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RESEARCH ARTICLE
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Abstract
This work aimed at combining different segmentation approaches to produce a robust and

accurate segmentation result. Three to five segmentation results of the left ventricle were

combined using the STAPLE algorithm and the reliability of the resulting segmentation was

evaluated in comparison with the result of each individual segmentation method. This com-

parison was performed using a supervised approach based on a reference method. Then,

we used an unsupervised statistical evaluation, the extended Regression Without Truth

(eRWT) that ranks different methods according to their accuracy in estimating a specific bio-

marker in a population. The segmentation accuracy was evaluated by estimating six cardiac

function parameters resulting from the left ventricle contour delineation using a public
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cardiac cine MRI database. Eight different segmentation methods, including three expert

delineations and five automated methods, were considered, and sixteen combinations of

the automated methods using STAPLE were investigated. The supervised and unsuper-

vised evaluations demonstrated that in most cases, STAPLE results provided better esti-

mates than individual automated segmentation methods. Overall, combining different

automated segmentation methods improved the reliability of the segmentation result com-

pared to that obtained using an individual method and could achieve the accuracy of an

expert.

Introduction
Cardiac Magnetic Resonance Imaging (cMRI) is used more and more frequently in clinical
routine to study simultaneously the cardiac anatomy and function. A series of clinical parame-
ters can be deduced from the acquired scans in cMRI. Among these parameters, the left ven-
tricular ejection fraction (LVEF) remains a major prognostic index for coronary artery diseases
assessment. The correct estimation of this parameter requires the accurate measurement of
both end-diastolic volumes (EDV) and end-systolic volumes (ESV), providing the stroke vol-
ume (SV) and finally the LVEF. In addition, the proper delineation of epicardial border provid-
ing the epicardial volume (EpV) is also necessary to estimate the myocardial mass (MM).
Although MRI makes these measurements possible with a high accuracy (generally from a
series of short-axis cine-MR images), the segmentation of the left ventricle (LV) is still a con-
temporary issue [1] due to the considerable amount of data that are acquired in a single exami-
nation. For clinical routine, semi-automated algorithms that are proposed by commercial
image post-processing software are largely used. For retrospective studies, research studies, or
large database studies, automated segmentation algorithms are preferentially used in order to
avoid the labor intensive and time consuming manual segmentation task and reduce the intra-
and inter-operator variabilities [2]. To assess the performance of these automated segmenta-
tion algorithms, the common approach consists in comparing the contours resulting from the
automated segmentation with the ones obtained by one or several experts who are known to
often outperform automated methods [3].

When visually comparing segmentation results obtained by different automated methods as
in [3], the respective performance of two methods depends on the data: when a first segmenta-
tion method provides more accurate contours than a second method on a specific database, the
second algorithm might actually be more relevant for a sub-database or, at least, for some par-
ticular MR examinations. Therefore, it is reasonable to hypothesize that there might be an
advantage in combining several automated segmentation methods to overcome the specific
limitations of each one.

To combine segmentation approaches, different algorithms have been proposed [4–8]. The
Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm [5] is very popu-
lar and highly cited. Furthermore, the associated software is freely available for academic pur-
poses upon written request. For these reasons, we evaluated the performance of STAPLE. To
objectively assess the segmentation accuracy, criteria based on estimated contours and associ-
ated image classification are often used. These include various metrics allowing to compare
boundaries at a local level such as distances between contours, overlap criteria like the Dice
coefficient [9], or the sensitivity, the specificity, the predictive negative value and the predictive
positive value criteria computed by the STAPLE algorithm. All these criteria assume that there
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is a “gold standard” segmentation, at least implicitly. Furthermore, these criteria are partly cor-
related and are also directly related to the optimization process involved in STAPLE. To avoid
these limitations, we rather focused our evaluation on the clinical task and evaluated the accu-
racy of clinical parameters of interest, and particularly the LVEF parameter.

To evaluate the interest of the STAPLE algorithm for combining segmentation results, we
applied it to a cardiac cine MRI database including LV segmentation obtained from eight inde-
pendent segmentation approaches: five resulted from five different automated image process-
ing approaches, and three volume contours were drawn by three different experts. Sixteen
combinations of the five automated methods (all five methods, four among the five methods,
and three among the five methods) were tested against results provided by the three experts,
using the LVEF values as the clinical parameter of interest. The evaluation was first carried out
using a supervised approach, assuming a gold standard was available, and then using an unsu-
pervised approach, the extended Regression Without Truth (eRWT) [3] to rank all segmenta-
tion methods as a function of their performance.

