OD = {ICTPD, LGPS}, and

UT = {VigiText}, respectively.

Also, the Filtering Agent is capable of querying Drug-

Bank and SIDER, in order to filter the obtained out-

comes from known ADRs and findings that correspond

to the drug’s indicated use, while the Drug Information

Agent can connect to ChEMBL and DrugBank, in order to

obtain complementary drug information. Thus, in the

scope of this scenario, (4)-(5) correspond to:

RS = {SIDER, DrugBank} and

DI = {ChEMBL, DrugBank}, respectively.

A safety expert working for a pharmaceutical com-

pany wishes to search for potential signals concerning

Drug X, a new drug of the company which has been

quite recently made available in the market. Thus, (s)he

employs the resources of the platform to analyse data

from an observational healthcare database and the re-

ports available in FAERS. The user is prompted by the

User Agent to provide the input for this analysis (cf.

subsection 3.3). Besides Drug X, let us consider that

8 For the sake of simplicity and for illustration purposes,
we consider a limited number of detection methods and refer
to fictitious data in this example.
9 Methods contained in [45]. BCPNN: Bayesian Confidence

Propagation Neural Network, GPS: Gamma Poisson Shrink-
age, PRR: Proportional Reporting Ratio, ROR: Reporting Odds
Ratio.
10 Methods available at [63]. ICTPD: Information Compo-
nent Temporal Pattern Discovery, LGPS: Longitudinal Gamma
Poisson Shrinkage.

(s)he defines for SRS-based detection methods the de-

cision rule for signal generation to be "more than 3

reports", while for the OD-based detection methods

(s)he sets the value of the "Time-at-risk" parameter

to be "length -

of exposure+30days". Thus, (6) can be rewritten as:

C = {Target="Drug-X",Methods="SR, OD",

SR Analysis Criterion :

Signal generation condition=">3 reports",

OD Analysis Criterion :

Time-at-risk="length of exposure+30days"}.

Assuming that the considered ICTPD implementa-

tion does not support the defined value for Time-at-risk,

a fact that is captured in the PV-SDO ontology, ICTPD

is implicitly excluded from the analysis experiment as

indicated by the Methods Selection Agent. Thus, (9)

corresponds to:

P = {BCPNN, GPS, PRR, ROR, LGPS}.

Launching a Signal Detection Agent for each detec-

tion method of P, let us assume that the aggregation

outcome given by (9) for the targeted Drug X is:

R = {RBCPNN, RGPS, RPRR, RROR, RLGPS}, with11:

RBCPNN = {Drug X-MI,Drug X-Neutropenia},
RGPS = {Drug X-MI},
RPRR = ∅,
RROR = {Drug X-ARF} and

RLGPS = {Drug X-MI}.
The Filtering Agent performs SPARQL queries to

DrugBank and SIDER such as the one presented in Fig.

4, in order to identify which of the above indications

shall be discarded. Let us assume that MI is a registered

ADR for Drug X in both DrugBank and SIDER. Thus, it

is discarded from R. As a result, R′ comprises of:

R′BCPNN = {Drug X-Neutropenia} and

R′ROR = {Drug X-ARF}, while

R′GPS = R′PRR = R′LGPS = ∅.
In order to prioritise the remaining indications, i.e.

Neutropenia and ARF, the user selects to employ the

ADR seriousness criterion, i.e. PR′ = {Seriousness}.
Assuming that ARF appears to result in more serious ef-

fects than Neutropenia in the analysed data (e.g. more

deaths have been reported with ARF), as provided by

the Signal Ranking Agent, Drug X-ARF is ranked prior

to Drug X-Neutropenia, i.e.:

R# = {Drug X-ARF, Drug X-Neutropenia}.
Finally, the Drug Information Agent obtains the en-

tire biochemical profile of Drug X and its biointerac-

tions by querying ChEMBL and DrugBank, respectively.

11 ARF: Acute Renal Failure, MI: Myocardial Infarction.
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Fig. 4 Indicative SPARQL query to assess whether Myocardial Infarction is a known ADR for drug X.

This information is attached to R# to formulate the fi-

nal outcome FO as in (13), also annotated with prove-

nance information for the experiment.

For illustration purposes, the above scenario refers

to fictitious data and it is rather oversimplified, since

typically the outcome of a signal detection method re-

turns a long list of drug-event pairs, which shall be fur-

ther considered for a potential causal relation. Never-

theless, it provides a comprehensive view of the agent

interaction protocol and the scope of integrated signal

detection that we introduced in this paper.

