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Abstract
The optimal coordination of the transcriptional response of host cells to infection is essential

for establishing appropriate immunological outcomes. In this context, the role of microRNAs

(miRNAs) – important epigenetic regulators of gene expression – in regulating mammalian

immune systems is increasingly well recognised. However, the expression dynamics of

miRNAs, and that of their isoforms, in response to infection remains largely unexplored.

Here, we characterized the genome-wide miRNA transcriptional responses of human den-

dritic cells, over time, to various mycobacteria differing in their virulence as well as to other

bacteria outside the genusMycobacterium, using small RNA-sequencing. We detected the

presence of a core temporal response to infection, shared across bacteria, comprising 49

miRNAs, highlighting a set of miRNAs that may play an essential role in the regulation of

basic cellular responses to stress. Despite such broadly shared expression dynamics, we

identified specific elements of variation in the miRNA response to infection across bacteria,

including a virulence-dependent induction of the miR-132/212 family in response to myco-

bacterial infections. We also found that infection has a strong impact on both the relative

abundance of the miRNA hairpin arms and the expression dynamics of miRNA isoforms.

That we observed broadly consistent changes in relative arm expression and isomiR distri-

bution across bacteria suggests that this additional, internal layer of variability in miRNA re-

sponses represents an additional source of subtle miRNA-mediated regulation upon

infection. Collectively, this study increases our understanding of the dynamism and role of

miRNAs in response to bacterial infection, revealing novel features of their internal variabili-

ty and identifying candidate miRNAs that may contribute to differences in the pathogenicity

of mycobacterial infections.
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Author Summary

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate important cellular pro-
cesses by inhibiting the expression of gene targets. In recent years, it has become clear that
miRNAs play a critical role in the regulation of the immune response to infection, a highly
complex phenotype involving the activation of both generic and infection-specific re-
sponses. However, it remains unclear to what extent miRNAs are involved in the regula-
tion of these two types of response. Here, focusing on the miRNA response to
mycobacteria, pathogens of major public health importance, we present the first compara-
tive, deep sequencing-based analysis of the miRNA response to a panel of bacterial infec-
tions. We define a set of miRNAs that play an essential role in basic cellular responses to
stress and identify pathogen-specific miRNA responses that reflect mechanisms by which
certain pathogens interfere with the host response to infection. In addition, we show that
infection can alter the expression level and proportions of miRNA isoforms, transcripts
originating from the same miRNA but with slight differences in their nucleotide se-
quences. This study highlights a novel aspect of miRNA expression dynamics upon infec-
tion and increases our understanding of miRNA-mediated mechanisms involved in host
cellular responses to infection.

Introduction
The response of host cells to microbial infection or immune activation is among the most-well
studied examples of cellular responses to external stimuli. This response is characterised by
marked changes in gene expression [1–6], which require precise coordination to establish ap-
propriate immunological outcomes, ensuring maximal protection against infection while
avoiding tissue damage. The crucial role of microRNAs (miRNAs) – small regulatory RNAs
that mediate degradation or translational repression of thousands of target mRNAs [7–9] – in
regulating mammalian immune systems is increasingly well established. MiRNAs regulate the
development and function of immune cells and can have pro-inflammatory or anti-inflamma-
tory effects [10–14]. Furthermore, experimental data indicate that microbial infection alters the
miRNA repertoire of host cells [15,16] and that, when aberrantly expressed, miRNAs can con-
tribute to immunity-related pathological conditions, such as infectious or inflammatory dis-
eases, autoimmunity or cancer [12,14,17,18].

The advent of next-generation sequencing, in particular RNA-sequencing, has enabled the
exploration of a myriad of novel questions related to miRNA diversity. For example, besides
the detection of many novel miRNAs and the description of an increasingly broad array of
non-canonical biogenesis pathways producing functional miRNAs [19–21], RNA-seq studies
have highlighted the highly dynamic relative abundance of the 5p and 3p arms of the miRNA
duplex, a process known as arm-switching [22]. Indeed, following cleavage by Dicer, the
miRNA hairpin produces a*22-bp RNA duplex, one strand of which is preferentially incor-
porated into the RNA-induced silencing complex (RISC) as a mature, functional miRNA,
whereas the other strand has often been thought to be degraded [23]. Previously believed to be
static and dictated by the thermodynamic and structural properties of the duplex [24,25], the
choice of the dominant miRNA arm has recently been shown to be flexible across species, tis-
sues and developmental stages [22,26–31].

Deep sequencing has also revealed the presence of sequence variation among mature
miRNAs – known as isomiRs – shifting the view of miRNAs from single sequences to heteroge-
neous repertoires of multiple isoforms [32–34]. For a given miRNA, the distribution of
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different isomiRs appears to be non-random and can differ between tissues and developmental
stages [27,28,30,35–41]. Moreover, that isomiRs appear to act co-operatively with canonical
miRNA sequences, targeting common pathways to reduce the signal-to-noise ratio of mRNA
targeting [28], suggests that changes in their proportions may have functional implications for
gene regulation. Although these studies indicate that arm dominance and isomiR expression
are dynamic, the extent to which they can be altered by external stimuli, such as infection,
remains unknown.

The characterisation of the host miRNA responses to bacteria has progressed at a slower
pace than that of viral and parasitic infections [16], despite the fact that a number of bacteria
are responsible for some of the most devastating infectious diseases today. Notable among
these isMycobacterium tuberculosis (MTB), the aetiological agent of tuberculosis (TB), the
most deadly disease caused by a single bacterial agent [42]. A large number of miRNAs have
been recently described as being involved in the response to MTB and other mycobacteria [43–
55]. However, the highly heterogeneous nature of these studies—i.e., the use of different myco-
bacteria, experimental settings (patients, human cells, mice), cell types or tissues, and times
post-infection—has precluded any comparison among them, so a clear understanding of the
miRNA transcriptional response to MTB is missing. More generally, the extent to which alter-
ations in miRNA expression upon infection are specific to particular pathogens or strains, or
instead reflect general responses of host cells to infection, cell activation or inflammation re-
mains to be explored.

Here, we use deep sequencing to characterise the miRNA transcriptional response over time
of a key immune cell type – the dendritic cell (DC) – to various mycobacterial strains differing
in their virulence as well as to other intracellular bacteria outside theMycobacterium genus.
This global, unbiased approach provides a truly comparative picture of the miRNA repertoire,
including novel miRNAs, involved in immunity to MTB and, more broadly, bacteria. We de-
fined core bacterial miRNA responses, as well as responses shared between smaller groups of
pathogens or detected in a single condition that may reflect particular mechanisms of virulence
or suppression. Furthermore, we explored, for the first time, the extent to which infection im-
pacts both the relative abundance of the arms of the miRNA hairpin and the expression dy-
namics of miRNA isoforms.

