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Abstract
Pituitary gonadotropins, FSH and LH, control gonad activity in vertebrates, via binding to

their respective receptors, FSHR and LHR, members of GPCR superfamily. Until recently, it

was accepted that gnathostomes possess a single FSHR and a single LHR, encoded by

fshr and lhcgr genes. We reinvestigated this question, focusing on vertebrate species of

key-phylogenetical positions. Genome analyses supported the presence of a single fshr
and a single lhcgr in chondrichthyans, and in sarcopterygians including mammals, birds,

amphibians and coelacanth. In contrast, we identified a single fshr but two lhgcr in basal tel-

eosts, the eels. We further showed the coexistence of duplicated lhgcr in other actinoptery-

gians, including a non-teleost, the gar, and other teleosts, e.g. Mexican tetra, platyfish, or

tilapia. Phylogeny and synteny analyses supported the existence in actinopterygians of two

lhgcr paralogs (lhgcr1/ lhgcr2), which do not result from the teleost-specific whole-genome

duplication (3R), but likely from a local gene duplication that occurred early in the actinopter-

ygian lineage. Due to gene losses, there was no impact of 3R on the number of gonadotro-

pin receptors in extant teleosts. Additional gene losses during teleost radiation, led to a

single lhgcr (lhgcr1 or lhgcr2) in some species, e.g. medaka and zebrafish. Sequence com-

parison highlighted divergences in the extracellular and intracellular domains of the dupli-

cated lhgcr, suggesting differential properties such as ligand binding and activation

mechanisms. Comparison of tissue distribution in the European eel, revealed that fshr and
both lhgcr transcripts are expressed in the ovary and testis, but are differentially expressed

in non-gonadal tissues such as brain or eye. Differences in structure-activity relationships

and tissue expression may have contributed as selective drives in the conservation of the

duplicated lhgcr. This study revises the evolutionary scenario and nomenclature of gonado-

tropin receptors, and opens new research avenues on the roles of duplicated LHR in

actinopterygians.
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Introduction
In teleost species, as in other vertebrates, reproduction is controlled by the brain-pituitary-
gonad axis. The pituitary gonadotropins, follicle stimulating hormone (FSH) and luteinizing
hormone (LH), are key hormones in the regulation of gametogenesis and steroidogenesis in
both males and females [1]. Together with the pituitary thyrotropin (TSH), and the chorionic
gonadotropin (CG) in primates, the gonadotropins are heterodimeric glycoproteins, composed
of a common alpha subunit and a beta subunit that confers the biological specificity of the hor-
mone [1–2]. After their characterization in mammals, LH and FSH have been demonstrated in
the other tetrapods, as well as in teleosts and chondrichthyans, indicating the presence of the
two gonadotropins in early gnathostomes [3].

LH and FSH exert their actions via binding to specific membrane receptors, LH receptor
(LHR) and FSH receptor (FSHR), which belong to seven transmenbrane domain, G protein-
coupled receptor (GPCR) superfamily, and to leucine-rich-repeat containing G protein-cou-
pled receptor (LGR) subfamily [4]. CG acts via binding to the LH receptor, also named
LHCGR [4]. Molecular studies by various research groups characterized a single fshr gene and
a single lhcgr (synonymous lhr) gene in an increasing number of extant gnathostome species,
including various teleosts [4–18], thus paralleling the duality of the pituitary gonadotropins
[19].

Previous phylogeny studies of teleost gonadotropin receptor sequences, indicated that tele-
ost LHR may separate into two clades [20–21]. Comparative genomics has revealed that a
whole-genome duplication event (named 3R, for third round of genome duplication) occurred
specifically in the teleost lineage [22]. The two LHR types may thus have resulted from the tele-
ost 3R. As only one or the other of the two LHR types was found in given extant teleost species
[21], this may suggest that the 3R would have been followed by alternative losses of one or the
other lhcgr duplicated gene. Based on the finding that teleost dual lhcgr were mutually exclu-
sive, and located on the same locus, another hypothesis was also proposed, that they may not
result from gene duplication, but from interallelic conversion [21].

Our studies of the draft genomes of the European eel (Anguilla anguilla) and Japanese eel
(Anguilla japonica), representative species of a basal group among teleosts (Elopomorphs)
[23], revealed a larger conservation of duplicated genes in the eels, as compared to other teleost
species. This is illustrated by a larger number of hox genes in the eels than in the other, more
recently emerged, teleosts [24–25]. This also applies to genes involved in the neuro-endocrine
systems. For instance, eels are so far the only teleost species to have conserved up to three kiss
receptor genes [26]. Therefore in the present study, we investigated whether the eels may have
conserved putative duplicated genes for gonadotropin receptors.

Previous studies in the Japanese eel, reported the partial cDNA cloning of a single fshr and a
single lhcgr (lhr) [27], as well as the full-length cloning of cDNA encoding a single functional
FSHR and a single functional LHR, respectively [28–30]. In the European eel, one full-length
cDNA encoding a functional FSHR was also cloned and characterized [31]. Japanese eel fshr
and lhcgr transcripts are expressed in female ovary and male testis and show expression
changes during induced sexual maturation in both females and males [27,30].

In the present study, we successfully identified within the draft genomes of the European
and Japanese eels, a single fshr gene, but two lhcgr genes, named lhcgr1 and lhcgr2, providing
the first evidence of the conservation of coexisting duplicated lhcgr in vertebrates. We isolated
cDNA sequences of the single fshr and of the duplicated lhcgr1 and lhcgr2 in the European eel.
Quantitative PCR (qPCR) revealed differential tissue expression patterns of fshr and of the two
lhcgr1 and lhcgr2 mRNA, which might have contributed to the maintenance of the duplicated
lhcgr genes in the eels.
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Based on our first evidence of two lhcgr in the eel, we reinvestigated the presence and num-
ber of gonadotropin receptor genes in other teleost species and found the conservation of two
lhcgr in some other extant teleosts. These data open new research avenues for basic and applied
fish reproductive endocrinology. To further elucidate the evolutionary history of gonadotropin
receptors, we also identified new fshr and lhcgr sequences in genomes of key representative
gnathostome species, including two chondrichthyans, the little skate (Leucoraja erinacea), and
the elephant shark (Callorhinchus milii), a non-teleost actinopterygian which has diverged
before the teleost-specific 3R, the spotted gar (Lepisosteus oculatus), and a representative spe-
cies of an early diverging lineage among sarcopterygians, the coelacanth (Latimeria chalum-
nae). Gene prediction, phylogeny and synteny analyses allowed us to propose a new scenario,
suggesting that a single copy of fshr gene would have been conserved throughout vertebrate
evolution, while duplicated lhcgrmight have originated early in the actinopterygian lineage,
before the teleost-specific third round of whole-genome duplication.

Material and Methods

Ethics statement
Complementary DNA cloning, and transcript tissue distribution studies in the European eel
(Anguilla anguilla) were performed using total RNA samples, which had been already isolated
and used in our previous studies [26,32–33], thus avoiding the sacrifice of additional eels, con-
sidered as endangered species.

Gene and protein nomenclature
Gene and protein nomenclatures were standardized in the present text for all species by gene
symbol in lowercase italic and protein symbol in uppercase non-italic.

In silico prediction of gonadotropin receptor genes
Eel gonadotropin receptor genes. Genes encoding gonadotropin receptors were sought

by Blast searches [34] using the Japanese eel (Anguilla japonica) fshr and lhcgr cDNA
sequences (AB360713, EU635883, AY742794, AY742795, [27–29]), against the European and
Japanese eel genomic sequence database (Eelgenome.org; NCBI) [24–25]. Exons and introns
were annotated using the package CLCMain Workbench (CLC Bio, Qiagen, Denmark).

Gonadotropin receptors from other teleosts. Using the FSHR and the two LHR protein
sequences identified in the European eel in this study as queries (tBlastn), fshr and lhcgr genes
were sought and annotated (if not yet predicted) in the increasing number of teleost genomes
available in Ensembl or NCBI (see S1 Table).

Gonadotropin receptor genes from other vertebrates. In addition to the already known
vertebrate gonadotropin receptors, fshr and lhcgr genes were also sought in genomes of other
vertebrate species of key-phylogenetic positions (S1 Table): in two chondrichthyans, an elas-
mobranch, the little skate, Leucoraja erinacea and a holocephalan, the elephant shark, Callor-
hinchus milii, in a basal sarcopterygian fish, the coelacanth, Latimeria chalumnae, in various
sauropsids including avians, crocodilians, chelonians and squamates (e.g. chicken, Gallus gal-
lus; white-throat sparrow, Zonotrichia albicollis; American alligator, Alligator mississipiensis;
Chinese alligator, Alligator sinensis; Chinese soft-shelled turtle, Pelodiscus sinensis; painted tur-
tle, Chrysemys picta; green anole, Anolis carolinensis; Burmese python, Python bivittatus; king
cobra, Ophiophagus hannah) and in a non-teleost actinopterygian, the spotted gar, Lepisosteus
oculatus.