Notably, taking advantage of the proactive nature

of agents [35], the above drug safety screening scenario

may be executed as a background process. In this re-

spect, the user is notified promptly as soon as indica-

tions for signals are identified. Similarly, in the scenario

of screening for signals without a specific target, the

process shall be iteratively executed, when new data

become available.

5 Discussion

5.1 Contribution of this Work

This study elaborated on the design and development of

advanced IT mechanisms to leverage pharmacovigilance

signal detection. Timely and accurate signal detection

is of outmost importance in the scope of an active drug

surveillance system [64]. A number of quite recent, very

significant drug safety issues illustrated that adverse ef-

fects of drugs may be detected too late, when millions

of patients have already been exposed. To this end, the

investigation of diverse data sources via different analy-

sis methods for signal detection can contribute in more

timely and accurate findings [6].

In accordance with this perspective, the current work

introduced integrated signal detection, i.e. jointly ex-

ploiting multiple heterogeneous signal detection meth-

ods, data and other drug-related resources under a com-

mon framework, in order to strengthen the reliability

and coverage of the analysis outcomes. Besides out-

comes’ aggregation, the proposed approach included

their filtering, ranking and annotation, aiming to sup-

port drug safety experts in assessing and prioritising the

results. To this end, we take into account both compu-

tational metrics and domain criteria in order to priori-

tise the findings, while we also seek existing knowledge

for filtering noisy indications from relevant linked-data

based repositories.

Our research was built upon current systematic ef-

forts in the field, as we relied on available implemen-

tations of signal detection methods, as well as publicly

available drug safety related data and resources. The

idea of exploring and comparing different types of phar-

macovigilance signal detection methods has been pin-

pointed in the literature [32], [65]. However, we elabo-

rated on a systematic framework aiming to explore this

perspective at large-scale.

The multiagent system that has been proposed pro-

vides the basis for developing a platform to conduct

integrated signal detection. We defined a collaborative

agent integration protocol, in order to coordinate agent

activities and implement the workflow for integrated

signal detection. Thanks to the modularity and scala-

bility offered by the agent paradigm [37], we are able to

replicate our current approach and extend its capabili-

ties by integrating additional detection methods in the

platform.

5.2 Related Work

In the field of drug safety surveillance, various system-

atic initiatives have been recently formulated. In partic-

ular, the FDA-funded Mini-Sentinel project elaborates

on designing safety assessments using multiple existing

electronic healthcare data systems, developing and eval-

uating scientific methods to increase the precision of de-

tection techniques, while also identifying and address-
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ing barriers and challenges to build an advanced sys-

tem for active safety surveillance [66]. Similarly, OMOP

implemented and evaluated signal detection methods

for longitudinal observational data [24]. More recently,

the Observational Health Data Sciences and Informat-

ics (OHDSI) program has been established as a multi-

stakeholder, interdisciplinary collaborative to bring out

the value of health data through large-scale analytics

[67].

In addition, the EU-ADR Web Platform relies on

the exploitation of EHR data collected within a large-

scale European initiative [68]. Data are mined for spe-

cific drug events, which are then correlated with litera-

ture, protein and pathway data, resulting in a rich drug-

event dataset. Advanced distributed computing meth-

ods based on workflow technologies are tailored to co-

ordinate the execution of data-mining and statistical

analysis tasks.

Contrary to the above-mentioned important initia-

tives, we consider signal detection in an integrative frame-

work that involves multiple heterogeneous data sources

and detection methods, rather than focusing on a spe-

cific method applied on multiple sources of the same

kind, or on diverse methods applied on a specific data

source for benchmarking [13]. In this respect, we adopted

the agent paradigm as the enabling technology for the

development of an integrated platform, due to its proac-

tive, reactive and social nature. These features enabled

us to design and implement a novel collaborative mul-

tiagent system for signal detection, relying on appro-

priate mechanisms to automate and improve existing

tasks [36], that drug safety experts typically have to

undertake manually.

The agent paradigm has been successfully employed

in healthcare in various cases [37], with applications

spanning from decision support systems [69], disease

monitoring [70], telehealth services [71], ambient intelli-

gence and independent living [72], integration of hetero-

geneous biomedical systems [73], cross-organisational

workflow management [74], planning and resource al-

location [75], to evaluation of medical systems [76]. Via

this work, we illustrate a new application domain of

agent technologies in life sciences, i.e. pharmacovigi-

lance.