Results

Expression of annotated and novel miRNAs in dendritic cells
To assess the variability of the genome-wide miRNA response to infection, we exposed human
monocyte-derived DCs from healthy donors to a diverse set of bacterial species. This panel in-
cluded three bacteria of theMycobacterium tuberculosis complex (MTBC), a group of closely
related mycobacteria that cause TB in humans or other species. Specifically, we used two viru-
lent strains ofMycobacterium tuberculosis – the reference strain H37Rv of the Euro-American
lineage (MTB-Rv) and a member of the Beijing strain of the East Asian lineage (MTB-Bj) – as
well as the attenuated strainMycobacterium bovis BCG (BCG), widely used as a vaccine against
TB. In addition, we included a Gram-positive species, Staphylococcus epidermidis (STP), and
two Gram-negative bacteria, Salmonella typhimurium (SLM) and Yersinia pseudotuberculosis
(YRS) (S1 Fig.). To study variation in miRNA transcript levels at high resolution, we performed
small RNA-sequencing (sRNA-seq) from matched non-infected and infected cells at three time
points (4h, 18h and 48h). In total, we generated 1.1 billion reads of 50 bp, corresponding to 116
samples with an average of 9.1 million reads per sample after filtering (GSE64142). Of these,
98% were mappable to the human genome while 85% of reads mapped to miRNAs in miRBase
v20 (www.mirbase.org).
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Following processing of the data (Methods and S1 Fig.), we detected 387 annotated miRNAs
that were present in three or more donors in at least one experimental condition (i.e. cells in-
fected with a given bacterium, or left uninfected, at a given time point) at a depth� 50 reads
(S1 Table). To identify putative novel miRNAs, we applied a two-step discovery and quantifica-
tion approach using miRDeep2 [56] (see Methods). Of the 369 predicted hairpins, we detected
18 putative mature miRNAs that were present at a depth� 50 reads in three or more donors in
at least one experimental condition (S2 Fig.). Of these, 5 corresponded to known snoRNAs, 8
were located in introns, 4 were antisense to genes and 1 was intergenic (S2 Table). Together,
this dataset presents a comprehensive, unbiased characterisation of the miRome of steady-state
and activated DCs.

Highly overlapping miRNA responses to diverse bacterial infections
To identify miRNAs whose expression was altered after bacterial infection, we compared in-
fected samples to the corresponding non-infected time point using the package DESeq [57]. A
total of 152 miRNAs (38%), of which 145 were previously annotated and 7 were novel, were
significantly differentially expressed (FDR-adjusted p<0.01 and |log2 fold change|>1) upon
encounter with at least one of the six bacteria. For all bacteria, the number of differentially ex-
pressed miRNAs increased over time (Fig. 1A and S1 Table). The bacteria that showed the
greatest impact on miRNA expression were YRS, MTB-Bj and MTB-Rv (“high-responders”),
while BCG, SLM and STP elicited more modest responses (“low-responders”) (Fig. 1A). In ad-
dition, unsupervised hierarchical clustering clearly separated experimental conditions into
three distinct clusters corresponding to the length of infection, with all non-infected conditions
clustering with the 4h time point (Fig. 1B), consistent with principle component analysis (S3
Fig.). Overall, these results suggest that the length of infection is a stronger driver of the
miRNA response than the identity of the bacterium.

To qualitatively assess the similarity of miRNA responses to the various bacterial infections,
we studied the overlap of differentially expressed miRNA sets. We found that over 30% of miR-
NAs were differentially expressed upon infection with five or more different bacteria, with over
80% shared between at least two independent infections (Fig. 1C). To avoid inflating the dis-
similarities between bacteria due to slight differences in fold changes, which were generally
highly correlated (S4 Fig.), we also defined miRNAs as significantly differentially expressed
when the absolute log2 fold change was less than 1 if in at least one other experimental condi-
tion the change upon infection exceeded this cut-off. Using this threshold, 64% of differentially
expressed miRNAs were altered upon infection with at least five of the six bacteria (Fig. 1C).
Consistent with their close genetic similarity, MTBC bacteria showed highly overlapping
miRNA responses (Fig. 1D). At the same time, less than 10% of miRNAs differentially express-
ed following MTB-Rv infection were unique to this bacterium, taken as a representative of the
MTBC, when compared to more distantly related, non-mycobacterial infections (Fig. 1E).
Overall, these results suggest a remarkably consistent miRNA response across diverse
bacterial pathogens.

Temporal miRNA dynamics identifies a core response to bacterial
infection
We next investigated whether miRNAs that were differentially expressed upon infection
showed similar temporal responses across bacteria, using the Short Time-series Expression
Miner (STEM) [58,59]. This program, specifically designed for short time-series datasets, uses
the changes in expression observed at each time point to cluster miRNAs according to a set of
pre-determined model temporal response profiles. We identified 14 miRNAs that were
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assigned to the same model profiles in all bacteria and 35 additional miRNAs that were as-
signed to highly correlated model profiles in all bacteria (see Methods, Fig. 2A and S3 Table).
These 49 miRNAs, which represent the basis of the core miRNA response to bacterial infection
in DCs, comprised 27 miRNAs that were upregulated upon infection, 21 that were downregu-
lated and one, miR-222-5p, which was upregulated at 4h but downregulated at later time
points. In addition, two novel miRNAs (chr6_41188-5p and chr19_18208-5p) were assigned to
highly correlated model profiles in all bacteria (S5 Fig.). To check that these core response

Fig 1. Differential expression of miRNAs in DCs upon infection with a panel of bacteria. (A) Numbers of significantly differentially expressed miRNAs
upon infection at each time point for each bacterium. As we did not have expression profiles for the 48h time point for STP infection, this point is missing from
the plot. (B) Heatmap illustrating the hierarchical clustering of experimental conditions based on the mean expression levels of the 50 most variable miRNAs.
(C) Overlap of differentially expressed miRNAs between bacteria using two different significance cut-offs. Left-bar shows overlap using a single cut-off of
FDR-adjusted p<0.01 and |log2 fold change|>1, while the right bar shows the overlap using a secondary cut-off where a miRNA was called as significant if
the absolute log2 fold change was less than 1, if it passed the first more stringent fold-change cut-off upon infection with at least one of the six bacteria. (D and
E) Venn diagrams showing the overlap of significantly differentially expressed miRNAs between bacteria of the MTBC (D) and between MTB-Rv and all other
non-mycobacterial infections (E).

doi:10.1371/journal.pgen.1005064.g001
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miRNAs indeed showed consistent responses across bacteria, we chose to test two of
them –miR-155-5p and miR-92b-3p – by qPCR and confirmed our observations (S6A Fig.).

To provide insight into the impact of this core miRNA response on innate immune cell func-
tion, we performed gene ontology category enrichment analysis for gene targets of core miRNAs
as predicted by TargetScan [9]. We further restricted our analysis to those targets whose mRNA
transcripts have been found to interact with the miRNAs concerned in at least three independent
CLIP-seq experiments [60]. We found that a number of relevant biological processes showed
some enrichment in high-confidence targets of up-regulated miRNAs, most notably “cellular re-
sponse to lipopolysaccharide” (S4 Table), while no enrichment was found in high-confidence tar-
gets of down-regulated miRNAs. To complement this analysis, we used miRNA and mRNA
expression profiles from a previous study in the same cellular system uponMTB-Rv infection
[55], to delineate mRNAs whose expression was significantly correlated with that of our core re-
sponse miRNAs. Interestingly, mRNAs correlated with four core response miRNAs –miR-155–
5p, miR-505–3p, miR-7-5p and miR-940 – showed an enrichment in innate immune functions
(e.g. innate immune response, immune system process and response to bacterium) [55].