Duplicated LH Receptors in Actinopterygians
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Gene coding sequences (CDS) were annotated or corrected by comparison with well-known
orthologous CDS from other species, in respect with the canonical splice site rule using CLC
Main Workbench (S1 Table).

cDNA cloning of European eel gonadotropin receptors
The predicted European eel fshr, lhcgr1 and lhcgr2 CDS sequences were completed and con-
firmed by cDNA cloning. Specific cloning primers were designed on both extremities and
inside the predicted CDS sequences, using Primer3 browser [35] (S2 Table). First strand
cDNAs were synthesized from total RNA samples previously prepared from testis and ovary of
silver European eels [26,33]. One μg was reverse transcribed using superscript III (Invitrogen,
Carlsbad, CA, USA), random primers (50 ng) (Invitrogen) and oligo(dT)18 (50 μg) (Roche,
Mannhein, Germany), at 50°C for 60 min, after an initial step at 25°C for 10 min. PCR were
performed using GoTaq mix (Promega, Fitchburg, WI, USA) on ovary and testis cDNAs. PCR
amplifications were performed on the Life Express Thermal Cycler (Hangzhou Bioer Technol-
ogy Co., Ltd, Hangzhou, China) with the following thermal conditions: after an initial step of
95°C for 10 min, five cycles at 95°C for 30 sec, annealing temperature ranging from 65°C to
62°C for 30 sec, 72°C for 2 min, followed by 30–40 cycles with annealing temperature ranging
from 55 to 53°C for 30 sec, and a final extension at 72°C for 5 min. Lhcgr1 cDNA was cloned
from the ovary, fshr and lhcgr2 cDNAs from the testis. For lhcgr2 cloning, cDNA templates
were previously denaturated during 10 min at 95°C. Amplified products were separated on aga-
rose gel and purified using QIAquick gel extraction kit (Qiagen, Vento, Netherlands). Purified
PCR fragments were sequenced directly, or after subcloning into a pGEM-T Easy Vector (Pro-
mega), by the sequencing service of GATC Biotech (Constance, Germany).

Prediction of gonadotropin receptor protein sequences and domains
Nucleotide sequence translation and first methionine were predicted using the package CLC
Main Workbench. The signal peptide cleavage site was determined using SignalP [36] and
putative transmembrane helices were predicted using TOPCONS [37]. Searches for motifs and
sequence patterns were performed by comparison with protein families databases on ExPASy
server [38]. Leucine-rich repeats were identified using Pfam database [39] and the recent crys-
tallography study of human FSHR extracellular domain [40–41]. Potential tyrosine sulfation
sites were predicted by sulfosite browser with 80% prediction sensitivity [42] and palmitoyla-
tion sites in the ICD were predicted using PalmPred browser [43].

Phylogeny analysis and domain comparison of gonadotropin receptors
Seventy eight gonadotropin receptor sequences of representative vertebrates were collected
from the available databases of NCBI and Ensembl, including 33 sequences defined in the pres-
ent study and 45 sequences previously published (S1 Table). Multiple alignments were per-
formed using ClutstalW and were manually adjusted taking into account the receptor topology
to improve the alignment accuracy. The phylogeny of gonadotropin receptors was inferred by
Maximum Likelihood using PhyML with the WAG model of substitution [44] combined to the
neighbor-joining interchange (NNI) method on Seaview browser [45]. A tree was generated
and robustness of the phylogeny assumption was evaluated by the approximate likelihood test
(aLRT) SH-like branch support and by bootstrapping procedure from 500 data set replicates.
The sequence of the glycoprotein hormone receptor of an early chordate, the lancelet (Bran-
chiostoma floridae), (XP_002610242) was designated to root the tree (S1 Table).
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Synteny analysis of gonadotropin receptors
Flanking genes of the three gonadotropin receptors in European and Japanese eel draft
genomes were sought by Blast searches. Only a limited number of flanking genes could be
annotated due to the current size of the scaffolds. The Spotted gar, a non-teleost actinoptery-
gian, which we showed to possess fshr, lhcgr1 and lhcgr2, was chosen as reference to study the
genomic regions of the gonadotropin receptors. At the beginning of our study, the spotted gar
genome was assembled at the level of chromosome but was non-annotated. The flanking genes
of the spotted gar gonadotropin receptors were identified by blasting the contigs
(AHAT01001660 to AHAT01001713) against the zebrafish protein dataset, using CLC Main
Workbench. In the course of our study, an annotated version of the spotted gar genome
became available in Ensembl and NCBI and was in agreement with our gene synteny
predictions.

In addition to the spotted gar, fshr, lhcgr1 and lhcgr2 syntenic regions were compared using
Genomicus (version 7.5) [46], Ensembl and NCBI genome visualization browser, in teleost spe-
cies that have retained either one or both duplicated lhcgr1 and lhcgr2, in representative tetra-
pods, including human, and in a basal sarcopterygian, the coelacanth.

Tissue distribution of gonadotropin receptors transcript levels in the
European eel

RNA samples and cDNA synthesis. Tissue distribution analysis was performed on RNA
samples from 8 female silver migrating eels caught in the Loire River in France and previously
prepared [32–33]. Total RNA extracted from ovary, olfactory bulb, mesencephalon and dien-
cephalon, telencephalon, cerebellum, medulla oblongata, pituitary, eyes, liver, intestine, muscle,
adipose tissue, gills, and thyroid follicles were used. Previously prepared RNA samples from
testis [26] from 8 male silver eels were also analyzed. The silver stage is the last continental
phase of the eel life cycle. The silver eels are ready to perform the oceanic reproductive migra-
tion, but are still immature, the ovary being at the pre-vitellogenic stage, and the testis at the
spermatogonial stage. Four hundred ng of total RNA were reverse transcribed using Super-
script III (Invitrogen) and random primers (50 ng) (Invitrogen), at 50°C for 60 min after an
initial step of 25°C for 10 min.

Quantitative PCR primer design and analyses. Eel specific primer sets for each gonado-
tropin receptor were designed using Primer3 [35] on two successive exons, or on exon junc-
tions, of the extracellular domain. Various primer set combinations were tested and compared.
Efficiency and amplification specificity were checked for each primer set. The sets with the
higher efficiency (100% for fshr and lhcgr1 and 87% for lhcgr2) were chosen for the following
quantification experiment (S2 Table). Quantitative PCR (qPCR) product was sequenced to
control the primer specificity.

Messenger RNAs were assayed using Light Cycler System (Roche) with the LightCycler Fas-
tStart Master plus SYBR Green I kit (Roche) as recommended by the manufacturer. The final
primer concentration used was 500 nM. Each sample was run in duplicate. The PCR conditions
were 95°C for 10 min followed by 50 cycles at 95°C for 5 sec, 60°C for 10 sec and 72°C for 10
sec. The specificity of amplified qPCR products, was checked by melting curve analysis. Rela-
tive transcript levels were quantified using standard curves prepared with cDNA from tissue
samples in which they were abundant, i.e. ovarian, telencephalon, or testis, for lhcgr1, lhcgr2,
and fshr, respectively. Results were expressed as arbitrary units of gonadotropin receptor tran-
script level / total RNA level, and normalized to the mean expression value in the ovary, con-
sidered as 1.
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Results, Discussion, and Conclusions

A single fshr but two lhcgr are present in basal teleosts, the eels
Prediction of a single fshr gene in both European and Japanese eel draft genomes. Blast

searches using the fshr cDNA sequence cloned in the Japanese eel (AB360713; [28]) allowed us
to retrieve one scaffold covering the full-length fshr cDNA in the Japanese eel genome, as well
as in the European eel genome (S1 Fig).

Prediction of two lhcgr genes in both European and Japanese eel draft genomes. Blast
of the lhcgr cDNA sequences previously reported in Japanese eels (AY742795; [27] Jeng et al.
2007 and EU635883; [29]) against the Japanese eel genome, allowed the prediction of two lhcgr
genes located on two distinct scaffolds (S1 Table). One lhcgr gene corresponds to the cDNA
sequence identified by Kazeto et al. [29]. We named it lhcgr1 according to phylogenic and syn-
teny analyses (see sections below). The other lhcgr showed high sequence identity with the par-
tial cDNA sequence identified by Jeng et al. [27] and was named lhcgr2. Blast of the two
Japanese eel predicted lhcgr sequences against the European eel genome also allowed the identi-
fication of two lhcgr genes located on two distinct scaffolds. European eel lhcgr2 sequence
could be only partially predicted, due to low assembly resolution or ambiguities of the Euro-
pean eel draft genome. To confirm the presence of three gonadotropin receptors in the eels and
complete the predicted coding sequences, the cDNA for fshr, lhcgr1 and lhcgr2 were cloned in
the European eel.

Cloning of the cDNAs of the three European eel gonadotropin receptors. Fshr cDNA
(2040 bp) was cloned using testis RNA (S2 Fig). The cloned sequence shared 99.7% identity
with the predicted European eel fshr CDS and the recently published European eel fshr cDNA
cloned from ovarian RNA by Minegishi et al. [31] (AB700600). Few mismatches observed
between the predicted genes and the corresponding transcripts may reflect some polymor-
phism. These differencies concerned the third base position of the codons, with no impact on
amino acid sequences. A partial cDNA of 1913 bp encoding lhcgr1 was cloned from ovarian
RNA (S3 Fig). This sequence covered 90.4% of the predicted CDS (2115 bp) of European eel
lhcgr1. It shared 99% identity with the European eel lhcgr1 CDS and 98.1% identity with the
Japanese eel lhcgr1 cDNA (EU635883; [29]). The full-length coding sequence of the European
eel lhcgr2 was cloned (2104 bp) using testis RNA (S4 Fig). It shared 98.5% identity with our
predicted Japanese eel lhcgr2 CDS. It is the first time that duplicated lhcgr transcripts are iso-
lated in a vertebrate species.

