L. H. Burckle, Wind-Driven Upwelling in the Southern Ocean and the Deglacial 968, 2009.

M. A. Arthur, W. E. Dean, and K. Laarkamp, Organic carbon accumulation and preservation in surface sediments on the Peru margin, Chemical Geology, vol.152, issue.3-4, pp.273-286, 1998.
DOI : 10.1016/S0009-2541(98)00120-X

A. Bakun, Global climate change and intensification of coastal upwelling, Science, vol.972, issue.247, pp.198-201, 1990.

A. Bakun and S. J. Weeks, The marine ecosystem off Peru: What are the secrets of its fishery productivity and what might its future hold?, Progress in Oceanography, vol.79, issue.2-4, pp.290-975, 2008.
DOI : 10.1016/j.pocean.2008.10.027

C. Basak, E. E. Martin, K. Horikawa, and T. M. Marchitto, Southern Ocean source of 977 14C-depleted carbon in the North Pacific Ocean during the last deglaciation, Nature, vol.978, issue.3, pp.770-773, 2010.

F. Behar, V. Beaumont, and H. L. Penteado, Rock-Eval 6 technology: performances 980 and developments. Oil & Gas Science and Technology -Rev, pp.111-134, 2001.

A. L. Berger, A Simple algorithm to compute long term variations of Daily or monthly 982 insolation Institut d'Astronomie et de Geophysique, p.983, 1978.

P. Böning, H. J. Brumsack, E. Bottcher, B. Schnetger, C. Kriete et al., Geochemistry of Peruvian near-surface sediments, Geochimica et Cosmochimica Acta, vol.68, issue.21, p.986, 2004.
DOI : 10.1016/j.gca.2004.04.027

P. Böning, T. Shaw, K. Pahnke, and H. J. Brumsack, Nickel as indicator of fresh organic matter in upwelling sediments, Geochimica et Cosmochimica Acta, vol.162, pp.99-108, 2015.
DOI : 10.1016/j.gca.2015.04.027

I. Brodie and A. E. Kemp, Variation in biogenic and detrital fluxes and formation of 990 laminae in late Quaternary sediments from the Peruvian coastal upwelling zone, pp.385-398, 1994.

K. W. Bruland, E. L. Rue, G. J. Smith, and G. R. Ditullio, Iron, macronutrients and diatom 993 blooms in the Peru upwelling regime: brown and blue waters of Peru, Marine Chemistry, vol.994, pp.93-81, 2005.

A. Maldonado, J. P. Sachs, and A. J. Schauer, Mid-Holocene mean climate in the south 997 eastern Pacific and its influence on South America, Quat. Int, vol.253, pp.55-66, 2012.

G. Sanchez, R. Calienes, and S. Zuta, The 1997-98 El Niño and its effects on the coastal 1199 marine ecosystem off Peru. CalCOFI Rep, pp.62-86, 2000.

B. Sarbas and U. Nohl, The GEOROC database -a decade of "online geochemistry, 2009.

C. E. Savrda and D. J. Bottjer, Oxygen-related biofacies in marine strata: an overview and 1203 update Modern and ancient continental shelf 1204 anoxia, pp.201-219, 1991.

F. Scholz, C. Hensen, A. Noffke, A. Rohde, V. Liebetrau et al., Early 1208 diagenesis of redox-sensitive trace metals in the Peru upwelling area ? response to 1209 ENSO-related oxygen fluctuations in the water column, Geochimica et Cosmochimica, 1210.

F. Scholz, J. Mcmanus, and S. Sommer, The manganese and iron shuttle in a modern euxinic basin and implications for molybdenum cycling at euxinic ocean margins, Chemical Geology, vol.355, pp.56-68, 1213.
DOI : 10.1016/j.chemgeo.2013.07.006

F. Scholz, J. Mcmanus, A. Mix, C. Hensen, and R. Schneider, The impact of ocean deoxygenation on iron release from continental margin sediments, Nature Geoscience, vol.24, issue.6, pp.433-437, 2014.
DOI : 10.1029/2000GC000109

J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock et al., Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones, Biogeosciences, vol.12, issue.4, pp.1169-1189
DOI : 10.5194/bg-12-1169-2015-supplement

C. G. Skilbeck and D. Fink, Data report: Radiocarbon dating and sedimentation rates for 1220, 2006.

L. Stramma, G. C. Johnson, E. Firing, and S. Schmidtko, Eastern Pacific oxygen 1226 minimum zones: Supply paths and multidecadal changes, 2010.

L. Stramma, S. Schmidtko, L. A. Levin, and G. C. Johnson, Ocean oxygen minima 1229 expansions and their biological impacts. Deep-Sea Research I, pp.587-595, 2010.

U. Brgm, Université d'Orléans, 1A rue de la férollerie, 45701 Orléans CEDEX-2, France * Corresponding author. E-mail address: renatosalvatteci@gmail.com FIGURES Figure 1. A) Sea surface temperature plot over the Tropical Pacific showing locations of cores (B14, G10, G14) used in this study (black square) and cores from other studies, 2006.

M. and M. Stott, Cores V21-30, V19-28, MD76 and MD81 were used by to infer the SST gradient across the Tropical Pacific during the Holocene. Discontinuous lines indicate the main tropical undercurrents: Equatorial undercurrent (EUC), South Intermediate current (SICC) and Southern subsurface countercurrents (SSCC) and the Peru-Chile Undercurrent (PUC). B) Dissolved oxygen content in a meridional transect along 85°W, showing the principal water masses and the position of the cores, Black squares are our cores (G10 and G14), black triangles are cores of published data we discuss in the present study: ODP site 1235, 2004.

A. Mo, The discontinuous line indicate the value of 3.2 which correspond the Mo/U weight ratio in seawater, higher values than 3.2 indicate sulfidic conditions. E) Authigenic Re/Mo ratio (y-axis inverted), the horizontal dashed line indicates the value of 0.4x10 -3 which corresponds to the ratio of the concentration of these metals in the sea-water (Crusius et al., 1996); values higher (equal or lower) than 0.4x10 -3 indicate suboxic (sulfidic) conditions. F) Nickel EF as a proxy for export production, The acronyms listed as in Figure 2