We next used hierarchical clustering to assess the correlation structure among core response
miRNAs (Methods). Using the dynamic tree cut algorithm [61], we identified six clusters of
highly correlated miRNAs (S3 Table). The two largest clusters contained 20 and 17 miRNAs,
respectively. To identify upstream regulators that may explain the coexpression of miRNAs in

Fig 2. Shared and specific miRNA responses to bacterial infection. (A) Plots of the temporal dynamics of two core response miRNAs. As we did not have
expression profiles for the 48h time point for STP infection, this bacterium was excluded from the analysis. (B) Multidimensional scaling analysis (MDS)
representing the distances between the temporal miRNA responses to different bacterial infections. Distances were based on the sum of edit distances, for
each miRNA, between bacteria using STEM-assigned model temporal profiles. (C) The expression of miR-132-3p increased following infection with MTB-Rv
and MTB-Bj but not BCG. Transformation of BCG with RD1 fromMTB resulted in a significant increase in miR-132-3p expression, not significantly different to
that induced by MTB-Rv. Both MTB-Ra and MTB-Hk showed significantly lower miR-132-3p expression than virulent mycobacteria. (D) The induction of miR-
212-3p was significantly higher following BCG::RD1 infection, compared to infection with control BCG, and was not significantly different to the response to
MTB-Rv. Though the difference between the induction of this miRNA upon infection with virulent or avirulent MTB strains was not significant, the tendencies
observed were consistent with miR-132-3p. Significance was calculated using a Mann-Whitney test (* = p< 0.05).

doi:10.1371/journal.pgen.1005064.g002
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these two large clusters, we searched for an enrichment of transcription factor binding in the
regions surrounding these miRNAs (Methods). Using transcriptional regulatory relationships
from ChIP-seq data obtained from ChIPBase [62], we found that hairpins coding for core re-
sponse miRNAs belonging to the largest of these clusters (i.e., cluster 1 in S3 Table) were most
strongly enriched in the binding of the transcription factor MED12 in their promoter regions
(p = 4×10–3). Interestingly,MED12 has been found to be significantly upregulated upon MTB
infection of DCs [63], suggesting a role of this gene in the regulation of this miRNA cluster in
response to bacterial infection.

Distinct miRNA signatures in response to infection by virulent
mycobacteria
Despite the generally strong similarity of miRNA responses to all bacteria in our panel (Fig. 1),
closer examination revealed a number of more subtle signatures of variability that could be re-
lated to differences between bacteria. At the genome-wide level, hierarchical clustering based
on miRNA expression levels indicated the presence of sub-clustering at each time point, with
some bacteria showing more similar expression profiles following infection (Fig. 1B). This sub-
clustering was further supported by a multidimensional scaling analysis (MDS) using the sum
of edit distances calculated for each miRNA between bacteria based on their STEMmodel tem-
poral response profiles (Methods). This showed a strong similarity between the responses to
the two virulent MTBC bacteria (MTB-Rv and MTB-Bj), while the response to the attenuated
BCG was intermediate between those of MTB-Rv and SLM (Fig. 2B). The separation of YRS in
coordinate 1, indicating that the miRNA response to this bacterium was the most distinctive,
may be due to the secretion of Yersinia outer proteins (Yops), which are unique to this bacteri-
um and have previously been described to modulate host signalling pathways [64].

To further identify miRNA responses that were specific to virulent MTBC (vMTBC) bacte-
ria, we fitted a generalized linear mixed model to test for the effect of infection with a vMTBC
strain, while accounting for variability between infection conditions (Methods). We found that
the magnitude of the response of 6, 5 and 14 miRNAs, at 4h, 18h and 48h respectively, was spe-
cific to infection with MTB-Rv and MTB-Bj (FDR-adjusted p< 0.01; S5 Table). This suggests
that these miRNAs are part of a virulence-dependent response to mycobacterial infections.

Of the 20 miRNAs that showed a vMTBC-specific response, it is worth noting the presence
of miR-132-3p, the only miRNA that was significant at all time points. This miRNA has previ-
ously been implicated in the regulation of the inflammatory response [65]. Additionally, both
arms of miR-212—the other member of the miR-132/212 family due to their sequence homolo-
gy and co-localisation on chromosome 17p13.3—also showed a vMTBC-specific response at
18h or 48h. To further investigate the role of virulence in the altered expression of the miR-
132/212 family, we studied their response to an extended set of mycobacterial strains that differ
in their virulence (Methods). Interestingly, we found that the attenuation and/or inactivation
of MTB leads to a significantly lower induction of miR-132–3p, and to a lesser extent miR-
212–3p, compared to virulent mycobacteria (Fig. 2C,D and S6 Table). Furthermore, infection
with BCG::RD1 – a recombinant strain of BCG containing the RD1 locus, the absence of which
accounts, to a large extent, for the attenuation of BCG [66] – significantly increased the induc-
tion of miR-132-3p and miR-212-3p, with respect to BCG, attaining a level that was not signifi-
cantly different from cells infected with the virulent strains (Fig. 2C,D and S6 Table). Overall,
these results indicate that the altered expression of the miR-132/miR-212 family is dependent
on mycobacterial virulence and, more specifically, that the presence of the virulence-associated
RD1 locus is sufficient to account for the stronger induction of the miR-132/212 family among
virulent mycobacteria.
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Infection induces changes in the relative expression of the arms of the
miRNA hairpin
We next sought to move beyond considering miRNAs as single units to assess the impact of in-
fection on other aspects of miRNA dynamics, from the broader context of the miRNA hairpin
to the finer level of internal sequence variability. We first assessed whether infection induces
changes in the relative expression of sequences derived from the 5p and 3p arms of the miRNA
hairpin. In general, we found that one of the two arms is usually highly dominant. Of the 341
detected mature miRNAs that had a unique genomic alignment, 63% had only one arm ex-
pressed at detectable levels, of which one third had no annotated second sequence (Fig. 3A). Of
the remaining 27%, 78% had at least a 10-fold dominance of one of the two arms, while only

Fig 3. Changes in relative miRNA arm expression upon infection. (A) Detection and relative expression
of miRNA hairpin arms. Stacked bar plot shows the proportion of detected miRNA hairpins for which either
one or both mature miRNA sequences were detected. Density plot shows the distribution of log2 expression
ratios for hairpins where both arms were expressed. (B) An example of one miRNA, miR-361, which showed
a strong infection-dependent change in relative arm expression. Axes show the expression of the 3p and 5p
arms of all sequenced individuals at each time point. In each panel, colours denote the different time points,
and infection conditions are plotted in separate panels. The displacement of points towards the right of the
plot in infected samples at later time points shows that the change in the expression ratio of the two arms is
due to the increased expression of the 3p arm that, in some conditions, becomes dominant.

doi:10.1371/journal.pgen.1005064.g003
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15% showed less than a 2-fold difference between the expression levels of the two arms
(Fig. 3A). These figures, however, are likely to underestimate the true dominance as we applied
the same expression criteria for the detection of both arms of the hairpin.

We then examined the extent to which infection alters the relative expression of the arms of
the miRNA hairpin for the 92 miRNAs for which both arms were detected (Methods). We de-
tected 40 miRNAs that showed a significant change in relative arm expression in at least one
experimental condition (FDR-corrected p< 0.01), with changes being broadly consistent, in
tendency if not in statistical significance, across all bacteria (S7 Table). The majority of these
changes grew in magnitude over time. Indeed, 13 hairpins showed differences in relative arm
expression between time points in non-infected samples (p<0.01), suggesting that time also
has a marked, albeit more modest, impact on this feature of miRNA abundance. Of the 27 hair-
pins (30% of those tested) for which the observed change in the relative expression of the hair-
pin arms was exclusively associated with infection, three of them (miR-199b, miR-361, miR-
582) showed a change in the identity of the dominant miRNA arm upon infection with at least
one bacterium (Fig. 3B, S7 Fig. and S7 Table). In most conditions, this change reflected the loss
of arm dominance due to a change in the abundance of one of the two arms. However, in two
cases (miR-361 and miR-582 expression following YRS infection for 48h) we observed a clear
switch in the dominant miRNA sequence. To validate these observations, we measured the ex-
pression of one arm-switch miRNA –miR-361 – by qPCR, and obtained a highly concordant
tendency of the change in relative expression upon infection (S6B Fig.).