Prediction of the protein domains of the eel gonadotropin receptors. European eel fshr
CDS encoded a 660 amino acids (aa) FSHR including a 17 aa signal peptide (S2 Fig). Lhcgr1
and lhcgr 2 CDS encoded a 704 aa LHR1 including a 26 aa signal peptide, and a 700 aa LHR2
including a 17 aa signal peptide, respectively (S3 and S4 Figs). The three eel gonadotropin
receptors showed the typical topology of the glycoprotein hormone receptors with a long N-
terminal extracellular domain (ECD), corresponding to about the half of the whole amino acid
sequence (322 aa, 349 aa and 359 aa, for FSHR, LHR1 and LHR2, respectively) (Fig 1). The N-
terminal cysteine box (cb1) of ECD of the eel receptors included 4 cysteines for both eel LHR
as for mammalian glycoprotein hormone receptors, but only 2 cysteines for FSHR as in some
other teleosts. The typical leucine-rich repeat domain (LRRD) of the ECD was composed of 11
leucine-rich repeats (LRR) for the three eel receptors as in mammals (Figs 1 and 2). The succes-
sion of LRR confers to the ECD a concave shape that is involved in the hormone binding [40–
41,47–50]. The C-terminal part of the ECD, which corresponds to the hinge region, was delim-
ited in the three eel receptors by two conserved cysteine boxes (cb2 and cb3) containing 3 cys-
teines each. The transmembrane domain (TMD) of the three eel receptors (263 aa, 267 aa, and
264 aa, for FSHR, LHR1 and LHR2 respectively) was composed, as for all GPCR, of highly
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conserved seven transmembrane alpha-helices (TH), connected by 3 extracellular (el) and 3
intracellular (il) loops. The receptors terminated with an intracellular domain (ICD) corre-
sponding to a C-terminal cytosolic tail (58 aa, 62 aa, and 60 aa, for FSHR, LHR1 and LHR2
respectively). The ICD is involved in GPCR signal transduction and receptor intracellular traf-
ficking and desensitization (for review [51]).

Comparison of the gene structure of the three eel gonadotropin receptors. Comple-
mentary DNA sequences allowed us to assess the intron-exon gene structure of the eel gonado-
tropin receptors. The European eel fshr gene consisted of 10 exons and showed the typical
exon-intron structure described for the human fshr [52], (Fig 1). The coding part of first exon
(156 bp) encoded the signal peptide and the N-terminal region of the ECD, including the first
cysteine box (cb1) and one of the LRR. A succession of 7 small exons (69-81bp) and a larger
9th exon (188 bp) encoded the major part of the ECD, including all the other LRRs, and two
cysteines of the second cysteine box (cb2). The large 3’-terminal “rhodopsin like” exon, covered
the C-terminal region of the ECD, including the third cysteine of the cb2, the hinge region and

Fig 1. Gene organization of gonadotropin receptors in human, eel, spotted gar and elephant shark. Numbers cover the 11 exons of the lhcgr and the
10 exons of the fshr. On the coding sequences are indicated: signal peptide, extracellular domain including β-strand of leucin-rich repeat (LRR),
transmembrane helices (TH), intracellular and extracellular loops (il and el, respectively) and intracellular domain. Cysteine residues, potential N-
glycosylation and sulfation sites are also illustrated.

doi:10.1371/journal.pone.0135184.g001
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Fig 2. Phylogeny relationships of the gonadotropin receptors. Phylogram of maximum likelihood
relationships between LHR and FSHR amino acid sequences of representative gnathostome species.
Bootstrap values over 500 replicates (%) are given next to each node in red and SH-like aLRT values (%) are
given in black (when different from the boostrap value). Asterisks indicate partial sequences. The
actinopterigyan FSHR and LHR clades are highlighted to facilitate the phylogram examination. The sequence
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the cb3, together with the TMD and ICD. Prediction of the fshr gene structure in other verte-
brates such as chondrichthyans, non-teleost actinopterygian and various teleosts (Fig 1 and S1
Table) showed a similar typical 10 exon structure, with the exception of salmonid and perco-
morph fshr, which present several additional exons as previously reported [21,53].

The European eel duplicated lhcgr genes were both organized in 11 exons as the human
lhcgr (Fig 1) [4,54]. As compared to eel fshr gene, they included an additional exon between the
9th exon and the large terminal exon. As for human lhcgr, this additional small exon (72 bp
and 69 bp for eel lhcgr1 and lhcgr2, respectively) encoded the third cysteine of the cb2, and a
part of the hinge region. This typical 11-exon structure was also predicted for lhcgr from vari-
ous vertebrates, including chondrichthyans, a non-teleost actinopterygian and various teleosts
[21] (Fig 1 and S1 Table) (see next section).

Identification of additional gonadotropin receptors in representative
gnathostome genomes
To investigate the evolution of the gonadotropin receptors in gnathostomes, we conducted a
search for gonadotropin receptor sequences within 30 vertebrate genomes including two chon-
drichthyans, one basal sarcopterygian fish, 12 tetrapods, 1 non-teleost actinopterygian and 14
teleosts.

A single fshr and one or two lhcgr are present in teleosts. The screening of the available
representative teleost genomes revealed, as in eels, the presence of one fshr and of both lhcgr1
and lhcgr2 genes in seven other species, e.g. in a characiforme, the Mexican tetra, Astyanax
mexicanus, in a salmonid, the Atantic salmon, Salmo salar, in two atherinomorphs, the platy-
fish, Xiphophorus maculatus and the guppy, Poecilia reticula, and two cichlids, the Nile tilapia,
Oreochromis niloticus, and zebra mbuna,Maylandia zebra, and in a pomacentridae, the bicolor
damselfish, Stegastes partitus (S1 Table). The coexistence of duplicated lhcgr in various teleost
species clearly refutes one previous assumption of two mutually exclusive lhcgr in this lineage
[21]. In Atlantic salmon, in addition to the lhcgr2 gene, we succeeded to annotate duplicated
lhcgr1 genes (S1 Table and S5 Fig). The large number of lhcgr1 in this species may result from
the recent salmonid tetraploidization (4R) [55].

In contrast, we found a single fshr gene and alternatively only one or the other of the two
lhcgr genes, in seven other teleost annotated genomes. One lhcgr homologous to eel lhcgr2 (see
section Phylogeny) was identified in a cypriniforme, the zebrafish, Danio rerio, while lhcgr
homologous to eel lhcgr1 (see section Phylogeny) was identified in a gadiforme, the Atlantic
cod, Gadus morua, in a beloniformes, the Japanese medaka, Oryzias latipes, in a gasterostei-
forme, the stickleback Gasterosteus aculeatus, and in two tetraodontiformes, the pufferfish, Tet-
raodon nigroviridis and the fugu, Takifugu rubripes. In another cypriniforme, the common
carp, Cyprinus carpio carpio, two putative lhcgr2 were identified (one full-length and one par-
tial with potential frameshifts), that may result from the recent cyprinid tetraploidization (4R)
[56–57] (S1 Table).

A single fshr and two lhcgr are present in a non-teleost actinopterygian. We could pre-
dict one fshr and two lhcgr (S1 Table), homologous to eel lhcgr1 and lhcgr2, respectively (see
section Phylogeny), in the genome of a holostean actinopterygian, the spotted gar. The fshr
consisted of a succession of 10 exons, as human and eel fshr (Fig 1), and encoded a 719 aa
receptor. Both lhcgr were organized in 11 exons as eel lhcgr1 and lhcgr2, and human lhcgr (Fig

of the glycoprotein hormone receptor (GpHR) of an early chordate, the lancelet, was designated to root the
tree.

doi:10.1371/journal.pone.0135184.g002
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1), and encoded a LHR1 (696 aa) showing 53% identity with eel LHR1, and a LHR2 showing
59% identity with eel LHR2, respectively (Table 1). Considering that the holostean lineage has
diverged before the teleost-specific 3R, the duality of lhcgr in the gar indicates that a gene dupli-
cation event has already occurred before the teleost 3R.

A single fshr and a single lhcgr are present in sarcopterygians. In a basal sarcopterygian,
the coelacanth, one partial lhcgr could be predicted on scaffold JH127072 (S1 Table). This par-
tial sequence consisted of 10 exons giving a 632 aa protein, the first exon encoding for the sig-
nal peptide being missing. In addition, we could identify one fshr gene (S1 Table) on scaffold
JH127072, positioned in tandem with the lhcgr. The fshr sequence consisted of 10 exons and
encoded for a 690 aa receptor. As in the coelacanth, a single fshr and a single lhcgr are present
in the other sarcopterygians, including tetrapods. No additional lhcgr could be found in any
sarcopterygians. In the course of our investigation of genome databases, we observed that some
sauropsid species possess fshr but may have lost lhcgr. In birds, fshr and lhcgr are still present
and positioned in tandem, as in coelacanth and mammals. In contrast, we could not find any
lhcgr in the genome of three squamates, the anole lizard, the Burmese python and the king
cobra. Furthermore, we found several premature stop codons and frameshifts in the putative
lhcgr sequences of a chelonian, the painted turtle and of crocodilians, the Chinese and Ameri-
can alligators (S1 Table). This suggests that a loss of a functional LHR would have occurred
several independent times during the sauropsid radiation, in squamate, chelonian and croco-
dilian lineages [58–59]. Similarly, our recent studies on the kisspeptin system revealed multiple
and independent losses of kiss and kiss receptor genes during the sauropsid radiation [60].