To the best of our knowledge, an agent-based per-

spective on the domain of drug safety has been only

explored in [77], in which a multiagent framework was

proposed for early detection of ADRs using electronic

patient data distributed across different sources and lo-

cations. The framework relied on intelligent agents em-

ploying fuzzy logic to represent, interpret, and compute

imprecise and subjective cues that are commonly en-

countered in ADR identification, as well as to retrieve

prior experiences by evaluating the extent of matching

between the current situation and a past experience.

Contrary to [77], in the current paper we introduced

an agent-based approach for the joint exploitation of

multiple, diverse and existing signal detection methods,

which are designed to analyse different types of signal

sources, under an integrated framework.

From a technical perspective, given that the pro-

posed multiagent system relies on semantic resources,

a notable work is the BioSTORM system [78]. BioS-

TORM elaborated on ontology-based, end-to-end de-

ployment of JADE-based agent systems by exploiting

diverse surveillance methods. While BioSTORM shares

some architectural similarities with the proposed sys-

tem, it was created for a different purpose/domain than

drug safety that was our focus. In terms of its general

rationale, our system shares some common attributes

with the DeepQA architecture [79]. DeepQA exploits

multiple methods for analysing natural language, iden-

tifying sources, finding and generating hypotheses, find-

ing and scoring evidence, as well as merging and ranking

hypotheses. Nevertheless, DeepQA is a general-purpose

massively parallel probabilistic evidence-based architec-

ture having its focus on unstructured/free-text data

based on UIMA, while our work relies on both struc-

tured and unstructured resources focusing on a specific

application domain.

5.3 Challenges and Future Work

Using a first prototype, we are currently elaborating on

particular case studies to illustrate the added value of

the proposed approach. Defined in collaboration with

drug safety experts, these studies concern drugs and

adverse effects that are quite rare, as well as new drugs

placed in the market, e.g. new anticoagulants, and their

association with specific adverse effects. In this regard,

the preliminary analysis reveals some “echoing” find-

ings across the diverse data sources explored, i.e. the

same signals are discovered in multiple data sources

and by multiple detection methods. This may indicate

the means of strengthening the outcomes provided by

signal detection methods applied separately, since repli-

cated signals obtained from diverse methods and data

sources may indicate more probable causal associations

between drugs and adverse effects.

Given the uncertainty of the results that signal de-

tection methods provide, approaches for fusing knowl-

edge under uncertainty are being investigated [80]. We

are also considering an agent-based voting scheme [81],

which will enable us to pursuit signal prioritisation by

applying multiple ranking criteria and measuring the

strength of signals in a comparative fashion. Overall,
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combining methods and their results in order to im-

prove accuracy, confidence, or speed such as the ap-

proach employed in DeepQA [79], is a part of the de-

veloped system that requires further research.

In terms of development, we find the potential to

assess whether BioSTORM could be applicable in the

particular application domain interesting [78]. In ad-

dition, in the current implementation, the Signal De-

tection Agents are handling the R output of the re-

spective detection methods. Signal detection methods

exposed through standardised, machine readable inter-

faces, would provide a more systematic solution. To this

end, we explore comprehensive frameworks for integrat-

ing R code in third-party applications, such as DeployR

[82]. Enriching and advancing the knowledge according

to which the Signal Ranking Agent applies domain cri-

teria, requires further research and development.

Up to now, we experimented with signal detection

methods that are available in the PhVid R package [45].

Further methods will be integrated in the subsequent

implementation phase, such as those contained in the

OMOP Methods Library [63]. Along this line, we aim

to elaborate on additional data sources for signal de-

tection and, particularly work with structured observa-

tional data. We are also elaborating on mechanisms for

social media screening, since patient self-reports may

provide unique insights, especially for drugs used in the

treatment of rare diseases, the feedback for which is

limited.

In the scope of active drug safety surveillance [64],

signal detection is a continuous and demanding process.

From the computational viewpoint, taking into account

the complexity posed by jointly exploiting multiple sig-

nal detection methods and drug-related resources under

the integrated signal detection approach that we intro-

duced, deploying and executing the proposed multia-

gent system in a cloud infrastructure is being considered

as a future step [83]. This would accommodate the re-

quired power, reliability and scalability for a large-scale

deployment accounting for additional signal detection

methods and drug safety resources.