Abundant changes in isomiR diversity in response to infection
We finally explored the internal sequence diversity of expressed miRNAs (i.e., isomiRs) at the
steady-state and upon infection. In general, we detected much greater variability in the end site
of isomiRs compared to their start positions (S8A Fig.). Moreover, this variability was depen-
dent on the hairpin arm from which a miRNA was derived, with greater start-site variability
among 3p miRNAs and greater end site variability in 5p miRNAs (p = 3.39×10−14 and
p = 3.15×10−20, respectively; S8B Fig.). We next classified reads aligning to miRNAs into six
groups according to their differences from the canonical miRNA sequence (Fig. 4A). We found
that the canonical sequence was the dominant isomiR for only*50% of miRNAs, with the
most common alteration being a change in the end position of the miRNA (3PC), a pattern
that was consistently observed across conditions (Fig. 4B and S9 Fig.). Additionally, we ob-
served high isomiR diversity for most miRNAs with the dominant read accounting for only
half (median = 49.9%) of all reads aligning to a given miRNA (Fig. 4C).

To assess the impact of infection at the level of individual isomiRs, we searched for differen-
tially expressed isomiRs using DESeq (see Methods) and detected 1,595 isomiRs, correspond-
ing to 235 miRNAs, whose expression was altered upon infection (FDR-corrected p-
value< 0.01 and |log2 fold change|> 1) (S8 Table). We found a significant overlap between
these miRNAs and those that were differentially expressed at the level of total miRNA expres-
sion across experimental conditions (p-values = 1.15×10−4–2.03×10−10). However, we detected
132 additional miRNAs that show a response to infection at the isomiR level yet are missed
when searching only for expression changes at the total miRNA level. Such changes may reflect
(i) modest changes in the expression of one or a small number of isoforms that do not have a
sufficiently strong cumulative effect on total miRNA levels to be detected, or (ii) changes in the
relative proportions of isomiRs upon infection that do not result in an appreciable net gain or
loss of reads aligning to the miRNA. When we tested for such changes in the relative expression
of isomiRs in response to infection (see Methods), we identified 146 miRNAs that showed a
significant change in isomiR proportions upon infection with at least one bacterium (S9
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Table). Interestingly, although miRNAs showing changes in isomiR distribution upon infection
showed a significant overlap with miRNAs that had one or more significantly differentially ex-
pressed isoforms (p-values = 2.48×10−5–7.27×10−10), we found only limited overlap between
miRNAs showing changes in isomiR distribution and miRNAs that were differentially express-
ed at the whole miRNA level (p-values = 0.045–1), suggesting that this approach captures an
additional aspect of miRNA variation in response to infection.

Changes in isomiR distribution increased over time and were strongly overlapping across
bacteria, with only 22% unique to a single bacterial infection (Fig. 4D). For a subset of these

Fig 4. Dynamic expression of miRNA isomiRs upon infection. (A) Classification of isomiRs depending on their difference from the annotated mature
miRNA sequence (based on [28]). (B) Cumulative barplots showing the proportion of miRNAs for which the dominant sequence was the canonical sequence
or, instead, one of six classes of isomiR. Data shown is for 18h post-infection, for other time points see S9 Fig. (C) Histogram showing the meanmiRNA
diversity (expression of dominant isomiR / total expression of miRNA) across all experimental conditions. (D) Venn diagram showing the overlap of miRNAs
showing a significant change in isomiR distribution upon infection with different bacteria. Due to the smaller sample size, we did not perform the analysis
upon STP infection. We obtained no significant changes in isomiR distribution following SLM infection, as one individual did not respond to infection (S3 Fig.).
(E) Examples of the two characteristic profiles observed for miRNAs showing a change in isomiR distribution upon infection; top: a difference in the
proportional expression of each isomiR upon infection, bottom: a change in the dominant isomiR upon infection. Examples are taken fromMTB-Rv infection
at 48h. Each line represents an individual isomiR and the proportion of the total miRNA expression level accounted for by each isomiR, per donor, is shown
before (black dots) and after (red dots) infection. Points are joined together for legibility. (F) The distribution of starting bases of reads aligning to miR-191-3p,
which showed a seed shift upon infection with MTB-Rv, MTB-Bj and YRS. Before infection (left), less than 20% of reads start at the first “G” position of the
canonical sequence, whereas after infection (right), over 50% of reads start at this position. Proportions of aligned reads shown in the figure are following
MTB-Rv infection at 48h.

doi:10.1371/journal.pgen.1005064.g004
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miRNAs, this change in isomiR distribution involved a change in the dominant isomiR se-
quence between non-infected and infected samples (Fig. 4E and S10 Table). For those miRNAs
where the canonical miRNA was the dominant sequence in one of the two conditions (*70%
of cases), a switch from the canonical sequence before infection to a non-canonical isoform
upon infection was 3× more common than the reverse trend. Consistent with the expression
levels of different isomiR classes, the majority of dominant isomiR switches (77–100% per con-
dition) involved a change in the 3’ terminus of the most abundant sequence. Interestingly, we
identified seven miRNAs –miR-98-3p, miR-140–3p, miR-191-3p, miR-342-5p, miR-548e-5p
and miR-2116–3p – that showed a change in the 5’ start site of the dominant sequence upon in-
fection with one or more bacteria (Fig. 4F).

To assess the impact of a change in the 5’ start site, and hence the functional seed sequence,
on potential miRNA targets, we used TargetScan’s custom target prediction [67]. We found
that 45–87% (mean 71%) of the predicted targets of the annotated miRNA sequence are not
predicted targets of the alternative 5’ shift isomiR, suggesting that these isomiR changes could
profoundly impact upon miRNA-mediated functions. In addition, that miRNAs showing
changes in isomiR distribution in response to infection were highly expressed compared to ge-
nome-wide miRNA expression levels (Mann-Whitney p-values 8.13×10−4–2.88×10−9) suggests
that these changes are sufficiently highly abundant to be of functional relevance. These results,
together with our observation that infection can also lead to changes in the relative abundance
of the hairpin arms, indicate an even greater dynamism in the regulation of miRNA expression
than previously appreciated.

Discussion
In this study, we have shown that the miRNA repertoire involved in the host cellular response
to infection is highly similar across a set of different bacteria, both qualitatively – in the identi-
ties of differentially expressed miRNAs – and quantitatively – in the high concordance of their
expression dynamics upon infection and over time (Fig. 1 and Fig. 2). Specifically, we found
that less than 10% of differentially expressed miRNAs are unique to a single bacterium, and de-
fined a set of 49 miRNAs – one third of all differentially expressed miRNAs – that characterises
a core response to bacterial infection. Such temporally conserved miRNA responses across bac-
teria, despite their genetic diversity and differing strategies to manipulate host cell functions
[68–70], most likely reflect the activation of common or convergent signalling pathways in re-
sponse to infection, as has been shown for mRNAs [3,71,72]. For example, the expression of
two core response miRNAs—miR-155-5p and let-7i-3p – is known to be induced by the activa-
tion of TLRs, key innate immunity receptors that recognise a diverse array of microbial prod-
ucts and the signalling of which is regulated, in part, by miRNAs [73,74].