Our study presents some similarities with [2]: both used a public cardiac cMRI database
(although not the same) for which contours were delineated by experts and algorithms. In our
case, the selected database included controls and patients with different cardiac pathologies. In
[2], only cMRI acquired on patients were included. Furthermore, both studies used STAPLE to
combine different contour results, but they differ in their approach. Indeed, in [2], authors pro-
posed to use STAPLE to define a gold standard segmentation based on two fully-automated
algorithms and three semi-automated algorithms requiring manual input, while the present
study focuses on improving the accuracy of automated segmentation algorithms by combining
them with STAPLE to get a accuracy similar to the one achieved by experts i.e.make it accept-
able for clinical routine. To complete our first study [3] that enabled us to rank expert delina-
tions and automated segmentation methods on the Cardiac MR Left Ventricular Segmentation
Grand Challenge (MICCAI 2009) database [10], the present study aimed at demonstrating,
using the same database, the usefulness of combining the different automated approaches that
were previously independently evaluated.

Materials and Methods

Database
This work uses the public database provided by Sunnybrook Health Sciences Center [10]. This
cardiac database was first distributed to the participants in the Cardiac MR Left Ventricular
Segmentation Grand Challenge (MICCAI 2009). It includes images from forty-five subjects
who were divided into four subgroups: healthy individuals (CTRL, n = 9), patients with hyper-
trophic cardiomyopathy (HYP, n = 12), patients with heart failure without ischemia (HF-NI,
n = 12) and patients with heart failure due to ischemia (HF-I, n = 12). For each examination,
about ten short axis slices covering the LV were acquired using a breath-hold, retrospective
ECG-gated cine-MRI sequence (twenty cardiac phases per slice, contiguous slices with a slice
thickness of 8 mm, FOV = 320 mm, acquisition matrix 256 × 256 with a 1.5T MR scanner (GE
Healthcare)).

We focused here on the left ventricular ejection fraction (LVEF) estimate. LVEF was calcu-
lated conventionally as the ratio between the stroke volume and the end-diastolic volume. The
end-diastolic and end-systolic volumes were measured from the endocardial border that was
delineated on each selected image. MR images corresponding to the end-systolic and end-
diastolic phases in the cardiac cycle as well as the list of consecutive slices considered for the
LV segmentation were a priori fixed for this Challenge and given to the experts to directly com-
pare results between all participants. The variability due to the choice of these temporal phases
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and of the associated slices was out of the scope of this study which focused on 2D slice
segmentation.

Segmentation approaches
Eight independent estimates of the LVEF were obtained from three manual contouring methods
(M1-M3) provided by three independent experts, and from five automated algorithms (M4-
M8). The five algorithms described respectively in [11–15] use different segmentation strategies
and various user’s interactions. The methodM8 was described in [15] and is an update of the
method [16] previously evaluated in [3]. Endocardial borders were obtained on the end-diastolic
and end-systolic phases with all methods. Furthermore, contours for all cardiac phases were
provided for the whole database by methodM5 and for fifteen subjects by methodM6. All
methods butM5 included the papillary muscles in the LV cavity. MethodM4 was the least auto-
mated one, while methodM8 was fully automated. Results obtained by the eight segmentation
methods are freely available on https://github.com/frederiquefrouin/Medieval.

Using each segmentation method, the mean LVEF value and its associated standard devia-
tion were calculated for each of the four subgroups of subjects. More than 99% of these esti-
mated values ranged from 0.05 to 0.85. The twenty-four patients of the studied database with
heart failure (HF-NI and HF-I) had a reduced LVEF that was considered as pathological
(� 0.45).

Combination of the segmentation approaches
Method. Several segmentation results were combined using the Simultaneous Truth and

Performance Level Estimation (STAPLE) algorithm developped by Warfield et al. [5]. This
method was implemented using the version 1.5.2 of CRKit, which is the software provided by
Warfield’s team.

The STAPLE framework is based on an Expectation Maximization (EM) algorithm [17, 18].
It uses several segmentation results and calculates simultaneously a probabilistic estimate of a
representative segmentation result and a performance level of each delineation included in the
calculation. This performance level is provided by the computation of the sensitivity and the
specificity indexes between each input segmentation and the segmentation result. The process
is iterated until a stable solution is reached. Here, the STAPLE algorithm was run using the
default parameters that were proposed by its authors. The binary version was used since only
two classes were considered: the left ventricle and the remaining structures outside the left ven-
tricle. Provided results did not depend on the size of the background (the region of interest sur-
rounding the left cavity in our application) as mentioned in [2]. Furthermore, the STAPLE
algorithm was applied in 2D, for each slice separately in order to be compliant with most of the
initial segmentation methods, and because of the large slice thickness compared with the in-
plane resolution. The resulting contours were stacked to get a 3D segmentation result.