A single fshr and a single lhcgr are present in chondrichthyans. In the elephant shark
genome, a single fshr and a single lhcgr could be predicted on scaffold 134 and scaffold 49,
respectively (S1 Table). They showed the typical gene organization consisting of 10 exons and
11 exons (Fig 1), respectively. Fshr encoded a 741 aa receptor, and lhcgr a 709 aa receptor.
From the little skate contig data, we succeeded to assemble a single partial fshr encoding 570 aa
and a single lhcgr encoding 691 aa (S1 Table).

In conclusion, genome searches indicated that among all gnathostomes investigated, the
actinopterygians, including teleost and non-teleost species, were the only group with two lhcgr.
This suggests that duplicated lhcgrmay represent a specific feature of the actinopterygian
lineage.

Phylogeny of gonadotropin receptors
To better understand the relationships between gnasthostome gonadotropin receptors, a
molecular phylogeny (Fig 2) analysis was conducted on 78 gonadotropin receptor protein
sequences from 35 species (S1 Table). The glycoprotein hormone receptor of a cephalochor-
date, the lancelet, was used to root the tree. The gnathostome FSHR and LHR formed two dis-
tinct monophyletic groups (Fig 2).

The FSHR from the two chondrichthyan species clustered together at the base of the
gnathostome FSHR group. The osteichthyan FSHR subdivided in two clades, one formed by
the sarcopterygian and the other by the actinopterygian FSHR. Among the sarcopterygians, the
coelacanth FSHR branched at the basis of the tetrapod FSHR, in respect to its phylogenic posi-
tion. Similarly, among the actinopterygians, the spotted gar FSHR branched at the basis of tele-
ost FSHR, in agreement with its phylogenic position. The European and Japanese eel FSHR
branched at the basis of the other teleost FSHR, consistent with their corresponding phylogenic
position. The topology of the teleost FSHR clade followed the known phylogenetic relation-
ships among teleosts.
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Table 1. Overall and subdomain amino acid sequence comparison between the European eel LHR1, LHR2 and FSHR and representative species
(% of identity).

Overall ECD TMD ICD

LHR1 LHR2 FSHR LHR1 LHR2 FSHR LHR1 LHR2 FSHR LHR1 LHR2 FSHR

European eel LHR1 49.7 44.9 43.6 34.1 68.4 69.9 16.9 13.5

European eel LHR2 49.7 42.2 43.6 32.1 68.4 63.9 16.9 17.1

European eel FSHR 44.9 42.2 34.1 32.1 69.9 63.9 13.5 17.1

Actinopterygian LHR1

Spotted gar 59.6 47.9 47.6 56.5 44.0 34.4 73.3 63.5 74.8 27.2 18.9 25.6

Japanese eel 98.2 49.5 44.7 98.4 43.1 33.9 98.5 68.8 70.2 95.5 15.6 10.8

Mexican tetra 64.2 47.5 43.5 57.8 44.0 31.9 78.2 61.2 67.1 46.5 19.2 20.8

Japanese medaka 59.4 44.8 41.2 49.7 40.0 30.1 77.5 60.1 65.7 44.4 18.0 13.0

Southern platyfish 60.8 46.7 41.9 51.5 42.2 32.2 79.0 60.8 64.1 43.6 21.8 14.3

Ntile ilapia 61.7 46.0 42.6 52.3 41.7 32.7 77.1 59.7 65.7 49.3 21.8 13.0

Actinopterygian LHR2

Spotted gar 48.6 54.0 46.6 43.2 50.8 34.5 64.9 65.4 71.0 22.2 28.6 23.7

Japanese eel 49.6 97.9 42.0 43.6 97.4 31.5 68.1 98.9 63.9 16.9 96.7 18.6

Zebrafish 47.2 57.6 43.6 40.3 52.0 32.2 65.7 73.0 68.7 19.5 32.0 14.3

Mexican tetra 47.9 56.9 43.0 42.9 52.3 32.2 66.8 72.6 67.9 14.6 26.6 15.8

Southern platyfish 45.5 54.4 42.0 39.4 46.5 30.3 65.7 73.4 66.8 11.9 28.9 13.6

Nile tilapia 41.5 54.5 42.3 41.0 49.4 30.8 65.3 72.6 66.8 15.6 14.7 15.4

Sarcopterygian LHR

Human 47.6 46.4 46.9 40.0 41.9 34.1 66.8 61.6 71.0 21.7 18.8 28.8

Chicken 48.4 45.5 46.4 40.7 40.3 33.2 68.7 62.7 72.9 22.6 16.9 27.1

Xenopus 45.4 44.6 45.6 36.0 37.8 32.3 68.3 63.5 72.4 18.8 17.1 25.6

Coelacanth 47.5* 43.9* 46.2* 38.2* 35.7* 32.0* 69.9 63.5 73.3 22.4 21.4 26.6

Chondrichthyan LHR

Elephant shark 45.6 46.0 47.1 38.7 39.8 34.7 65.7 64.3 73.3 14.8 17.5 21.1

Actinopterygian FSHR

Spotted gar 43.2 40.4 66.1 33.9 31.3 61.6 69.1 62.7 77.9 11.1 14.6 48.2

Japanese eel 44.8 42.0 99.2 33.6 31.6 99.1 70.2 64.3 99.6 13.5 17.1 98.3

Zebrafish 43.6 43.1 70.1 31.5 32.8 59.3 69.1 64.6 82.8 16.2 20.0 77.6

Mexican tetra 44.6 43.0 70.5 34.1 32.8 62.5 68.7 64.6 81.7 15.6 18.3 68.9

Japanese medaka 40.5 38.4 53.4 28.1 27.5 39.7 67.6 61.2 75.2 14.3 18.7 45.5

Southern platyfish 40.2 38.7 56.0 28.1 27.5 43.8 67.6 62.7 76.3 11.7 17.3 45.5

Nile tilapia 41.5 38.3 55.8 39.1 26.3 42.5 68.7 62.7 77.5 15.6 20.0 47.0

Sarcopterygian FSHR

Human 43.2 41.6 54.7 32.6 32.2 42.0 66.8 62.7 75.1 19.0 18.1 47.0

Chicken 42.3 40.3 55.7 30.6 29.5 42.0 67.6 62.4 75.6 18.2 21.1 56.3

Xenopus 43.6 40.2 54.6 31.3 30.6 40.1 69.9 61.2 76.7 18.7 18.6 51.6

Coelacanth 44.6 43.1 56.9 33.8 33.2 43.0 69.1 64.6 76.7 17.3 21.1 58.1

Chondrichthyan FSHR

Elephant shark 43.3 41.4 49.5 33.6 32.9 36.4 68.7 63.5 75.2 14.7 15.6 29.2

Asterisk (*) indicates partial sequence. Comparisons of FSHR, LHR1 and LHR2 amino acid full-length and subdomains sequences between European eel

and Japanese eel are indicated in bold.

doi:10.1371/journal.pone.0135184.t001
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The LHR from the two chondrichthyan species formed a distinct clade at the base of all
gnathostome LHR, in respect to their phylogenic position. The osteichthyan LHR group subdi-
vided in two clades: one clade of sarcopterygian LHR including the coelacanth LHR and the
tetrapod LHR and one clade of actinopterygian LHR. The actinopterygian LHR clearly further
separated into two clades, each well supported (99–100% bootstrap values), and including both
gar and eel LHR1, or gar and eel LHR2. Spotted gar, European and Japanese eel LHR1 or LHR2
were at the basis of each of the two actinopterygian LHR clades, respectively, in agreement with
their phylogenic positions. For other teleost species possessing two LHR, such as Atlantic
salmon, Mexican tetra, Nile tilapia and platyfish, the duplicated LHR were distributed between
actinopterygian LHR1 and LHR2 clades, respectively, as for eels and spotted gar. In the species
where only a single LHR was found in the genome, such as zebrafish, carp, medaka, stickelback,
tetraodon, fugu and cod, the LHR clustered in one or the other of the two clades (LHR2 for
cyprinids, LHR1 for the other species). Previously characterized LHR from various teleost spe-
cies (e.g., siluridae, pleuronectidae, sparidae), for which the genome has not yet been com-
pleted, were represented in one or the other LHR clade, with a topology congruent with the
known phylogeny of the teleost radiation. One may highlight the striking case of some closely
related species, such as siluriformes [20], with the LHR of the channel catfish, Ictalurus puncta-
tus, branching within the LHR1 clade, while the LHR of the African catfish, Clarias gariepinus,
within the LHR2 clade. A similar situation was previously reported in percomorphs, between
two pleuronectiforms or between two sparidae [21]. Our finding of coexisting duplicated lhcgr
should promote further investigation to decipher if each of these species possess in fact the two
lhcgr receptors, or if alternative losses of one or the other lhcgr have occurred in closely related
species.