The consistent changes observed among core miRNAs upon infection raises the question of
whether such changes are essential for establishing and maintaining an effective immune re-
sponse to infection. Though the importance of a small number of miRNAs for the immune re-
sponse has been described [12,74–76], our understanding of the roles played by miRNAs in the
regulation of this and other biological processes remains limited. Some insight can be gained
from the study of computationally predicted miRNA targets, however the limited complemen-
tarity of animal miRNAs and target sites makes this challenging [7,8]. Additionally, such
computational tools are restricted by our current knowledge of the rules of miRNA targeting
and do not account for cell-specific interactions, limitations that are reflected in the high false
positive and false negative rates of such algorithms [77]. Targets have also been identified
through a range of experimental approaches, each of which carry their own limitations [78],
and, critically, few targets have been functionally validated. Despite these limitations, the
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enrichment analyses of both predicted targets and correlated mRNAs, as well as existing
knowledge of the function of some miRNAs, point to the involvement of our set of core re-
sponse miRNAs in the innate immune response. This suggests that this miRNA response plays
a genuine role in the regulation of basic cellular responses to stress, at least in DCs, rather than
being a side effect of the immunological changes following infection.

Our results also revealed some important elements of variability in miRNA transcriptional
responses between bacteria that may provide insight into bacterial pathogenesis. In this con-
text, we demonstrated that the induction of the miR-132/212 family characterises the response
to virulent mycobacteria and is dependent on the presence of the virulence-associated RD1
locus (Fig. 2C,D). Moreover, the reduced induction of miR-132/212 after infection with an at-
tenuated strain that secretes lower levels of the RD1-encoded virulence effector protein ESAT-
6 [79] indicates that such an induction is associated with the secretion of this virulence factor.
These results raise questions regarding the underlying mechanisms and potential functional
consequences of this response, and of the other virulence-dependent miRNA signatures we
identified. For example, in light of the role of miR-132 in the negative regulation of the inflam-
matory response [65,74,80], it is tempting to speculate that the stronger miR-132 induction we
observe contributes to the dampening of the early inflammatory response to infection by viru-
lent mycobacteria. Interestingly, reduced early inflammatory responses have been observed in
response to modern MTBC lineages, which include MTB-Rv and MTB-Bj, and have been asso-
ciated with faster progression and increased virulence in macrophages [81]. Further experi-
mental work is now needed to substantiate this hypothesis and, more generally, to identify the
specific mycobacterial virulence factors associated with host miRNA expression dynamics.

One of the most interesting findings of our study, made possible by the use of sRNA-seq, is
that infection induces changes in both the relative expression of the arms of the miRNA duplex
and the distribution of isomiRs (Fig. 3 and Fig. 4). In particular, the induction of strong
changes in isomiR distributions, which were highly concordant across individuals and bacteria,
highlights the dynamism of miRNA biogenesis and raises important questions regarding the
regulation of this process. Several features of our results strongly support that these sequence
variants represent true isomiRs showing genuine, infection-dependent changes in their distri-
bution and expression. The isomiRs that we report are expressed at appreciable frequencies
and involve more frequent changes at the 3’ end of the sequence (S8A Fig.), consistent with the
conservation of the seed region [82], which are concordant with known post-transcriptional
modifications of miRNAs, such as the non-template addition of, exclusively, “A” and “T” nu-
cleotides [83,84]. In addition, the inverse differences in start and end site variability between
miRNAs derived from 3p and 5p arms of the miRNA hairpin (S8B Fig.), supports a greater
specificity of Drosha, compared to Dicer, cleavage, as recently suggested [37,41]. More impor-
tantly, although specific sequence variants could, theoretically, be the result of errors in the
trimming of the sequencing adaptors, these would be expected to occur systematically across
conditions and cannot therefore account for the reproducible differences in isomiR expression
and/or proportions observed between non-infected and infected cells.

Our results suggest that infection, or the cellular response it elicits, alters one or more of the
cellular processes that regulate miRNA expression and isomiR production. The control of
miRNA homeostasis is a highly complex and dynamic process involving the transcriptional
and post-transcriptional regulation of miRNA expression, biogenesis, loading and decay
[19,23]. Even a slight disruption of any of these highly integrated stages could have profound
yet variable consequences for miRNA abundance and isomiR diversity as well as, potentially,
miRNA functions. For example, isomiR-generating post-transcriptional modifications such as
nucleolytic trimming and 3’ uridylation and adenylation have been associated with changes in
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miRNA stability, loading into the miRISC complex and target gene expression [32,35,83–86],
and some viruses have been shown to interfere with these processes [87].

We also found that some miRNAs, including miR-191-3p and miR-342-5p, show a seed
shift upon infection. Seed shift isomiRs can have distinct, though overlapping, sets of target
genes [28,84,88], as highlighted by our results that show a modest 30% overlap between shifted
and canonical sequences, suggesting that the targeting properties of these miRNAs are altered
upon infection. More broadly, that the majority of changes at the isomiR level were not de-
tected at the whole miRNA level highlights that focusing only on total miRNA expression
misses potentially important changes in miRNA regulation. However, it should be kept in
mind that*85% of all miRNAs had at least one differentially expressed isomiR, emphasising
the need to understand further how much of this variability is tolerated by the cell without any
biological impact on gene regulation.

In conclusion, our study has reported extensive changes in miRNA expression upon infec-
tion that are highly concordant across diverse bacteria and over time. Our results represent the
most comprehensive, unbiased view of the similarities in miRNA responses between bacteria
to date, and highlight common miRNA-mediated mechanisms that are likely to be essential in
the cellular response to stress. Conversely, the detected differences between bacteria may reflect
more subtle variations in magnitude and tempo that could, nonetheless, impact on bacterial
pathogenesis, such as the case of the induction miR-132-3p. Overall, our findings highlight a
novel aspect of miRNA expression dynamics upon infection and increase our understanding of
miRNA-mediated mechanisms involved in host cellular responses to infection. In doing so,
they provide new perspectives concerning the ways in which infection leads to changes in cellu-
lar processes that regulate miRNA expression and isomiR production.

Materials and Methods

Ethics statement
Blood samples from nine healthy donors were obtained from the Etablissement Français du
Sang. Signed, written consent was obtained from all individuals. The biobank has been declared
to and recorded by both the French Ministry of Research and the French Ethics Committee
under the reference DC-2008-68 collection 2.

Bacterial preparation
We infected DCs from six individuals with a panel of six bacteria comprised of: two strains of
Mycobacterium tuberculosis (H37Rv and GC1237),Mycobacterium bovis-BCG Pasteur, Salmo-
nella typhimurium strain Keller, Yersinia pseudotuberculosis and Staphylococcus epidermidis
(MTB-Rv, MTB-Bj, BCG, SLM, YRS and STP, respectively). Mycobacteria were grown from a
frozen stock to mid-log phase in 7H9 medium supplemented with albumin-dextrose-catalase
(Difco). Liquid cultures were grown for up to 12 days and stored at −80°C in 1–2ml aliquots
with 10% glycerol. Aliquots were thawed 1 week before infection and bacteria were grown to
mid-log phase. Before infection, bacteria were washed 2 times with and re-suspended in 1ml of
PBS. Mycobacterial clumps were disassociated by passages through a needle, followed by 5
minutes of sedimentation. Clinical isolates of SLM, STP and YRS were grown on Luria-Bertani
agar and stored at −80°C. One day before infection, aliquots were thawed and bacteria grown
overnight. 1ml of bacterial culture was grown to mid-log phase shortly prior to infection. Bac-
terial density in the supernatants was checked at OD600 and confirmed by counting colony-
forming units. We infected DCs from three additional individuals with a second panel of six
MTBC bacteria comprised of: BCG transformed with the empty cosmid pYUB (BCG) or the
same cosmid containing RD1 (BCG::RD1),Mycobacterium tuberculosisH37Ra (MTB-Ra), a
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non-virulent strain of MTB, heat-killedMycobacterium tuberculosisH37Rv (MTB-Hk),
MTB-Rv and MTB-Bj. All strains were prepared as described above for mycobacteria.