Application. The STAPLE algorithm was applied to several combinations of endocardial
segmentation results obtained from the five automated methods previously described:

• a STAPLE segmentationMS45678 was created from the five automated methods.

• STAPLE was used to combine all five combinations of four automated methods. For
instance, the resulting segmentation was denotedMS4567 when methodsM4,M5,M6 and
M7 were involved in the algorithm.

• STAPLE was also applied to each combination of three automated methods among the five
available (10 combinations). The result was denotedMS456 when methodsM4,M5 andM6
were involved in the algorithm.

Evaluation of Combinations of Independent Segmentation Results
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Using each STAPLE segmentation result, the mean LVEF value and associated standard
deviation were calculated for each of the four subgroups of subjects.

Supervised evaluation
In case of supervised evaluation, it is necessary to define a gold standard. For our problem of
contour delineation on clinical data there is no ground truth reference, even when three experts
have delineated contours [4]. We could have used STAPLE to define a consensus as proposed
for instance in [2]. Yet, in order to be independent of STAPLE for the evaluation, we defined
M2 as the reference method (Mref). Indeed, it was shown in [3] that methodM2 performed the
best and that the LVEF obtained by the three experts were more accurate than any of the five
automated methods that were tested. The supervised evaluation was based on the computation
of the bias β and its associated standard deviation (s) of each segmentation methodMj with
respect to the referenceM2, (j representing either one of the original methods or one of the six-
teen STAPLE combinations described above).

Unsupervised evaluation using eRWT
Theory. The eRWT approach [3], an extension of the Regression Without Truth [19–21],

aims at comparing and ranking different methods which estimate a specific biomarker such as
the LVEF, the true value Θp of the biomarker being unknown. Considering P samples (denoted
by p, ranging from 1 to P) and K segmentation methods (denoted byMk, k ranging from 1 to
K), each segmentation methodMk yields an estimate θpk of the biomarker for sample p.

The eRWT approach assumes a parametric relationship between the true value Θp and its
estimate θpk based on three hypotheses:

H1:. The statistical distribution of the true value Θp on the whole database has a finite
support.

H2:. The estimate θpk is linearly related to the true value (Eq (1)). The error term εpk is nor-
mally distributed with zero mean and standard deviation σk. The ak and bk parameters are
specific to each methodMk and independent of sample p:

ypk ¼ akYp þ bk þ εpk: ð1Þ

H3:. The error terms εpk for each methodMk are statistically independent.

With regard toH1, a Beta distribution Beta(μ, ν) was chosen for LVEF as it had been pro-
posed in [19]. Besides, given all these assumptions, the probability of the estimated values θpk
given the linear model parameters and the true valueΘp can be expressed and the log-likeli-
hood can be written as a function of ak, bk, σk and the probability distribution ofΘp.

The maximization of this log-likelihood does not require the numerical values of the true
LVEF, but only a model of its statistical distribution (pr (Θp)); it leads to the estimates of the
linear model parameters for each method (ak, bk and σk).

The numerical implementation uses an optimization function implemented in MATLAB
(R2012a, The Mathworks, Inc.). The figure of merit FMk chosen to rank the methodsMk is
defined as the expected value of the square error between the true value of the parameter Θp

and its estimated value by a given method (Eq (2)) [22].

FMk ¼ E½ðY� akY� bk � εkÞ2�: ð2Þ

Evaluation of Combinations of Independent Segmentation Results

PLOS ONE | DOI:10.1371/journal.pone.0135715 August 19, 2015 5 / 16



If the statistical distribution of Θp is a Beta distribution, the figure of merit can be expressed
analytically by Eq (3):

FMk ¼ ðak � 1Þ2 mðmþ 1Þ
ðmþ nÞðmþ nþ 1Þ þ 2 ak � 1ð Þbk

m
mþ n

þ b2k þ s2
k: ð3Þ

To set the shape parameters of the Beta distribution (μ and ν), we started from the values
chosen in [3] (μ = 4 and ν = 5) and refined these initial values so as to minimize the sum of the
K figures of merit. Final values of the μ and ν parameters were set to 2.85 and 3.40 respectively.
These slight modifications of the Beta distribution compared to that used in [3] did not yield
substantial changes in the ranking of the methods, as already shown in [3].