In conclusion, the presence of duplicated lhcgr in the eel provides the first demonstration of
the duality of lhcgr in teleosts, as previously suggested by Chauvigné et al. [21]. Furthermore,
we showed the presence of duplicated lhcgr in various other teleosts, including characids, sal-
monids, cichlids, poecilids. The presence of duplicated lhcgr genes in teleosts may have led to
the assumption that they are derived from the teleost-specific third whole-genome duplication
(3R). We recently demonstrated a 3R-origin for other duplicated glycoprotein hormone recep-
tors in teleosts, thyrotropin hormone receptors (tshra and tshrb) [33]. However, differently
from the case of tshr, our present study revealed that the duplicate lhcgr1 and lhcgr2 genes are
also present in a non-teleost actinopterygian, the spotted gar, suggesting that the lhcgr duality
in teleosts does not result from the 3R but might be derived from an anterior duplication event.
Given the presence of a single lhcgr gene in chondrichthyans and sarcopterygians including the
basal coelacanth, the most parsimonious assumption is that the lhcgr duplication event is spe-
cific to the actinopterygian lineage. In teleosts, the 3R whole-genome duplication event would
have been expected to generate further duplicated fshr, lhcgr1 and lhcgr2 genes. Given the fact
that, despite the 3R, we found no additional fshr and lhcgr genes in extant teleosts as compared
to the gar, it could be assumed that a massive loss of duplicated gonadotropin receptor genes
derived from the 3R, occurred in early teleosts. The impact of the recent tetraploidization
events (4R) that occurred in salmonids, is still evident on the number of lhcgr genes in Atlantic
salmon (Fig 2).

Synteny of gonadotropin receptors
To further elucidate the gonadotropin receptor evolutionary history, we characterized and
compared the adjacent genomic regions of each fshr and lhcgr loci, in sarcopterygians including
representative tetrapods and the basal coelacanth, in a non-teleost actinopterygian, the spotted
gar, and in teleosts including species like the eels and the tilapias which have conserved both
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lhcgr types, and species like the medaka and the zebrafish that have conserved only a single
lhcgr (lhcgr1 or lhcgr2) (Fig 3).

In human genome, which contains only a single fshr and a single lhcgr as for all sarcoptery-
gians, both receptors are positioned in tandem within the same locus (locus 2p21) [61] (Fig 3).
The arrangement in tandem led to the hypothesis that fshr and lhcgr arose from a local, small-
scale duplication of an ancestral gene, rather than from the whole-genome duplication events
that occurred in early vertebrates (2R) [52]. This tandem position was shown to be conserved
in all tetrapods [21–52–62]. In the present study, we observed a similar tandem position for
fshr and lhcgr in a basal sarcopterygian, the coelacanth (on scaffold JH127072) (S3 Table).

In the spotted gar genome, fshr and duplicated lhcgr genes were localized on the same chro-
mosome LG16. We named the spotted gar duplicate lhcgr genes according to their genomic
position: the lhcgr positioned in tandem with fshr, as in the sarcopterygians, was called lhcgr1,
while the other lhcgr, separated by around 47 genes (3Mb) from the fshr- lhcgr1 tandem, was

Fig 3. Syntenic analysis of gonadotropin receptor genomic region.Genomic regions flanking fshr and lhcgr genes were analysed in representative
vertebrate species including sarcopterygians (human, chicken, coelacanth) and actinopterygians (spotted gar, tilapia, zebrafish, medaka) by using the region
overview on the Ensembl or NCBI genome browsers. The chromosome number is indicated beside the species name. Fshr genes are indicated in red, lhcgr/
lhcgr1 in light blue and lhcgr2 in darker blue. The symbols of the genes of interest present on another genomic region in some species are indicated in green.
Genes are named according to the Ensembl nomenclature. Gene positions are given in Mega base below the symbol of the genes.

doi:10.1371/journal.pone.0135184.g003
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called lhcgr2 (Fig 3). Lhcgr2 was in a specific genomic region, sharing no paralogs with the
genes neighbouring fshr-lhcgr1 tandem. The presence of the fshr-lhcgr(1) tandem in an acti-
nopterygian as in sarcopterygians, suggests that the local duplication event that gave rise to the
tandem, would have occurred early in the gnathostome lineage. We hypothesize that a second
local duplication occurred specifically in the actinopterygian lineage, producing the second
lhcgr (lhcgr2) (Fig 4).

Synteny analysis indicated that the genomic region of the three actinopterygian gonadotro-
pin receptors has been duplicated in teleosts, likely as a result of the teleost 3R (Fig 3). Con-
served 3R-duplicated genes in this region include for instance thbs2, psme4, nrxn1, fbxo11,
prcke, ppm1 and prph2 (Fig 3). Synteny analysis confirmed that despite the 3R, teleost genomes
contained no additional gonadotropin receptor genes as compared to spotted gar, due to selec-
tive gene losses. These losses have concerned not only duplicate gonadotropin genes but also
some other duplicate neighbouring genes (e.g. erlec1,msh2, ston1, kcnk12, stf2d1,mertk) (Fig
3). Noticeably, as a result of these gene losses, the fshr- lhcgr1 typical tandem position was not
conserved in extant teleosts, in which fshr and lhcgr1 are located on separate chromosomes (e.
g. in Nile tilapia, medaka) (Fig 3). This is in agreement with previous synteny analysis of teleost
gonadotropin receptors [21], and with an early study by Oba et al [53] who first indicated by
RFLP analysis that lhcgr and fshr were not genetically linked in tilapia. Teleost fshr conserved
some neighbouring genes including at the proximal 3’ position the 3R-duplicated nrxn1, and at
5’ position the 3R-duplicated fbxo11 (Fig 3), in agreeement with previous studies [21].

In Nile tilapia, a species that has conserved the duplicated lhcgr, both lhcgr1 and lhcgr2 were
maintained co-localized on the same chromosome (LG13), as in the spotted gar, and were sep-
arated from each other by a distance of 350 kb covering 14 predicted genes. Each lhcgr had con-
served some of the syntenic neighbouring genes, as compared to the spotted gar. In particular,
lhcgr1 was flanked at the proximal 3’ by the 3R-duplicated nrxn1 and at 5’ by the single ston1,
and 3R-duplicated fbxo11, while lhcgr2 at 3’ by the single sft2d1 and at 5’ by the singlemertk.

Synteny analysis confirmed that, due to additional losses of lhcgr genes, some teleost species,
despite the 3R, have conserved even less receptors than the gar, as illustrated by the loss of
lhcgr1 in zebrafish and of lhcgr2 in medaka (Fig 3). In zebrafish, the syntenic blocks including
sft2d1 at 3’, andmertk at 5’, were found flanking the lhcgr2, as in Nile tilapia and spotted gar.
Similarly, medaka lhcgr1 conserved typical neighbouring genes such as 3R-duplicated nrxn1
and single ston1, as in Nile tilapia and spotted gar.

The current draft genomes of the European and Japanese eels allowed only a partial recon-
struction of fshr, lhcgr1 and lhcgr2 genomic regions (S6 Fig). Fshr conserved synteny included
3R-duplicated nrxn1 and fbxo11, lhcgr1 synteny included single ston1, and lhcgr2 was sur-
rounded by single sft2d1 andmertk, as in spotted gar and Nile tilapia.

In conclusion, synteny analysis supported the phylogeny analysis, indicating the presence of
duplicated lhcgr in actinopterygians, and of their origin before teleost emergence, indepen-
dently of teleost 3R (Fig 4). The synteny analysis revealed that only single genes for fshr, lhcgr1
and lhcgr2 were maintained after the teleost 3R, subsequent to multiple gene deletions, which
also led to the physical separation of the fshr- lhcgr(1) tandem (Fig 4). As discussed by George
et al. [52], fshr-lhcgr tandem in tetrapods forms, together with nrxn1, a highly conserved synte-
nic block, which might be associated with evolutionary constraint that retain regulatory
sequences [52]. In teleosts, fshr and lhcgr1 were separated on different chromosomes, but both
conserved a 3R-duplicated flanking nrxn1 gene. Additional studies on gene expression regula-
tion in teleosts may provide information whether separate fshr and lhcgr1 genes are submitted
to independent or parallel expression regulation mechanisms, as well as on the potential role of
nrxn1. In the same perspective, future studies should investigate how differential regulation of
duplicated lhcgr in actinopterygians, may contribute to the fine-tuning of LH action.
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Proposed nomenclature for actinopterygian, including teleost, duplicated
LH receptor genes
Given our findings that two LH receptor genes coexist in holostean and teleost species, as a
result of local gene duplication early in the actinopterygian lineage, we proposed a phylogeneti-
cally-founded nomenclature. Based on their orthology with the single sarcopterygian lhcgr, and
on their origin from a local gene duplication, we classically named the duplicated actinoptery-
gian lhcgr genes, lhcgr1 and lhcgr2. According to the synteny analysis in the gar, the duplicate
lhcgr gene that had conserved the close tandem position with fshr (an ancestral feature in
osteichthyans) was named lhcgr1. The other gar lhcgr gene was named lhcgr2. In teleosts, the
whole genome duplication (3R) would have potentially generated a further doubling of LH
receptor genes as compared to the gar. However, due to gene losses early after 3R, and before
the emergence of the basal group of Elopomorphs, extant teleost species investigated so far do
not possess more lhcgr genes than the gar. Furthermore, phylogeny analysis clearly clustered
teleost and gar sequences in a single lhcgr1 clade, and a single lhcgr2 clade. Thus, based on the
origin of duplicated lhcgr in actinopterygians before the 3R, and on their molecular phylogeny
relationships, the same nomenclature, lhcgr1, lhcgr2, was applied in teleosts, as in the gar. A
specific nomenclature had been previously developed for teleost dual LH receptor isoforms,
“lhcgrba, lhcgrbb”, the first letter “b” designing 3R-paralogon “b” and the second letter “a or b”