Isolation and infection of DCs
Blood mononuclear cells were isolated by Ficoll-Paque centrifugation. Monocytes were puri-
fied from peripheral blood mononuclear cells by positive selection with magnetic CD14
MicroBeads (Miltenyi Biotech). Monocytes were then cultured for 5 days in RPMI-1640 (Invi-
trogen) supplemented with 10% heat-inactivated FCS (Dutscher), L-glutamine (Invitrogen),
GM-CSF (20 ng/mL; Immunotools), and IL-4 (20 ng/mL; Immunotools). Cell cultures were
fed every 2 days with complete medium supplemented with the cytokines previously men-
tioned. The resulting monocyte-derived DCs were infected (*2×106 cells per condition) at an
MOI of 1:1 with one of the bacterial panel, or left uninfected, for 1h at 37°C. The cells infected
with bacteria of the first panel, or left uninfected, were washed and cultured for a further hour
with 50μg/ml gentamycin. The cells were then washed a second time and cultured in complete
medium with 5μg/ml gentamycin for an additional 4h, 18h and 48h. In total, we assessed 21
conditions per individual: seven infection conditions (six bacterial infections plus non-infected
cells) at three different time points. Due to material limitations and the proliferation rate of the
bacteria, we were only able to perform infections and/or recover cells for four of the six individ-
uals and only at 4h and 18h after infection with STP, giving a final total of 116 samples. The
cells infected with bacteria of the second panel, or left uninfected, were cultured in complete
medium, without gentamycin, for an additional 18h.

Library preparation and sequencing
Total RNA was extracted using the miRNeasy kit (Qiagen). RNA quantity was assessed using
the Qubit (Life Technologies) and RNA quality was assessed using the Agilent 2100 Bioanaly-
zer with the Nano chip (Agilent Technologies). All samples were of very high quality and
showed no signs of degradation (mean RNA integrity number = 9). Sequencing libraries were
prepared for each of the 116 samples using the Illumina TruSeq protocol following isolation of
low molecular weight (small) RNA fragments. Once prepared, indexed cDNA libraries were
pooled (8 or 12 libraries per pool) in equimolar amounts and sequenced with single-end 50bp
reads on the Illumina HiSeq2000.

Pre-processing of raw sequencing reads
Raw reads were first assigned to individual samples based on their multiplexing index, allowing
for 1 mismatch. We obtained an average of 11.9 million raw reads per sample with a minimum
yield of 6.3 million reads. Next, sequences matching the 3’ adaptor sequence were identified
and trimmed. A minimummatching of the 6 first bases of the adaptor sequence was required
giving reads with final real lengths of 0 to 44 bases. Sequence quality was assessed and subse-
quent processing performed in R using the Bioconductor package ShortRead [89]. Specifically,
we confirmed that base quality (Q) values and per-base GC distributions were within expected
ranges and that read length distributions showed an enrichment of reads of the same length as
mammalian miRNAs (*22 bases) (S10 Fig.). We further removed repetitive and low complex-
ity reads. Specifically, we discarded all reads that contained a mononucleotide repeat longer
than 10 bases, and those that were>75% mono-, di- or tri-nucleotide repeat or>20% “N”
bases. Lastly, we discarded all reads shorter than 16 or longer than 26 bases, corresponding to
the length distribution of mammalian miRNAs. After these filtering steps, we obtained an aver-
age of 9.1 million (minimum 3.8 million) clean, short reads per sample that were used for small
RNA quantification.
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Sequence alignment
Sequences were aligned to the human reference genome (build GRCh37/hg19) using bowtie
(version 0.12.7) [90]. We mapped reads allowing for 2 mismatches (-v 2) and reported all best
alignments for reads that mapped equally well to more than one genomic location (-a—best—
strata). We suppressed reads with more than 50 possible alignments (-m 50). On average, 98%
of reads aligned to the human genome, of which 65% aligned uniquely. As miRNAs are short
and tend to occur in families that share highly similar sequences, they are particularly suscepti-
ble to spurious multiple alignments, a phenomenon called cross-mapping. Around 35% of
reads in the present dataset had more than one best alignment. To avoid cross-mapping arte-
facts, we used a correction strategy that assigns weights to each of the candidate mapping loci
of multiply aligning reads [91]. Weights were calculated based on local expression levels and
mismatches in the alignment. Python scripts were obtained from the authors and imple-
mented, without modification, as described in the original manuscript [91].

Prediction of novel miRNAs
We used the program miRDeep2 [56] to detect putative novel miRNAs in our data using a
two-step approach. First, we used the mapper module to map all reads to the human reference
genome (build GRCh37/hg19) using bowtie (version 0.12.7) with default miRDeep2 alignment
parameters [56]. We ran the module on fastq files from all 116 samples by specifying a config
file containing a unique identifier for each sample. We removed all sequences containing a
base other than A, C, T, G, U or N, collapsed identical reads and output the pooled dataset in
fasta format (mapper.pl –d –e –j –h –m –p). We then used the miRDeep2 module to identify
novel and known miRNAs in the pooled set of aligned reads from all 116 samples. All reference
files containing either mature or precursor sequences of known miRNAs were from miRBase
v20, thus we used the –P flag to specify that miRBase identifiers are in post-v18 “5p” and “3p”
format. We considered Pan troglodytes, Pan paniscus, Gorilla gorilla and Pongo pygmaeus as re-
lated species, as described in the miRDeep2 paper [56]. We validated the miRDeep2 mapping
and quantification algorithms by comparing read counts of known miRNAs with our own and
confirmed that these were highly correlated. We defined a set of high-confidence putative
novel miRNAs using a miRDeep score cut-off of 4 (S2 Fig.). We further removed those predic-
tions that overlapped protein-coding exons, based on Ensembl v75 annotations (www.
ensembl.org), as well as those that had a predicted hairpin length less than 45 bases or for
which no complementary (star) miRNA was detected.

Expression analysis of annotated and novel miRNA transcripts
We extracted reads aligning to annotated mature miRNA sequences (miRBase v20) or our
high confidence set of putative novel miRNAs with at least 75% overlap using BEDTools [92].
As we had libraries that were sequenced to different depths, we normalised the data to give
comparable numbers of reads for each sample. Specifically, we used DESeq (version 1.10.1) to
calculate a size factor for each library and divided read counts by this factor [57]. To remove
lowly or sporadically expressed miRNAs, we kept only those miRNAs with scaled counts of
greater than 50 reads in at least three samples from at least one experimental condition.

We used DESeq (version 1.10.1) to identify differentially expressed miRNAs upon infection
by fitting a generalized linear model using a negative binomial distribution [57]. Specifically,
for each experimental condition we compared miRNA expression levels between non-infected
and infected samples at the same time point. As non-infected and infected samples came from
the same six donors (four in the case of STP), we controlled for the paired nature of our data by
specifying donor identity in our model. We corrected for multiple testing using a stratified
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false discovery approach, taking a per-condition Benjamini and Hochberg FDR-corrected p-
value< 0.01. We also required an absolute log2 fold change greater than 1. We performed un-
supervised hierarchical clustering on the 50 most variable miRNAs (i.e. those with the highest
variance in expression across all samples) using mean miRNA expression levels, after variance
stabilisation, with the heatmap.2 function of the R package gplots.