The final ranking of methods was based on a bootstrap process [23] running on the database
of P values θpk generating N (N = 1000) θpn k values. From each drawing n, P values pn were
drawn from the 45 samples. From these θpn k values, the K figures of merit Fn

Mk were computed
using the previously described optimization. The non-parametric Kruskal-Wallis test [24] was
applied to the N × K values of Fn

Mk to test the equality of the median among the Kmethods.
When it was not equal, each pair of methods was tested, using a Bonferroni correction with a
Type I error equal to 5% [25] to determine the significantly different pairs.

Experiments. The eRWT approach was first performed to rank the eight segmentation
methods (M1 −M8). This ranking approach was then systematically applied to the eight meth-
odsM1 −M8 and to one of the STAPLE results to rank each segmentation combination,MSi,
among the eight initial segmentation methods.

Results

Combination of the segmentation approaches
Superimposition of contours resulting from different segmentation methods on

cMRI. Figs 1 and 2 show the endocardial contours obtained using the eight segmentation
approachesM1 −M8 and using three different STAPLE combinations, superimposed on an
end-diastolic image. These two figures correspond to two different cases: one patient (SC-HF-
01) and one control (SC-N-05). In these two examples, the LV contour was correctly delineated
by the three different combinations of STAPLE that are illustrated, whereas it was over-delin-
eated when usingM6 andM8 (Fig 1) or under-delineated byM5 andM7 (Fig 2).

Estimation of LVEF values for each method. The mean LVEF values and their standard
deviations estimated for each subgroup of subjects are displayed in Table 1 for each initial seg-
mentation method (M1 −M8) and eachMSimethod.

Supervised evaluation
Choice of the reference method. Table 2 presents the figures of merit computed using the

eRWT approach when the eight initial segmentation methods (M1 −M8) were compared.
These scores confirmed thatM2 could be chosen as the reference method for the supervised
evaluation. This result is similar to the one previously established in [3], despite the new values
of the Beta distribution parameters. The performance of methodM8 can be estimated by an
improvement of its relative ranking.

Comparison of LVEF estimated values. Fig 3 shows the results obtained for the super-
vised evaluation. Each bias β with respect to theM2 result is represented with its associated
standard deviations (error bars corresponding to ±1.96s). This figure shows that expert delin-
eationsM1 andM3 give the closest results toM2, withM3 showing less variability thanM1.
When comparing the five automated methods (M4 −M8),M4 yields the closest result toM2

Evaluation of Combinations of Independent Segmentation Results
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with a bias near 0, and the smallest standard deviation (s). Although all semi-automated meth-
ods have slightly greater variability than the inter-expert variability, several STAPLE combina-
tions are within the inter-expert variability, with six combinations presenting smaller
variability thanM1. MethodMS456 was the one presenting the smallest variability [β ± 1.96s]
among allMSi.

Among the sixteen testedMSimethods, ten were within the range [β ± 1.96s] obtained with
M4. The six remainingMSi had a higher bias (in absolute value) than the one obtained with
M4, but three of them (MS4567,MS5678 andMS678) had a lower s thanM4.MS578 had a
higher s thanM4, but lower than the s obtained by the four methods used to create the STAPLE
segmentation result. Finally,MS457 had a standard deviation s only 1% higher than the one
obtained withM4, whereasMS4578 had a s 10% higher than the one obtained withM4.

Unsupervised comparison of segmentation methods
Table 3 presents the ranking of the eight initial segmentation methods and of each STAPLE
methodMSi. Among the sixteen comparisons, methodMSi was at a ranking similar to the
experts in 14 cases (bold and italicMS in the table). The best rank was reached byMS456
(rank equal to 2). MethodMS578 was ranked likeM4 (rank equal to 4, boldMS in the table),
this rank being worse than the experts’ ranks but better than the individual methods used to
create the combination. These results demonstrate that the LVEF parameters were more accu-
rately estimated using this combination of segmentation methods than with any of the segmen-
tation methods used in the combination. The worst rank observed for anMSi approach was

Fig 1. Basal cine MRI slice at end-diastole with superimposed contours of the LV (green line).M1 toM8 are represented from (a) to (h) and three
different combinations of the STAPLE algorithm,MS45678,MS456 andMS4578 are represented from (i) to (k).

doi:10.1371/journal.pone.0135715.g001
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obtained forMS4578 with a rank equal to 5 (italicMS in the table), worse thanM4 used to pro-
vide the STAPLE segmentation result. For this test, FM1 and FM4 were equal to 0.004, FMS4578

was equal to 0.005, and FM8 was equal to 0.007. So, even ifMS4578 was at the fifth position, its
figure of merit was close to the scores obtained with methodsM1 andM4. Thus in this case,
LVEF parameters estimated usingMSi show a clear improvement compared to LVEF esti-
mated usingM5,M7 andM8.