6 Conclusions

deep This paper illustrated the application of the mul-

tiagent paradigm for systematically pursuing pharma-

covigilance signal detection within an integrated frame-

work. A formal agent collaboration strategy was pro-

posed, taking into account methods’ selection, aggrega-

tion of methods’ outcomes, and subsequently filtering

known ADRs and ranking the remaining potential sig-

nals for prioritisation. Relying on various data, infor-

mation and knowledge sources along with a number of

signal detection method implementations, our proof-of-

concept development illustrated that the agent-based

approach is valid for such an integration. We are cur-

rently elaborating to integrate further resources and

illustrate the added value in signal detection through

concrete case studies. Overall, this work constitutes a

step toward large-scale, knowledge-intensive computa-

tional signal detection.
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7. Trifirò, G. et al., Data mining on electronic health
record databases for signal detection in pharmacovig-
ilance: which events to monitor? Pharmacoepidemiol
Drug Saf 18(12):1176–1184, 2009. doi: 10.1002/pds.1836

8. Gurulingappa, H., Toldo, L., Rajput, A.M., Kors, J.A.,
Taweel, A., Tayrouz, Y., Automatic detection of ad-
verse events to predict drug label changes using text
and data mining techniques. Pharmacoepidemiol Drug
Saf 22(11):1189–1194, 2013. doi: 10.1002/pds.3493

9. Sarker, A. et al., Utilizing social media data for pharma-
covigilance: a review. J Biomed Inform 54:202–212, 2015.
doi:10.1016/j.jbi.2015.02.004

10. Harpaz, R. et al., Novel data mining methodolo-
gies for adverse drug event discovery and analy-
sis. Clin Pharmacol Ther 91(6):1010–1021, 2012. doi:
10.1038/clpt.2012.50

11. Hauben, M., Norén, G.N., A decade of data mining
and still counting. Drug Saf 33(7):527–534, 2010. doi:
10.2165/11532430-000000000-00000

12. Shang, N., Xu, H., Rindflesch, T.C., Cohen, T., Identi-
fying plausible adverse drug reactions using knowledge



A Multiagent System for Integrated Detection of Pharmacovigilance Signals 13

extracted from the literature. J Biomed Inform 52:293–
310, 2014. doi: 10.1016/j.jbi.2014.07.011

13. Koutkias, V.G., Jaulent, M.-C., Computational ap-
proaches for pharmacovigilance signal detection: toward
integrated and semantically-enriched frameworks. Drug
Saf 38(3):219–232, 2015. doi: 10.1007/s40264-015-0278-8

14. FDA Adverse Event Reporting System (FAERS).
http://www.fda.gov/Drugs/GuidanceComplianceRegula-
toryInformation/Surveillance/AdverseDrugEffects/.
Accessed 13 September 2015.

15. EudraVigilance. https://eudravigilance.ema.europa.eu/.
Accessed 13 September 2015.

16. VigiBase R©. http://www.umc-products.com/. Accessed
13 September 2015.

17. Hauben, M., Bate, A., Decision support methods for
the detection of adverse events in post-marketing
data. Drug Discov Today 14(7-8):343–357, 2009. doi:
10.1016/j.drudis.2008.12.012

18. Chazard, E., Ficheur, G., Bernonville, S., Luyckx, M.,
Beuscart, R., Data mining to generate adverse drug
events detection rules. IEEE Trans Inf Technol Biomed
15(6):823–830, 2011. doi: 10.1109/TITB.2011.2165727

19. Reps, J., Garibaldi, J., Aickelin, U., Soria, D., Gibson,
J., Hubbard, R., Comparison of algorithms that detect
drug side effects using electronic healthcare database.
Soft Comput 17:2381–2397, 2013. doi: 10.1007/s00500-
013-1097-4

20. Madigan, D., Schuemie, M.J., Ryan, P.B., Empirical per-
formance of the case-control design: lessons for develop-
ing a risk identification and analysis system. Drug Saf
36:S73–S82, 2013. doi: 10.1007/s40264-013-0105-z

21. Ryan, P.B., Schuemie, M.J., Gruber, S., Zorych, I.,
Madigan, D., Empirical performance of a new user co-
hort method: lessons for developing a risk identification
and analysis system. Drug Saf 36:S59-S72, 2013. doi:
10.1007/s40264-013-0099-6

22. Suchard, M.A., Zorych, I., Simpson, S.E., Schuemie,
M.J., Ryan, P.B., Madigan, D., Empirical performance
of the self-controlled case series design: lessons for devel-
oping a risk identification and analysis system. Drug Saf
36:S83–S93, 2013. doi: 10.1007/s40264-013-0100-4