To test for cases where the miRNA response was specific to virulent MTBC bacteria
(MTB-Rv and MTB-Bj), while accounting for variability between conditions, we used the R
package glmmADMB [93]. We fit a generalized linear mixed model assuming a negative bino-
mial distribution of miRNA expression:

logðmikÞ ¼ aþ b1Infectedk
þ c1MTBk

þ dk

where μik is the mean read count for individual i in experimental condition k (bacterial strain
or non-infected), 1Infectedk

is a categorical variable indicating the presence of infection in condi-

tion k (irrespective of the bacterial strain), 1MTBk
is a categorical variable indicating the pres-

ence of infection with a virulent MTBC bacterium in condition k, dk * N(0,σk
2) is a random

effect of condition k, and where a, b and c are all fixed effects to be estimated from the model.
We corrected for multiple testing using a stratified false discovery approach, taking a per-con-
dition Benjamini and Hochberg FDR-corrected p-value< 0.01.

We also compared, for annotated miRNAs only, the relative expression level of the 5p and
3p arms of the miRNA duplex between experimental conditions. To do so, we selected only
miRNAs where both arms of the hairpin were expressed, had a unique genomic location and
did not contain a known polymorphism in their mature sequence (MAF>1% in the European
CEU population from the 1,000 Genomes Project [94]). We next calculated, for each sample
and miRNA hairpin, the ratio between the expression levels of 5p and 3p mature miRNAs
(log2(5p read count / 3p read count)). We then used a paired, two-sided t-test to test for a sig-
nificant change in this ratio between non-infected and infected samples at the same time point.
We used a cut-off of a per-condition Benjamini and Hochberg FDR-corrected p-value< 0.01
to determine significance. To assess the effect of time on the relative expression of 5p and 3p-
derived miRNAs, we performed the same analysis comparing, pairwise, non-infected samples
at the three time points.

Expression analysis of isomiRs
We extracted reads aligning to annotated mature miRNA sequences as described above and di-
rectly normalised the read counts using the same approach as applied for total miRNA expres-
sion levels. We removed all reads aligning to miRNAs with multiple genomic alignments and
miRNAs that contained a SNP (MAF>1% in the European CEU population from the 1,000
Genomes Project [94]) in their mature sequence. We considered each unique read as a poten-
tial miRNA isoform (isomiR). We classified isoforms into six categories: (i) canonical se-
quences (according to miRBase v20); (ii) changes in start site; (iii) changes in end site; (iv)
shifted sequences; (v) containing a substitution; and (vi) non-templated 3’ additions; as well as
a seventh mixed group of reads containing multiple types of change. We identified isomiRs
that were differentially expressed upon infection using the same filtering criteria, approach and
significance thresholds as described for total miRNA expression levels. To assess the impact of
infection on the distribution of isoforms for a given miRNA, we defined a statistic (DST) that
estimates differentiation in isoform proportions between populations of samples. DST is analo-
gous to FST [95,96] and VST [97], which are also used for detecting population differentiation.

Dynamics of miRNA Expression upon Infection

PLOS Genetics | DOI:10.1371/journal.pgen.1005064 March 20, 2015 16 / 25



DST varies between 0 and 1 and is calculated by considering,

DST ¼ Dall � ðDa þ DbÞ=2
Dall

where Da is the mean Euclidean distance between isomiR proportions of samples from condi-
tion a, Db is the mean distance between samples from condition b, and Dall is the mean distance
between samples across conditions. Distances were calculated using the R function dist on the
proportions of all detected isomiRs for a given miRNA. We calculated p-values based on
10,000 permutations of isomiR proportions, with replacement, per miRNA. We used a cut-off
of an empirical p-value< 0.001 to determine significance. We found that 97% of the significant
changes identified by DST were also detected using AMOVA [95], in the same experimental
condition and using the same statistical cut-off, confirming that our metric captures relevant
changes in isomiR distribution.

Temporal expression profiles of miRNAs in response to infection
We used the Short Time-series Expression Miner (STEM) to characterise the miRNA re-
sponses to each bacterium over time [58,59]. This software assigns observations to a pre-deter-
mined set of model temporal response profiles based on the correlation coefficient between
observed data (i.e., fold-change at each time point) and model profiles. We used default settings
except for the maximum unit change between sequential conditions, which we restricted to 1.
To account for inter-individual variability, we simultaneously analysed miRNA expression
data for all profiled individuals in a given condition using the “repeat data” option. As we did
not measure miRNA expression at 0h, we used the “no normalization / add 0” option to set
this value to 0. Fold changes were thus calculated by comparing expression levels before and
after infection at the same time-point. To account for the fact that STEM allocates a miRNA to
a single model profile, even though it may show a strong correlation with one or more addi-
tional profiles, we merged clusters where the model profiles were strongly correlated with each
other (r>0.8). We defined the core miRNA response on the basis of these merged model
profiles.

We further used these, STEM-assigned, model profiles to calculate edit distances between
pairs of bacteria for a given miRNA based on the number of steps required to change between
their respective model profiles. For example, the edit distance between the profile 0,0,1 and
0,1,2 would be 2 while the distance between 0,-1,-1 and 0,-1,-2 would be 1. We used the sum of
these pairwise edit distances to represent the difference between a given pair of bacteria in
terms of their miRNA response and visualised this by nonmetric multidimensional scaling
using the R function isoMDS from the MASS package.

Enrichment of predicted miRNA targets in Gene Ontology categories
We identified high-confidence predicted miRNA targets by combinbing TargetScan target pre-
dictions [9,67,98] and miRNA-protein interaction data based on CLIP-seq using the StarBase
database of high-confidence interactions [60]. Gene Ontology (GO) biological processes were
downloaded from the website of the Gene Ontology Consortium (http://geneontology.org/).
We first checked that core response miRNAs were not significantly different from all other
miRNAs with respect to their conservation, GC content, and number of predicted targets. We
then calculated the proportion of high-confidence predicted targets of core miRNAs in each
GO category. Next, we calculated the same measure for 10,000 randomly resampled size-
matched miRNA sets and used this to calculate an enrichment p-value. This p-value reflects
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the fraction of random miRNA sets having a greater proportion of predicted targets in a given
GO category compared to the test set.

Analysis of miRNA coexpression
We performed hierarchical clustering on miRNA expression levels using the package wgcna
with default settings [99,100]. Specifically, we used the dissimilarity of the Topographical Over-
lap Matrix and average linkage to cluster the 49 core response miRNAs based on normalised
miRNA expression levels across all 116 samples. We then used the dynamic tree cut method to
cut the branches of the dendrogram to give clusters of highly correlated miRNAs [61]. We used
the ChIP-Base database to identify transcription factors (TFs) that bind to miRNA promoter
regions, defined as the region from 5kb upstream to 1kb downstream of the transcription start
site of the miRNA [62]. As this database contains results from many different tissues and cell
lines, we only considered whether binding had been detected, or not, in the promoter region.
To identify TFs that were significantly more frequently bound close to coexpressed miRNAs
than expected, we compared the average number of bound factors per miRNA to 10,000 ran-
domly sampled size-matched miRNA sets.

Real-time quantification of miRNAs
Total RNA was extracted using the miRNeasy kit (Qiagen). To quantify miRNA expression lev-
els, cDNA was synthesized and quantitative real-time PCR (qPCR) performed using the Qia-
gen miScript PCR system and primers (miScript II RT Kit: 218161; miScript SYBR Green PCR
kit: 218073; miR-92b-3p MS00032144; miR-132-3p MS00003458; miR-155–5p MS00031486;
miR-212-3p MS00003815; miR-361-5p MS00004032; miR-361-3p MS00009555; U6
MS00033740) in a 7900 Real-time PCR system (Applied Biosystem). Relative miRNA expres-
sion levels, normalized to the endogenous control U6, were calculated using the ΔΔCt method
[101].