Discussion

Use of STAPLE to combine endocardial LV segmentations
The aim of this work was to evaluate the efficiency of the STAPLE algorithm [5] to estimate a
clinical biomarker, the LVEF, from a segmentation resulting from the combination of different
independent segmentation algorithms. To demonstrate it, a collection of segmentations applied
to the MICCAI 2009 cardiac MRI database was used. For the forty-five cases of this database
eight segmentation methods were available, including delineations provided by three indepen-
dent experts, and five delineations obtained using five automated LV segmentation algorithms.
As the LVEF is a primordial biomarker, the paper primarily focused on results obtained for
this parameter. The database had the advantage of including a large variety of cardiac diseases
(with normal or reduced LVEF) and control subjects. The computation of the mean LVEF
value and associated standard deviations for each subgroup showed that values were homoge-
neous for each subgroup of subjects, whatever the segmentation method used for the LVEF

Fig 2. Median cine MRI slice at end-diastole with superimposed contours of the LV (green line).M1 toM8 are represented from (a) to (h) and three
different combinations of the STAPLE algorithm,MS45678,MS456 andMS4578 are represented from (i) to (k).

doi:10.1371/journal.pone.0135715.g002
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calculation. These first results confirmed that all segmentation methods provided coherent esti-
mates for each subgroup of subjects.

Conventional applications of the STAPLE algorithm aim at defining a reference method
from different expert segmentations [2, 5]. In the present study, our goal was not to define a
consensus between “experts”, but rather to determine whether some combinations of different
independent automated segmentation methods could yield a segmentation as reliable as that of
an expert, keeping in mind that each automated method is slightly less powerful than expert
delineation. In other words, could a combination of different automated segmentation results
yield better results than the ones from each individual method? The question was challenging
since several evaluation studies [2, 7] already showed that the STAPLE output strongly depends
on the number and on the quality of the inputs used to create the combined segmentation.
Assuming that the automated methods incorporate different strategies, we tested whether their
combined use could actually help in improving segmentation results on a whole database. All

Table 1. Mean LVEF values (%) and their associated standard deviations.

Methods HF-I (n = 12) HF-NI (n = 12) HYP (n = 12) CTRL (n = 9)

M1 23.46±10.36 28.68±14.37 62.17±8.89 60.2±6.60

M2 25.12±10.55 31.93±14.20 65.39±6.35 66.18±4.98

M3 26.79±11.75 32.38±14.83 69.90±6.88 66.61±5.43

M4 24.15±11.75 33.30±16.94 64.95±12.02 66.51±6.07

M5 24.20±13.41 27.66±11.64 48.79±12.45 57.49±4.26

M6 25.81±13.19 35.04±17.71 73.94±10.62 74.30±6.73

M7 22.92±9.91 31.00±15.70 58.49±13.93 61.22±13.92

M8 31.47±13.13 35.95±15.19 69.50±10.19 68.22±10.86

MS45678 26.59±10.93 34.41±15.89 64.66±10.61 67.21±6.52

MS4567 24.23±10.44 33.42±14.84 61.75±11.37 65.36±5.86

MS4568 27.26±12.34 34.21±14.54 64.87±9.40 67.54±4.28

MS4578 27.01±12.23 32.97±14.71 59.15±11.79 64.20±5.18

MS4678 26.54±10.74 34.95±16.41 69.59±8.30 68.64±5.72

MS5678 26.26± 9.95 32.60±14.17 63.51±10.70 65.59±8.08

MS456 26.87±11.67 33.64±15.02 66.54±9.35 66.99±3.75

MS457 25.07±10.66 32.41±14.36 58.98±12.04 63.85±4.69

MS458 27.85±12.54 33.33±14.26 63.29±9.87 65.94±3.58

MS467 26.70±10.03 34.62±16.22 69.71±8.26 69.59±7.42

MS468 28.47±13.26 35.65±16.47 71.70±5.93 71.08±4.06

MS478 27.76±12.23 34.81±16.67 66.06±9.37 67.94±6.56

MS567 25.31±10.65 31.96±13.31 64.28±10.42 67.46±7.98

MS568 28.19±13.42 34.49±14.23 69.85±6.42 69.47±5.72

MS578 27.20±11.48 32.52±14.13 61.06±12.28 66.0±7.9

MS678 27.63±10.85 34.84±16.43 71.78±7.12 69.83±8.57

Values are computed for each segmentation method and for each subgroup of subjects: heart failure with and without ischemia patients (HF-I and HF-NI

respectively), hypertrophic cardiomyopathy patients (HYP) and healthy individuals (CTRL).