23. Norén, N.G., Hopstadius, J., Bate, A., Star, K., Edwards,
R.I., Temporal pattern discovery in longitudinal elec-
tronic patient records. Data Min Knowl Discov 20:361–
387, 2010. doi: 10.1007/s10618-009-0152-3

24. The Observational Medical Outcomes Partnership.
http://omop.org/. Accessed 13 September 2015.

25. LePendu, P. et al., Pharmacovigilance using clinical
notes. Clin Pharmacol Ther 93:547–555, 2013. doi:
10.1038/clpt.2013.47

26. Freifeld, C.C. et al., Digital drug safety surveillance: mon-
itoring pharmaceutical products in Twitter. Drug Saf
37:343–350, 2014. doi: 10.1007/s40264-014-0155-x

27. Harpaz, R. et al., Text mining for adverse drug events:
the promise, challenges, and state of the art. Drug Saf
37:777–790, 2014. doi: 10.1007/s40264-014-0218-z

28. Harpaz, R., DuMouchel, W., LePendu, P., Bauer-
Mehren, A., Ryan, P., Shah, N.H., Performance of phar-
macovigilance signal-detection algorithms for the FDA
adverse event reporting system. Clin Pharmacol Ther
93:539–546, 2013. doi: 10.1038/clpt.2013.24

29. Liu, M. et al., Comparative analysis of pharmacovigilance
methods in the detection of adverse drug reactions us-
ing electronic medical records. J Am Med Inform Assoc
20:420–426, 2013. doi: 10.1136/amiajnl-2012-001119

30. Schuemie, M.J. et al., Using electronic health care records
for drug safety signal detection: a comparative evaluation

of statistical methods. Med Care 50:890–897, 2012. doi:
10.1097/MLR.0b013e31825f63bf

31. van Holle, L., Bauchau, V., Signal detection on sponta-
neous reports of adverse events following immunisation:
a comparison of the performance of a disproportionality-
based algorithm and a time-to-onset-based algorithm.
Pharmacoepidemiol Drug Saf 23:178–185, 2014. doi:
10.1002/pds.3502

32. Harpaz, R. et al., Combing signals from spontaneous re-
ports and electronic health records for detection of ad-
verse drug reactions. J Am Med Inform Assoc 20(3):413–
419, 2013. doi: 10.1136/amiajnl-2012-000930

33. Stang, P. et al., Variation in choice of study design: Find-
ings from the epidemiology design decision inventory and
evaluation (EDDIE) survey. Drug Saf 36:S15–S25, 2013.
doi: 10.1007/s40264-013-0103-1

34. Koutkias, V.G., Jaulent, M.-C., Leveraging post-
marketing drug safety research through semantic tech-
nologies: the PharmacoVigilance Signal Detectors Ontol-
ogy. In Proceedings of the 7th International Workshop
on Semantic Web Applications and Tools for Life Sci-
ences, CEUR Workshop Proceedings, Vol. 1320, Berlin,
Germany, December 9-11, 2014.

35. Singh, M.P., Huhns, M.N., Service-Oriented Computing:
Semantics, Processes, Agents. Wiley, 2005.

36. Luck, M., McBurney, P., Preist, C., A manifesto for
agent technology: towards next generation comput-
ing. Auton Agent Multi-Ag 9(3):203-252, 2004, doi:
10.1023/B:AGNT.0000038027.29035.7c

37. Isern, D, Sánchez, D., Moreno, A. Agents applied in
health care: a review. Int J Med Inform 79(3):145–166,
2010. doi: 10.1016/j.ijmedinf.2010.01.003

38. Klusch, M., Sycara, K., Brokering and matchmaking for
coordination of agent societies: a survey. In Omicini, A.,
Zambonelli, F., Klusch, M., Tolksdorf, R., editors, Co-
ordination of Internet Agents, pages 197–224. Springer-
Verlag, 2001.

39. Durfee, E.H., Distributed Problem Solving and Plan-
ning. In: Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. Cambridge, MA, MIT
Press, 2000, pp. 121-164.