Fig 4. Origin and evolution of duplicated lhcgr in actinopterygians. Fshr-lhcgr tandem was inherited by actinopterygians and sarcopterygians from a
commun osteichthyan ancestor. The fshr-lhcgr tandem was conserved in sarcopterygians including tetrapod [52] and actinistian (coelacanth) lineages. In
actinopterygians, a gene duplication event occurred before the emergence of teleosts, leading to two lhcgr genes, one maintained in tandem position with
fshr, and named lhcgr1, and the other one named lhcgr2. The tandem fshr- lhcgr1 and the lhcgr2were conserved on the same chromosome after the
emergence of the holostean (spotted gar) lineage. Teleost whole-genome duplication (3R) potentially generated duplicated fshr, lhcgr1 and lhcgr2. Early
after the 3R, multiple and selective gene losses led to the conservation of only single genes for fshr, lhcgr1 and lhcgr2, and to the separation of the fshr-lhcgr
(1) tandem. Additional loss events of lhcgr1 or lhcgr2 have occurred independently throughout teleost radiation, so that some extant teleosts have conserved
only a single lhcgr, lhcgr1 or lhcgr2, according to species.

doi:10.1371/journal.pone.0135184.g004
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one or the other isoform [21]. This nomenclature was based on the hypotheses of two mutually
exclusive LH receptor isoforms in teleosts, located on the same locus, and resulting from inter-
allelic gene conversion and not from gene duplication [21]. These previous hypotheses are
invalidated by the present findings. Our proposed nomenclature is based on the new evidences
that two LH receptor genes coexist in actinopterygian species, are not located on the same
locus, and result from local gene duplication in the actinopterygian lineage, before the emer-
gence of teleosts. In teleosts, duplicated lhcgr1 and lhcgr2 genes correspond to previously
designed lhcgrbb and lhcgrba isoforms, respectively.

Structure comparison of the duplicated LH receptors with special
reference to the eel
Amino acid sequence comparison revealed that European eel LHR1 and LHR2 have largely
diverged (49.7% identity), almost as much as compared to FSHR (44.9 and 42.2%, respectively)
(Table 1). When comparing European and Japanese eel, a striking conservation was found for
receptor orthologs (> 97%). A higher conservation was observed between each eel duplicate
LH receptor and its respective orthologs from other actinopterygians, as compared to the
duplicate paralogs: identity ranged between 54 and 64.2% for orthologs and between 41.5 and
47.9% for paralogs (Table 1). In order to further analyze the evolution of duplicated LHR, we
compared the amino acid sequences of each functional domain (Table 1 and S7 Fig). Compari-
son of protein domain sequence identity between the duplicate European eel LH receptors
showed a high conservation of TMD (68.4%), a lower conservation of ECD (43.6%) and a very
low conservation of ICD (16.9%).

Divergence in the extracellular domain between the duplicate LHR. Amino acid
sequences of ECD, a region mainly involved in ligand binding, revealed some divergence
between eel duplicated LHR (43.6% identity). As expected, further divergence was observed
between each eel LHR and eel FSHR (34.1 and 32.1%, for LHR1 and LHR2, respectively).
Among actinopterygians, ECD sequence identity was slightly higher between LHR orthologs
(49.7 to 57.8% for LHR1, 46.5 to 52% for LHR2) than between LHR paralogs (39.4 to 44%).
The conservation of the ECD between all actinopterygian LHR paralogs was still higher than
between LHR and FSHR (30.1 to 34.5% identity) (Table 1).

N-glycosylation sites could be predicted in the ECD of duplicate eel LHR, 3 for LHR1 and 5
for LHR2 (S7 Fig). These sites included for both LHR, a site on LRR7 common to all glycopro-
tein hormone receptors [19,63], and a site on cb2 conserved among all LHR, except spotted gar
LHR2. A N-glycosylation site on LRR3 appeared specific to actinopterygian LHR2. In human,
directed-mutagenesis of potential N-glycosylation sites of gonadotropin receptors, or disrup-
tion of glycosylation, demonstrated that glycosylation plays a role in the proper folding of the
nascent protein into a mature receptor able of binding hormone and signaling [64–65].

An O-sulfation tyrosine site could be predicted in the hinge region of eel LHR2 but not eel
LHR1 (S7 Fig). It corresponds to the sulfated tyrosine in the hinge region of human LHCGR
(Tyr331), FSHR (Tyr335) and TSHR (Tyr385), that has been postulated to be a prominent fea-
ture, conserved among all the GPHR, and involved in receptor activation [40–41,66–67]. This
sulfation tyrosine site was predicted in some but not all teleost LHR2, and in none of teleost
LHR1 nor teleost FSHR [68]. The lack of potential sulfation tyrosine site in most teleost gonad-
otropin receptors suggests alternative receptor activation mechanisms than the one requiring
the sulfation of the hinge region, as described in mammals [41].

Amino acid comparison of the ECD revealed residues specific of one or the other duplicate
LHR, which may constitute fingerprints of each LHR type (S7 Fig). These fingerprints were
more marked in teleosts than in spotted gar, indicating that the duplicate LHR may have
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further diverged in teleosts. Some of these specific residues could be observed in the LRRD
domain (S7 Fig). We also found specific features in the hinge region, the LHR1 showing a con-
served motif negatively charged (AFHTWRR), that was deleted in the eel LHR2 and substituted
in the other teleost LHR2 (S7 Fig). At the level of the Cb3, eel and other teleost LHR1 possess a
proline residue (Pro359 for eel LHR1), as sarcopterygian LHR as well as spotted gar LHR1 and
LHR2, while proline is substituted by alanine (Ala360) in eel LHR2, or by alanine or glutamic
acid in other teleost LHR2 (S7 Fig). Minor residue replacements were also observed between
eel duplicated LHR, as for instance in the LRR6, the substitution of Glu160 in LHR1 by aspartic
acid (Asp161) in LHR2 (S7 Fig). In human LHCGR, replacement by site directed mutagenesis
of the corresponding Glu154 by Asp was shown to provoke an alteration of the response inten-
sity [69].

All these variations in ECD sequences suggest that duplicated LHR may have diverged in
their binding and activation properties in teleosts. So far functional studies on teleost recombi-
nant gonadotropin receptors, using transiently transfected mammalian cell lines (Cos-7 or
HEK), were performed either on FSHR, or on one or the other of the duplicate LHR, depending
of the LHR type isolated [29–31,68,70–71]. Data on ligand selectivity for eel LHR receptor are
only available for eel LHR1 and not for LHR2. Japanese eel LHR1 is activated by eel recombi-
nant LH (recLHR) and not to by eel recFSH, but can also be cross-activated by heterologous
gonadotropins such as human chorionic gonadotropin (hCG), human FSH and trout LH [29–
31,68]. Binding specificity toward homologous LH, with no cross-reaction of homologous
FSH, has also been reported for LHR in other teleosts, whatever the LHR type: for LHR1 in
channel catfish [15], Nile tilapia [68] and medaka [72]; for LHR2 in African catfish [73–74],
zebrafish [75], salmon [13–14], European sea bass, Dicentrarchus labrax [76], and Senegalese
sole, Solea senegalensis [21]. This indicates that both duplicate LH receptor types would be spe-
cific of LH in teleosts. Further functional studies, using recombinant receptors in species hav-
ing conserved duplicated LHR, are still required to determine whether the dissimilarities
between duplicated LHR ECD may affect ligand binding and receptor activation.

Conservation of the transmembrane domain between the duplicate LHR. The amino
acid comparison of the TMD showed a high identity between the duplicated eel LHR (68.4%)
as well as with FSHR (69.9 and 63.9%) (Table 1). A strong amino acid identity was particularly
observed among gnathostome gonadotropin receptors for the transmembrane helices 2, 3, 6
and 7, which include key residues participating to the network involved both in the transition
of the inactive toward active receptor conformation and in binding the protein G [77] (S7 Fig).
Nevertheless, some specific residue divergences between the duplicate LHR could be also
noticed within the TMD (S7 Fig). As discussed above for ECD, these fingerprints in the TMD
were more marked in teleosts than in spotted gar, indicating that the TMD of the duplicate
LHR have further diverged in teleosts (S7 Fig). The phosphorylation site (TVR) in the il3 of the
mammalian FSHR was highly conserved in the other gnathostome FSHR including the eel
FSHR (S7 Fig). Noticeably, this phosphorylation site was retrieved in spotted gar LHR1, eel
LHR1 and some other teleost LHR1, but not in any LHR2 nor in any sarcopterygian LHR (S7
Fig). In the rat, phosphorylation of FSHR il3 was identified as an important determinant in
arrestin association [78–79]. Some differences between duplicate LHR TMD sequences might
thus confer differential properties in the regulation of signal transduction.