doi:10.1371/journal.pone.0135715.t001

Table 2. Figures of merit (FMk) of the eight initial methods estimated by the eRWT approach.

Method M1 M2 M3 M4 M5 M6 M7 M8

FMk 0.003 < 0.001 0.001 0.004 0.015 0.008 0.010 0.008

doi:10.1371/journal.pone.0135715.t002
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possible combinations of three, four and five automated segmentations were thus systemati-
cally tested. As in [2], the STAPLE version that was used provided results that did not depend
on the size of the background, i.e. the region of interest surrounding the left cavity. Further-
more STAPLE was tested on both 2D and 3D data, and better results were obtained when
applying STAPLE in 2D mode, slice by slice. This seems to be due to the large anisotropy of the
initial data and to the 2D strategy used by the experts and most of the automated algorithms to
delineate the contours. To assess the segmentation results, a visual inspection of the contours
of all STAPLE segmentation results superimposed onto the MR images was first performed.
This visual assessment showed that in most cases, the STAPLE algorithm was able to correct,
in every slice, too loose or too tight delineations obtained from automated methods. Supervised
and unsupervised statistical evaluations were then performed to assess the results obtained
using each STAPLE combination of three, four and five automated methods.

Supervised evaluation
The main idea of the supervised evaluation was to compare the LVEF values estimated by all
methods with the values computed by a “reference”method. We chose theM2 method as the
“reference”method, as it yields the best figure of merit when using the eRWT approach on the

Fig 3. Supervised evaluation: Computation of the LVEF bias β of eachmethod with respect to values obtained withM2 and its associated standard
deviation. Error bars correspond to β ± 1.96s. The red box represents limits of agreement obtained forM4, the automated method whose results are closest
to theM2 results for this evaluation.

doi:10.1371/journal.pone.0135715.g003
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eight initial methods. The comparison of LVEF values was based on the bias (β) and its associ-
ated standard deviation (s) obtained when computing LVEF values using each individual seg-
mentation method compared to theM2 results (Fig 3). Furthermore, the combination of the
three expert segmentation results using STAPLE,MS123, was estimated and chosen as the ref-
erence method. Results were very close to those obtained with theM2 method and the bias, as
well as its associated standard deviation, were the smallest for methodM2, confirming that this
latter method was a good choice to be a reference method (see S1 Fig).

Results showed that among the five automated methodsM4 was the closest toM2 with a
low bias and the smallest standard deviation. In most cases,MSi results were closer to the refer-
ence methodM2 than the original methods used in the combination, includingM4 and were
less variable than results obtained with each individual method. It can be concluded that the
STAPLE algorithm provided segmentation results that yielded more accurate or equivalent
results compared to the automated segmentation methods from which the STAPLE combina-
tion was based. Furthermore, the combination of three automated segmentation methods can
provide a LVEF estimate as accurate as the one provided by an expert.

We noted that the bias related to eachMSimethod was correlated with the sum of the biases
observed in the initial methods used in the combination (r = 0.736). We also observed a reduc-
tion of the standard deviation s when combining different methods using STAPLE, compared
to the standard deviation of each individual method used in the STAPLE combination. How-
ever, the decrease in standard deviation was not directly predictable.

Table 3. Ranking of the segmentation methods according to the different combinations of methods.