Supporting Information
S1 Fig. General workflow and study design. (A) Experimental conditions used and (B) small
RNA sequencing data analysis workflow.
(TIF)

S2 Fig. Detection of putative novel miRNAs. (A) Quality control of miRDeep2 novel miRNA
discovery using pooled data from all 116 samples. (B) Example of a high confidence putative
novel miRNA identified by our approach.
(TIF)

S3 Fig. Principal Component (PC) analysis of miRNA expression levels. PC analysis was
performed on the normalised read counts of 405 robustly expressed miRNAs reported in the
results section of this paper. Components were calculated using the R function prcomp, on cen-
tred and scaled data. The similarity of the distribution of PCs to known biological variables and
potential technical confounders was calculated using a Kruskal-Wallis rank sum test, with the
R function kruskal.test. We performed the analysis on all samples together (n = 116) and sepa-
rately on samples from each of our three time points (4h, 18h and 48h). We found that length
of infection accounted for the greatest amount of variance between all samples, consistent with
our observation of the increase in the number of differentially expressed miRNAs over time
and the results of our clustering analysis (Fig. 1A,B). Consistently, when we repeated PCA on
samples from each time point separately we observed that the bacteria with which the samples
were infected account for an increasing proportion of the variance with time. Specifically, we
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observe no correlation of infection with any of the 10 first PCs at 4h, a significant correlation
with PC5 at 18h and a significant correlation with PC1 after 48h. We also found, when consid-
ering all time points together, a significant correlation between the individual donors and PCs
3 and 4, suggesting a meaningful amount of interindividual variability in miRNA expression.
However, we observed no correlation between the PCs and technical variables such as sequenc-
ing run, sequencing lane and index sequence, suggesting that these potential technical con-
founders do not substantially influence our results.
(TIF)

S4 Fig. Correlation of log2 fold changes of miRNAs in response to infection between differ-
ent bacteria at different time points.We observed a strong correlation in the fold changes of
miRNAs upon infection with our panel of diverse bacteria at 18h and 48h. The correlation was
less pronounced at 4h for many comparisons, an observation that may be partially accounted
for by the globally smaller fold changes at this early time point.
(TIF)

S5 Fig. Core temporal responses of novel miRNAs. Two putative novel miRNAs
(chr6_41188-5p and chr19_18208-5p) that showed highly concordant changes in expression
profiles over time across all bacteria. As no expression profiles were available for the 48h time
point for STP infection, this bacterium was excluded from the analysis.
(TIF)

S6 Fig. Validation of core miRNA and arm-switch miRNA expression profiles by qPCR.
(A) Response to infection of two core miRNAs (miR-155-5p and miR-92b-3p) measured by
qPCR. We assessed their induction upon infection with each of our bacteria compared to non-
infected cells at the same time point. We confirmed that these miRNAs were significantly in-
duced upon infection with all bacteria at both 18h and 48h. For miR-155-5p, the fold changes
were more pronounced at 48h than at 18h, while for miR-92b-3p fold changes were broadly
consistent for each bacterium between the two time points, consistent with the temporal induc-
tion profiles observed for each by sRNA-seq (Fig. 2A and S3 Table). (B) Relative expression of
the arms of the mir-361 hairpin measured by qPCR. We compared their relative expression be-
fore and after infection at 18h and 48h. Consistent with our sRNA-seq results, we observed a
change in the ratio of the expression of the two arms upon infection. This change was most
pronounced at 48h and resulted in a switch in the dominant arm of the miRNA following YRS
infection. It should be noted that the fold changes observed by qPCR are much smaller than
those obtained by sRNA-seq. This is most likely due to the different way in which expression is
measured and calibrated by qPCR, where higher expression is denoted by a lower CT value
and normalised to the expression of a housekeeping gene. Importantly, however, the tendencies
we observed by sRNA-seq remain the same. The data presented in both panels represent the
mean of a duplicate of qPCR calculated for four independent donors (of the six profiled by
sRNA-seq). Expression levels were normalised on RNU6-1. The additional two donors as well
as the 4h time point were excluded due to limited sample availability.
(TIF)

S7 Fig. Relative arm expression of three miRNAs showing a change in the dominant arm of
the hairpin upon infection with at leas one bacterium. Significance, compared to the non-in-
fected condition, was calculated using a paired t-test (�� = FDR-adjusted p< 0.01).
(TIF)

S8 Fig. Variability around the start and end site of annotated miRNAs. (A) Greater variabil-
ity was observed at the end of the miRNA sequence, relative to the end-point of the canonical
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sequence, compared to the start. Specifically, while over 95% of reads aligning to a given
miRNA had the same start position as that of the canonical sequence, less than 60% of aligned
reads had the same end position as the canonical sequence, with extensions compared to the
canonical position more common than shortening. (B) The extent of variability at the start and
end sites was differentially distributed between mature miRNAs derived from the 3p and 5p
arms of the miRNA hairpin. Specifically, a lower proportion of reads aligning to 3p miRNAs
shared the canonical start site compared to reads aligning to 5p miRNAs. Conversely, a lower
proportion of reads aligning to 5p miRNAs shared the canonical end site compared to reads
aligning to 3p miRNAs. In other words, 3p-derived miRNAs showed relatively greater start-
site variability while 5p miRNAs showed relatively greater end-site variability.
(TIF)

S9 Fig. Proportions of dominant isomiR classes. Cumulative barplots showing the propor-
tion of miRNAs for which the dominant sequence was the canonical sequence or, instead, one
of six classes of isomiR at 4h and 48h. The results for the 18h time point are presented in
Fig. 4B, and a schematic representation of the isomiR acronyms given in the legend is presented
in Fig. 4A.
(TIF)

S10 Fig. Quality control of Illumina sequencing data. (A) Base quality, (B) GC content distri-
bution and (C) insert lengths of raw sequence reads. Values shown are for one representative
sequencing run of 18 samples. All samples were systematically randomised for sequencing to
avoid technical confounders that could prevent the detection of true differences between
experimental conditions.
(TIF)

S1 Table. List of expressed miRNAs with p-values and fold-changes of their differential ex-
pression upon infection compared to non-infected samples
(XLSX)

S2 Table. Genomic locations of novel miRNA hairpins described in the study.
(XLSX)

S3 Table. STEM-assigned model temporal response profiles and wgcna clusters for core re-
sponse miRNAs.
(XLSX)

S4 Table. Fifty most enriched Gene Ontology biological processes among high-confidence
predicted targets of up-regulated core response miRNAs.
(XLSX)

S5 Table. List of expressed miRNAs with p-values of the specificity of their response follow-
ing infection with virulent MTBC bacteria.
(XLSX)

S6 Table. Differential expression of the miR-132/212 family following infection with the
extended MTBC panel.
(XLSX)

S7 Table. miRNAs showing significant changes in relative arm expression upon infection.
(XLSX)
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S8 Table. List of expressed isomiRs with p-values and fold-changes of their differential ex-
pression upon infection compared to non-infected samples.
(XLSX)

S9 Table. List of expressed miRNAs with p-values and DST statistics reflecting infection-in-
duced changes in isomiR distribution.
(XLSX)

S10 Table. List of the dominant isomiR in each experimental condition.
(XLSX)
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