High divergence in the cytosolic tail between the duplicate LHR. The sequence compari-
son of the ICD showed a very low identity between the duplicated eel LHR (16.9%). A higher
conservation was noticed among teleost LHR1 (43.6–49.3% identity) as compared to teleost
LHR2 (14.7–32%) (Table 1). Specific signatures for teleost LHR1 included amino acids shared
with other gnathostome LHR but not LHR2 (such as R652 of eel LHR1), as well amino acids
conserved only among actinopterygian LHR1 (Cys697) or among teleost LHR1 (AYHIK) (S7
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Fig). Nevertheless, some sites were highly conserved among all gonadotropin receptors, such as
the characteristic cysteine palmitoylation sites of the ICD of the GPCR (e.g. Cys643-Cys644 for
human LHCGR), which are common to all LGR among GPCR, and involved in receptor inter-
nalization and recycling [80–81]. Gonadotropin receptor signaling in mammals is mainly
mediated by adenylyl cyclase /cAMP pathway, but alternative signaling, such as phospholipase
C/inositol phosphate (IP) and beta-arrestin pathways, are also requested for global activation
of the response [82]. To our knowledge, investigations on teleost recombinant gonadotropin
receptors mainly focused on the cAMP pathway, while a single study also addressed the IP
pathway [73]. The large dissimilarity in cytosolic tail sequences between the duplicated LHR
may reflect divergence in downstream intracellular signaling cascade and/or receptor internali-
zation and desensitization process. Such differences may represent selective forces that have
contributed to the conservation of the duplicated LHR. There are still limited data on the char-
acterization of the signaling pathway activation and receptor trafficking in teleost fishes. Future
investigations on the duplicated LH receptors are needed to characterize their respective activa-
tion specificities, and further infer the functional evolution of the LHR.

Comparative tissue distribution of the three eel gonadotropin receptors. Development
of specific qPCR for eel fshr and two lhcgr allowed analyzing their tissue distribution in Euro-
pean silver eels.

Eel fshr, lhcgr1 and lhcgr2 transcripts are all expressed in the gonads. The three gonadotro-
pin receptors were easily detectable in the immature ovary of female silver eels. The mean ovar-
ian transcript level was used as a reference for comparison with the other tissues (Fig 5). The
three receptors were also well detectable in immature testis of male silver eels, with a much
higher expression of fshr in testis as compared to ovary. Previous qPCR data in Japanese eel
also indicated the expression of fshr and lhcgr in both ovary and testis [27–28,30]. Early radio-
receptor and autoradiographic studies in the European eel ovary, revealed binding sites for
carp LH and hCG in both granulosa and external theca layers [83]. In Japanese eel, FSHR was
immunolocalized in the testis, in both Sertoli cells surrounding spermatogonia cysts and inter-
stitial Leydig cells [28].

In other female teleosts, in situ hybridization (ISH) revealed that fshr transcript is strongly
expressed in granulosa cells, and weakly in theca cells, in chub mackerel, Scomber japonicus
[84], Atlantic halibut,Hippoglossus hippoglossus [85] and Atlantic salmon [86]. Lhcgr1 tran-
script is also expressed in granulosa and weakly in theca cells in chub mackerel [84] and [85]
Atlantic halibut. Similarly lhcgr2 transcript is highly expressed in granulosa cells and weakly in
theca cells in Atlantic salmon [86]. In medaka, immunocytochemistry (ICC) revealed LHR1
protein labeling in granulosa and theca cells [72].

In male teleosts, fshr transcript is localized by ISH in Sertoli cells, and a weak expression is
also detected in Leydig cells in African catfish [87]. ISH and ICC studies also showed FSH
expression in both Leydig and Sertoli cells in Senegalese sole [21,88]. Lhcgr2 is expressed in
Leydig cells in African catfish [87], and in both Sertoli cells and Leydig cells in zebrafish [89].
In Senegalese sole, ISH and ICC revealed lhcgr2 transcript and LHR2 in Leydig cells and free
spermatids, supporting a direct role of LH on spermiogenesis [21,88,90].

In tetrapods, as in the other vertebrates, fshr and lhcgr are mainly expressed in the gonads
[52]. The present study supports that fshr as well as duplicated lhcgr1 and lhcgr2 have all con-
served a role in the control of gonadal function in the eel. Future studies, including ISH, should
aim at further analyzing the cellular localization of the expression of the duplicated lhcgr in the
eel, as well as in the other fish species, which have also conserved duplicate lhcgr.

Eel fshr, lhcgr1 and lhcgr2 are differentially expressed in the brain (Fig 5). The three gonado-
tropin receptors are also expressed in non-gonadal tissues, as analyzed by qPCR in the female
European silver eel. Lhcgr2 showed a remarkable expression in the whole brain, higher than the
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expression measured in the ovary, while lhcgr1 transcript was at the limit of detection. Fshr was
highly expressed in some brain regions, such as olfactory bulb and telencephalon (Fig 5). High
brain expression of fshr was also reported in female Japanese eel at previtellogenic and late
vitellogenic stages [30].

Fshr transcript is also found in the brain of males or females from other teleost species, such
as Atlantic salmon [86], and Atlantic halibut [85]. Lhcgr2 transcript is expressed in the brain in
various teleosts, including African catfish, Atlantic salmon and European sea bass
[20,73,86,91]. Lhcgr1 is also expressed in the brain of the Korean rockfish, Sebastes schlegelii
[92] and Atlantic halibut [85], while its expression is not detectable in the brain of the channel
catfish [15].

Lhcgr expression has been reported in the brain of amphibians, birds and mammals includ-
ing human [93–95]. In mammals, various functions for brain LHR have been suggested such as
GnRH regulation [96], sensory modulation, or fetal neurogenesis [97]. In African clawed frog,
Xenopus laevis, LH controls courtship songs via its cognate receptor expressed in forebrain
vocal nuclei [95]. To our knowledge there is no report on FSHR in the brain of tetrapods. The
fact that fshr and lhcgr are highly expressed in brain in the eel as in some other teleosts, opens
new research avenues on the potential roles of gonadotropin signaling in the vertebrate brain.
In the eel, the remarkable differential expression of the duplicated lhcgr in brain specifically
confers to lhcgr2major roles in brain functions.

Eel fshr, lhcgr1 and lhcgr2 are differentially expressed in other non-gonadal tissues. Both
lhcgr1 and lhcgr2, but not fshr, transcripts were abundant in eye in the eel (Fig 5). Lhcgr2 tran-
script has also been reported in eye of the European sea bass and mummichog, Fundulus het-
eroclitus [91,98]. In human, lhcgr transcript and LHCGR protein have been identified in retinal

Fig 5. Tissue distribution of fshr, lhcgr1 and lhcgr2 transcripts in European eel.Messenger RNA levels for fshr (B), lhcgr1 (C) and lhcgr2 (D) were
assayed by qPCR in various tissues of silver female European eels: Ovary (Ov); brain dissected in five parts: olfactory bulbs (Ob) telencephalon (Tel), di- and
mes-encephalon (Di/Mes), corpus cerebellum (Cb), and medulla oblongata (Mo); pituitary (Pit); eyes; liver (Liv); intestine (Int); muscle (Mus); adipose tissue
(AT); gills and thyroid follicles (TF). Receptor mRNA levels in testis of silver male European eels were also assayed. Data are normalized to total RNA and
the expression level in the ovary was set as 1. Means are given ± SEM (n = 8 eels).

doi:10.1371/journal.pone.0135184.g005
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photoreceptors, where LH receptor could be involved in local modulation of vision [99]. The
expression of lhcgr1 and lhcgr2 in eye of the eel may reflect an ancestral role in this organ,
which may have been conserved by both duplicated receptors.

Fshr and lhcgr1 were well expressed in the eel gills, while lower levels of lhcgr2 were found
(Fig 5). Fshr transcript is also expressed in the gills of Senegalese sole [21], lhcgr1 in the gills of
channel catfish [16] and Atlantic halibut [84], and lhcgr2 in the gills of Atlantic salmon, Euro-
pean sea bass and mummichog [20,91,98]. This suggests that gonadotropin receptors may par-
ticipate in the complex multi-endocrine regulation of gill function in teleosts.

Fshr as well as both lhcgr1 and lhcgr2 were expressed at a low level in the eel adipose tissue.
Lhcgr2 transcript was also reported in the fat tissue of European sea bass [91]. FSHR transcript
and protein have been detected in the abdominal fat tissue of female chicken, where FSH stim-
ulates lipid accumulation [100].

Eel fshr, lhcgr1 and lhcgr2 showed a very low expression, at the limit of detection level, in the
other tissues investigated, such as pituitary, liver, intestine, muscle and thyroid. Lhcgr1 tran-
script is also undetectable by PCR in various non-gonadal tissues, including liver, intestine,
heart and spleen, in Korean rockfish [92] and medaka [72]. In contrast, lhcgr1 transcript has
been demonstrated in muscle, liver, stomach and heart in channel catfish [16] and in spleen in
goby [101]. Lhcgr2 transcript has been observed also in liver, muscle and heart in African cat-
fish [73], and in intestine and pituitary in European sea bass and mummichog [91,98]. This
suggests variations in the non-gonadal target tissues and roles of LH, according to teleost
species.

Evolutionary scenario of gonadotropin receptors. Genome search, phylogeny and syn-
teny analyses allowed us to revise the number and evolutionary history of gonadotropin recep-
tors in gnathostomes (Fig 6). A single copy of fshr gene is present in gnathostomes. A single
lhcgr gene is also present in sarcopterygians, including in the basal representative species, the
coelacanth, and it is positioned in tandem with fshr. This tandem, also observed in a holostean
actinopterygian, the gar (for fshr-lhcgr1), is likely the result of a local duplication of an ancestral
gonadotropin receptor gene in early gnathostomes (Fig 6).