40. Tran, Q.-N.N., Low, G., MOBMAS: a methodol-
ogy for ontology-based multi-agent systems develop-
ment. Inform Software Tech 50(7-8):697-722, 2008.
doi:10.1016/j.infsof.2007.07.005

41. Lindquist, M., Use of triage strategies in the WHO signal-
detection process. Drug Saf 30(7):635–637, 2007. doi:
10.2165/00002018-200730070-00014

42. Kuhn, M., Campillos, M., Letunic, I., Juhl Jensen,
L., Bork, P., A side effect resource to capture pheno-
typic effects of drugs. Mol Syst Biol 6(1), 2010. doi:
10.1038/msb.2009.98

43. The DrugBank database. http://www.drugbank.ca/. Ac-
cessed 13 September 2015.

44. The ChEMBL database.
https://www.ebi.ac.uk/chembl/. Accessed 13 September
2015.

45. Ahmed, I., Poncet, A., PhViD: An R package for Phar-
macoVigilance signal Detection, 2013. R package version
1.0.6.

46. OWL 2 Web Ontology Language: Structural Spec-
ification and Functional-Style Syntax, 2nd Ed.
http://www.w3.org/TR/2012/REC-owl2-syntax-
20121211/. Accessed 13 September 2015.

47. The openFDA Drug API.
https://open.fda.gov/drug/event/. Accessed 13 Septem-
ber 2015.



14 Vassilis Koutkias, Marie-Christine Jaulent

48. Europe PubMed Central RESTful Web Service.
http://europepmc.org/restfulwebservice. Accessed 13
September 2015.

49. The Twitter REST APIs.
https://dev.twitter.com/rest/public. Accessed 13
September 2015.

50. SPARQL 1.1 Overview, W3C Recommendation,
21 March 2013. http://www.w3.org/TR/sparql11-
overview/. Accessed 13 September 2015.

51. bio2RDF. http://bio2rdf.org/. Accessed 13 September
2015.

52. Java Agent DEvelopment framework (JADE).
http://jade.tilab.com/. Accessed 13 September 2015.

53. The Foundation for Intelligent Physical Agents (FIPA).
http://www.fipa.org/. Accessed 13 September 2015.

54. Rserve - Binary R server. http://rforge.net/Rserve/. Ac-
cessed 13 September 2015.

55. Foundation for Intelligent Physical Agents, FIPA
Abstract Architecture Specification, SC00001L,
http://fipa.org/specs/fipa00001/SC00001L.pdf. Ac-
cessed 13 September 2015.

56. Foundation for Intelligent Physical Agents, FIPA ACL
Message Structure Specification, SC00061G, 03/12/2002.
http://www.fipa.org/specs/fipa00061/SC00061G.pdf.
Accessed 13 September 2015.

57. Foundation for Intelligent Physical
Agents, FIPA Communicative Act Li-
brary Specification, SC00037J, 03/12/2002.
http://www.fipa.org/specs/fipa00037/SC00037J.pdf.
Accessed 13 September 2015.

58. Foundation for Intelligent Physical Agents, FIPA SL
Content Language Specification, SC00008I, 03/12/2002.
http://www.fipa.org/specs/fipa00008/SC00008I.pdf. Ac-
cessed 13 September 2015.

59. Caire, G., Cabanillas, D., JADE Tu-
torial: Application-defined Content Lan-
guages and Ontologies. 15 April 2010.
http://jade.tilab.com/doc/tutorials/CLOntoSupport.pdf.
Accessed 13 September 2015.

60. The clinical Text Analysis and Knowledge Extraction
System (cTAKES). http://ctakes.apache.org/. Accessed
13 September 2015.

61. The Unified Medical Language System (UMLS).
http://www.nlm.nih.gov/research/umls/. Accessed 13
September 2015.

62. The Unstructured Information Management Architec-
ture (UIMA). http://uima.apache.org/. Accessed 13
September 2015.

63. The OMOP Methods Library.
http://omop.org/MethodsLibrary. Accessed 13 Septem-
ber 2015.

64. Norén, N.G., Edwards, I.R., Modern methods of
pharmacovigilance: detecting adverse effects of
drugs. Clinical Medicine 9(5):486–489, 2009. doi:
10.7861/clinmedicine.9-5-486

65. Liu, M. et al., Large-scale prediction of adverse drug re-
actions using chemical, biological, and phenotypic prop-
erties of drugs. J Am Med Inform Assoc 19(e1):28–35,
2012. doi: 10.1136/amiajnl-2011-000699

66. The Mini-Sentinel project. http://www.mini-
sentinel.org/. Accessed 13 September 2015.

67. Observational Health Data Sciences and Informatics
(OHDSI) program. http://www.ohdsi.org/. Accessed 13
September 2015.

68. Oliveira, J.L. et al., The EU-ADR web platform:
delivering advanced pharmacovigilance tools. Phar-
macoepidemiol Drug Saf 22(5):459–467, 2013. doi:
10.1002/pds.3375
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