Rank number Methods entering the comparison with MS corresponding to:

MS45678 MS4567 MS4568 MS4578 MS4678 MS5678

- Performance + 1 M2 M2-M3 M2 M2-M3 M2 M2

2 M3 M3 M3 M3

3 MS MS MS M1-M4 MS MS-M1

4 M1 M1-M4 M1-M4 M1-M4

5 M4 MS M4

6 M8 M8-M6 M8-M6 M8 M8 M8

7 M6 M6 M6 M6

8 M7 M7 M7 M7 M7 M7

9 M5 M5 M5 M5 M5 M5

Rank number Methods entering the comparison with MS corresponding to:

MS456 MS457 MS458 MS467 MS468 MS478 MS567 MS568 MS578 MS678

- Performance + 1 M2 M2 M2 M2 M2-M3 M2 M2 M2-M3 M2-M3 M2-M3

2 M3-MS M3 M3 M3 M3 M3

3 MS MS MS MS MS-M1 MS MS M1 MS

4 M1-M4 M1-M4 M1-M4 M1-M4 M1-M4 M1 M1 M4-MS M1

5 M4 M4 M4 M4

6 M8-M6 M8-M6 M8 M8-M6 M8 M8 M8-M6 M8 M8 M8

7 M6 M6 M6 M6 M6 M6

8 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7

9 M5 M5 M5 M5 M5 M5 M5 M5 M5 M5

Bold and italic MS highlight methods MSi at an expert-like ranking. Bold MS highlights method MSi ranked behind the experts but in front of the

individual methods used to create the combination. Italic MS highlights worst rank occupied by a method MSi.

doi:10.1371/journal.pone.0135715.t003
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Ranking provided by the eRWT approach
The eRWT approach ranked the expert delineationM2 first, and more generally, the three
expert delineations in the top three. The semi-automated methodM4 was ranked as the best
automated method to estimate LVEF.

To evaluate the STAPLE segmentation results (MSi) without using strong a priori on the
truth, the eRWT approach was systematically applied to the eight original methods and to an
MSimethod. In most cases,MSi ranked similarly to the expert delineations (M3 andM1). This
means that the STAPLE algorithm based on several automated methods provided similar
results to those obtained by experts. In one case (MS578), the rank of the STAPLE method was
less than those of experts but was still better than those of the three methods STAPLE was
based on. This suggests that the LVEF parameters were once again better estimated using the
combination of segmentation methods than using any of each initial segmentation method
used in STAPLE. Finally, in only one instance (MS4578),MSi was ranked after one of the four
methods (M4) used in the combination. However, the figures of merit showed that LVEF
parameters estimated usingMSi were better than those estimated using three of the four meth-
ods involved in the combination (M5,M7 andM8). Furthermore, results obtained with
(MS4578) were very close to those obtained withM4.

Furthermore, both supervised and unsupervised statistical approaches led to very similar
conclusions. Indeed, both approaches showed that the most accurate LVEF was obtained when
combiningM4,M5, andM6. Furthermore, both approaches showed that the poorest results
were obtained when combiningM4,M5,M7 andM8. This a posteriori consistency between
conclusions suggests that the use of the unsupervised eRWT approach was relevant in our con-
text and that the different hypotheses underlying the eRWT approach proved to be realistic.

Extension to other cardiac function parameters
The present work mainly focused on the estimation of the LVEF value. As this parameter is
derived from both end-diastolic volumes (EDV) and end-systolic volumes (ESV), additional
tests have been performed to extend our study to five other clinical parameters: the left ventric-
ular end-diastolic volumes and end-systolic volumes, the stroke volume (SV = EDV − ESV),
the epicardial volume (EpV) defined at the end-diastolic phase, and the myocardial mass
(MM = 1.05 × (EpV − EDV)). Epicardial borders, obtained on the end-diastolic phases for all
methods exceptM7, and used to study the EpV and theMM parameters, are also available on
https://github.com/frederiquefrouin/Medieval.

The eRWT approach was performed for each clinical parameter with specific settings (see
S1 Table). Results shown in S2 Table confirmed that: 1) methodM2 was the best “reference”
method, 2) the three expert delineations were ranked among the top three methods, and 3) the
semi-automated method M4 was the best automated method to estimate any clinical parame-
ter. S2 Table also showed a limitation for the study of ESV for which the ranking of the eight
original methods was quite different from the expected results, ranking for instance method
M7 first. A detailed analysis revealed the presence of an outlier with an ESV of about 430 ml
(estimated by the experts), while this ESV was less than 310 ml for all other subjects. When
removing this outlier, the ranking became similar as for the other cases, i.e. with experts meth-
ods ranked first.

The supervised evaluation based on the computation of the bias β and its associated stan-
dard deviation (s) for each segmentation method and each STAPLE combination with respect
to the reference methodM2 was performed for these five supplementary clinical parameters
(S2–S6 Figs). Our results confirmed that all clinical parameters were better estimated when
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combining segmentation methods with STAPLE than when using one of the individual meth-
ods entering the STAPLE combination.