In the elephant shark, fshr and lhcgr were not found positioned in tandem but each gene
was on a distinct scaffold (S3 Table). This questions the origin of the fshr-lhcgr tandem. This
suggests either that the tandem arose only in osteichthyan lineage after the emergence of the
chondrichthyans, or that the tandem position was not maintained in the extant chondrichth-
yans. Further analysis using other chondrichthyan genomes would allow a better resolution of
the glycoprotein hormone receptor evolution history.

Among tetrapods, genome search in sauropsids revealed multiple and independent lhcgr
gene mutation or loss events in the squamate, crocodilian, and chelonian lineages. This sug-
gests that gonadotropin action would be mediated only by fshr in these species. In contrast,
birds have conserved lhcgr and fshr, positioned in tandem, as in the other tetrapods (Fig 3).

Our investigation revealed that duplicated lhcgr (named lhcgr1 and lhcgr2) are present in
some actinopterygians, including the eel and some other teleosts, as well as in a holostean spe-
cies, the gar. The coexistence of duplicated lhcgr in various actinopterygians, including extant
teleosts, rules out a former hypothesis, that the duality of teleost receptors would result interal-
lelic gene conversion and not from gene duplication [21]. We raised the hypothesis that these
duplicated lhcgr genes may be the result of a second local gene duplication event, that would
have occurred early in the actinopterygian lineage, before the split between holosteans and tele-
osts (Fig 6).

These duplicated lhcgr, which are present in a non-teleost actinopterygian, the gar, are
clearly not the result of the teleost-specific whole-genome duplication (3R). Furthermore, phy-
logeny and synteny analyses show that there was no impact of 3R on the number of
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Fig 6. Current status and evolutionary scenario of gonadotropin receptors in gnathostomes. The presence of gonadotropin receptors (fshr, lhcgr,
lhcgr1, lhcgr2) in representative extant species of gnathostome lineages is shown on the right. In some species, the presence or absence of some
gonadotropin receptors could not be assessed, due to the lack of genomic data, and these cases are indicated by a question mark. Two gonadotropin
receptors, fshr and lhcgr are present in gnathostomes including chondrichthyans and osteichthyans. They were positioned in tandem in the early
osteichthyes. The fshr-lhcgr tandem was maintained after the split between sarcopterygians and actinopterygians. Gene loss of lhcgr in various sauropsid
groups led to the presence of only fshr in some extant sauropsids. A duplicated lhcgrwas generated by a local gene duplication event in the actinopterygian
lineage before the emergence of teleosts. Teleost whole-genome duplication (3R) generated duplicated fshr, lhcgr1 and lhcgr2. Multiple and selective gene
losses after the 3R led to the maintenance of only a single copy of fshr, lhcgr1 and lhcgr2 and to the physical separation of the tandem fshr-lhcgr. Additional
lhr losses occurred independently through the teleost radiation, i.e. lhcgr1was lost in cyprinidae and lhcgr2 in some percomorphs. Recent tetraploidization
(4R) event has generated additional copies of lhcgr1 in salmonids.

doi:10.1371/journal.pone.0135184.g006
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gonadotropin receptor genes in extant teleosts, due to multiple gene losses after the 3R. Our
investigation in the eel, a representative species of a basal group of teleosts (elopomorph) sug-
gests that these losses of 3R-duplicated gonadotropin receptor genes would have occurred soon
after the 3R. Thus, only one copy of the 3R-duplicated fshr, lhcgr1 and lhcgr2 was retained,
while the other one was lost early during teleost radiation (Fig 6), likely via the rediploidization
process that follows polyploidization event. In agreement with previous studies [21,53], one
consequence of these 3R-duplicate gonadotropin gene losses in teleosts, is the separation of the
fshr-lhcgr tandem in all extant teleosts, with potential implications in the regulatory mecha-
nisms of their expression.

Additional loss events of lhcgr1 or lhcgr2 have occurred independently throughout teleost
radiation, so that some extant teleosts have conserved only a single lhcgr (lhcgr1 or lhcgr2),
according to species (Fig 6). The loss of lhcgr1 in cyprinids and the preferential loss of lhcgr2
that occurred repeatedly through the percomorph lineage, suggest that the presence of two
lhcgrmay not be fully stabilized in teleosts. This diversity in lhcgr duplicate gene conservation
or losses among teleosts, also raises the question of the possible presence of duplicate receptors
in teleost species for which only one lhcgr has been characterized, while genomic data are still
limited.

The recent tetraploidization events (4R) that occurred independently in cyprinids and sal-
monids, are reflected by some additional numbers of lhcgr genes, such as in Atlantic salmon
(two lhcgr1 genes) (Fig 6). In contrast, loss of the other putative 4R-duplicated gonadotropin
receptors in these species, illustrates the progressive gene fractionation occurring in polyploid
genome [55].

Comparisons between gonadotropin receptor amino acid sequences revealed some diver-
gences between teleost LHR1 and LHR2 paralogs, mainly concerning the ECD and ICD
domains. These differences, which may affect receptor-binding properties, signaling pathways
and recycling, might represent selective forces that have contributed to the conservation of
duplicate LHR. We also compared the tissue distribution of the expression of fshr and dupli-
cated lhcgr transcripts, using the eel as a model. All three gonadotropin receptors are expressed
in the ovary and testis, and are thus involved in the mediation of the control of male and female
reproductive function. In non-gonadal tissues, differential expression patterns were revealed.
For instance, high expression of fshr and lhcgr2, but very low lhcgr1 expression was observed in
the brain. Different gene regulatory environments could have driven the duplicated lhcgr to
distinct extra-gonadal functions. This may act as evolutionary forces in the conservation of the
duplicated lhcgr. The present discovery of duplicated lhcgr in actinopterygians, including vari-
ous teleost species of biological, ecological and aquaculture relevance, opens new research ave-
nues in basic and applied reproductive endocrinology, as well as in evolutionary biology. It will
promote future investigation on the comparative function and regulation of gonadotropin
receptors, in order to decipher the physiological significance of the conservation of duplicated
LHR receptors in various species.

Supporting Information
S1 Fig. Annotation of fshr, lhcgr1 and lhcgr2 CDS from contig and scaffold sequences of
European eel genome assembly.
(TIF)

S2 Fig. Nucleotide and amino acid sequence of the European eel FSHR.Nucleotide and
deduced amino acid sequence of the eel fshr CDS. Numbers on the left refer to position of the
nucleotide residues (top) and the amino acid (bottom). The predicted signal peptide is indi-
cated in bold italics. Cysteine residues are indicated by red boxes. Putative sites for N-linked

Duplicated LH Receptors in Actinopterygians

PLOS ONE | DOI:10.1371/journal.pone.0135184 August 13, 2015 22 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135184.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135184.s002


glycosylation are indicated by grey boxes. The eleven β-strand motifs of the LRR, identified by
Pfam Blast and sequence alignment with the human FSHR, are indicated in blue light boxes.
The position of the seven predicted alpha-helices is shown as yellow boxes. Potential sites for
PKC phosphorylation are indicated by orange boxes.
(TIF)

S3 Fig. Nucleotide and amino acid sequence of the European eel LHR1. Nucleotide and
deduced amino acid sequence of the eel lhcgr1 CDS. For symbols see legend of S3 Fig.
(TIF)

S4 Fig. Nucleotide and amino acid sequence of the European eel LHR2. Nucleotide and
deduced amino acid sequence of the eel lhcgr2 CDS. For symbols see legend of S3 Fig.
(TIF)

S5 Fig. Annotation of fshr, lhcgr1 and lhcgr2 CDS from contig and scaffold sequences of
Atlantic salmon genome assembly.
(TIF)

S6 Fig. Reconstructed genomic syntenic regions of eel fshr, lhcgr1 and lhcgr2.
(TIF)

S7 Fig. Amino acid sequence alignment of gonadotropin receptors. Sequences of LHR and
FSHR of representative vertebrate species, including chondrichthyan sarcopterygians and acti-
nopterygians, were aligned using ClustalW and manually adjusted. Cysteine residues are in bold
red. Cysteine residues potentially involved in a disulfide bond are highlighted in blue. Orange
residues represent conserved residues (> 85%) among FSHR and LHR as determined from a
general alignment including additional sequences (56 FSHR and 69 LHR sequences, S1 Table).
Signal peptides are indicated in italics. Leucine-rich repeats (LRR) of the extracellular domain are
delimited by a horizontal black line, and beta-strands of the LRR are highlighted in light blue.
Conserved transmembrane alpha-helices (TH) of the transmembrane domain are highlighted in
grey. Putative N-glycosylation sites are highlighted in green, potential tyrosine sulfation sites in
the hinge region are in red, potential phosphorylation sites in pink and palmytoilation site in
green. Specific LHR1 amino acid signatures are highlighted in orange while specific LHR2 signa-
tures in yellow. Abbreviations: Cb, cysteine box; el, extracellular loop; il, intracellular loop.
(TIF)

S1 Table. References of gonadotropin receptor sequences.
(XLSX)

S2 Table. Primer sets for cloning and quantitative real-time PCR of European eel gonado-
tropin receptors.
(DOCX)

S3 Table. Database references for flanking genes of fshr and lhcgr genomic regions.
(XLSX)
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