Tests performed on the estimation of LVEF showed that the combination ofM4,M5 and
M6 provided the best estimate (Table 3). To further investigate this result, we applied the
eRWT approach to the different combinations of three automated segmentation methods
(S3–S4 Tables). Results suggest that methodMS458 is an appropriate combination, since it
ranked first or second for all clinical parameters except for the end-diastolic volume for which
it ranked in the third group of methods.

The major interest of the eRWT approach that provides a ranking of different estimation
methods based on only few a priori hypotheses is underlined here as its results appeared robust
for different clinical parameters described by a large variety of statistical distribution (S1
Table).

Limitations
As underlined in the Material and Methods section, our study focused on the left ventricle seg-
mentation. For that reason, we did not study the impact of the choice of end-diastolic and end-
systolic phases in the variability of clinical parameters. Preliminary investigations were per-
formed using the segmentation results of all cardiac phases provided by methodM5. They
showed that choosing the systolic and diastolic phases as the phases providing the smallest and
largest volumes respectively was not the largest source of variability in the LVEF estimation.
The selection of the more basal and the more apical slices to segment is another source of vari-
ability. For that point, we strongly believe that a minimal intervention of the user could help
the automated algorithms, without being time consuming.

Future directions
The statistical tools that were used for this study could also be used to compare the STAPLE
algorithm with other algorithms that have been developed to define representative contours
from a collection of contours; it could be for instance, the ones described in [7] or in [8]. This
could help identify the most efficient algorithm to combine contours. However, this would
require testing the statistical independency of σk in the eRWTmodel (Eq (1)) when comparing
different methods of combination based on the same initial methods.

Due to the difficulty in getting one or multiple expert delineations for clinical segmentation
problems, the combined use of different independent algorithms could yield a valuable alterna-
tive. Of course, the combination process requires some computing resources, which depend on
the segmentation methods involved in the combination and on the method used for combining
them (here STAPLE) but it guarantees reproducible results and manual delineation is no longer
needed. Due to the quality of results demonstrated by this study, which shows a clear improve-
ment in clinical parameter estimates using the STAPLE combinations compared to the initial
automated segmentation algorithms, it becomes feasible to use automated segmentation algo-
rithms and get stable and reliable results.

Finally our approach was dedicated to LV segmentation, but it could be easily extended to
other organs. One practical interest of such an approach is that it could help in reducing the
number of manual delineations which are very time-consuming to collect, especially for data-
bases including a large number of cases. Furthermore, we believe that the high performance
obtained by the combination is due to the complementarity of the different segmentation
approaches and that results could be less interesting when tuning parameters of a single
approach. However this latter hypothesis remains to be fully evaluated.
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Conclusion
This work aimed at determining whether combining different segmentation results using the
STAPLE algorithm could yield a final segmentation as reliable as that of an expert. This
approach was tested in the framework of the estimation of left ventricular ejection fraction on
the MICCAI 2009 cardiac cine MRI database. Both supervised and unsupervised evaluations
showed that in most cases, the cardiac function parameters were better estimated using the
STAPLE approach than using individually the segmentation methods used to create the STA-
PLE result. Moreover, the STAPLE segmentation results provided, in most cases, similar esti-
mates to the ones obtained based on manual delineations performed by an expert. The results
show that combining different independent automated segmentation methods using the STA-
PLE approach yielded segmentations that were as accurate as those provided by expert delin-
eating the left ventricular cavities.

Supporting Information
S1 Fig. Comparison of LVFE estimated by the different methods with LVFE provided by
methodMS123.
(PDF)

S2 Fig. Comparison of EDV estimated by the different methods with EDV provided by
methodM2.
(PDF)

S3 Fig. Comparison of ESV estimated by the different methods with ESV provided by
methodM2.
(PDF)

S4 Fig. Comparison of SV estimated by the different methods with SV provided by method
M2.
(PDF)

S5 Fig. Comparison of EpV estimated by the different methods with EpV provided by
methodM2.
(PDF)

S6 Fig. Comparison ofMM estimated by the different methods withMM provided by
methodM2.
(PDF)

S1 Table. Range of values and setting of eRWT for the different clinical parameters.
(PDF)

S2 Table. Ranking of the eight original methods provided by eRWT for the different clini-
cal parameters.
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S3 Table. Ranking of the ten combinations of three automated methods (among 5) using
STAPLE for endocardial based indices.
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S4 Table. Ranking of all the combinations of automated methods using STAPLE for epicar-
dial based indices.
(PDF)
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