N

N

Contrasted continental rifting via plume-craton
interaction: applications to Central East African rift
Alexander Koptev, Evgenii Burov, Eric Calais, Taras Gerya, Laurent

Guillou-Frottier, Sierd Cloetingh, Sylvie Leroy

» To cite this version:

Alexander Koptev, Evgenii Burov, Eric Calais, Taras Gerya, Laurent Guillou-Frottier, et al.. Con-
trasted continental rifting via plume-craton interaction: applications to Central East African rift.
Geoscience Frontiers, 2016, 7 (2), pp.221-236. 10.1016/j.gsf.2015.11.002 . hal-01236687

HAL Id: hal-01236687
https://hal.sorbonne-universite.fr /hal-01236687

Submitted on 2 Dec 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License


https://hal.sorbonne-universite.fr/hal-01236687
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Accepted Manuscript

GEOSCIENCE

FRONTIERS

Contrasted continental rifting via plume-craton interaction: applications to Central East L

African rift ———

Alexander Koptev, Evgueni Burov, Eric Calais, Sylvie Leroy, Taras Gerya, Laurent
Guillou-Frottier, Sierd Cloetingh

PII: S1674-9871(15)00128-0
DOI: 10.1016/j.gsf.2015.11.002
Reference: GSF 405

To appearin:  Geoscience Frontiers

Received Date: 21 August 2015
Revised Date: 2 November 2015
Accepted Date: 5 November 2015

Please cite this article as: Koptev, A., Burov, E., Calais, E., Leroy, S., Gerya, T., Guillou-Frottier, L.,
Cloetingh, S., Contrasted continental rifting via plume-craton interaction: applications to Central East
African rift, Geoscience Frontiers (2015), doi: 10.1016/j.gsf.2015.11.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.gsf.2015.11.002

R3.WeakZone=1

E

R3.2plume

0 800
Distance (km)




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Contrasted continental rifting via plume-craton interaction:

applications to Central East African rift

Alexander Kopte¥/, Evgueni Burof, Eric Calai§, Sylvie Leroy, Taras Gerya Laurent

Guillou-Frottief', Sierd Cloetingh

®Sorbonne Universités, UPMC Univ Paris 06, CNRStitimsdes Sciences de la Terre de
Paris (iISTeP), 4 place Jussieu 75005 Paris, France

PEcole Normale Supérieure, Dept. of Geosciences, R&earch University, CNRS UMR
8538, Paris, France

“ETH-Zurich, Institute of Geophysics, Sonnegstragséurich, Switzerland

YBRGM, Georesources Division, Orléans, France

®Utrecht University, Netherlands

*Corresponding author.

E-mail address. alexander.koptev@upmc.fr (A.Koptev)

Abstract

The East African Rift system (EARS) provides a weigystem with the juxtaposition
of two contrasting yet simultaneously formed rifaibches, the eastern, magma-rich, and the
western, magma-poor, on either sides of the oldktAianzanian craton embedded in a
younger lithosphere. Data on the pre-rift, syn-aifid post-rift far-field volcanic and tectonic
activity show that the EARS formed in the contektlee interaction between a deep mantle
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plume and a horizontally and vertically heterogersedthosphere under far-field tectonic
extension. We bring quantitative insights into #®lution by implementing high-resolution
3D thermo-mechanical numerical deformation modé&la bthosphere of realistic rheology.
The models focus on the central part of the EARS.8&plore scenarios of plume-lithosphere
interaction with plumes of various size and inifasition rising beneath a tectonically pre-
stretched lithosphere. We test the impact of thenibed rheological discontinuities (suture
zones) along the craton borders, of the rheologtaicture, of lithosphere plate thickness
variations, and of physical and mechanical corgrastween the craton and the embedding
lithosphere. Our experiments indicate that the radiog plume material is deflected by the
cratonic keel and preferentially channeled along ohits sides, leading to the formation of a
large rift zone along the eastern side of the oratath significant magmatic activity and
substantial melt amount derived from the mantlen@unaterial. We show that the observed
asymmetry of the central EARS, with coeval amagen@tiestern) and magmatic (eastern)
branches), can be explained by the splitting ofmvaraterial rising from a broad plume head
whose initial position is slightly shifted to thastern side of the craton. In that case, neither a
mechanical weakness of the contact between thercesid the embedding lithosphere nor the
presence of second plume are required to producelaions that match observations. This
result reconciles the passive and active rift modmhd demonstrates the possibility of

development of both magmatic and amagmatic rifide@mtical geotectonic environments.

Keywords: plume-lithosphere interaction, continental riftirlgast African Rift System, 3D

numerical modeling.
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1. Introduction

Rifting of continental lithosphere is a fundamergabdynamic process that controls
the growth and evolution of continents and thehbatt ocean basir(g.g., Buck, 1991; Buck,
2007). It involves the entire mantle-lithosphersteyn through heat transfer, active or passive
mantle flow and magmatism, stretching and thinmfthe crust/upper mantle due to far-field
forces, and, possibly, viscous coupling betweentiadlow and lithospheric deformation. In
the active or plume scenario, rifting occurs agsult of dynamic stresses imparted by large
mantle diapirs or sheet-like mantle upwelling,mgsthrough the mantle, that advect sufficient
heat to produce large amounts of surface volca(®ngoér and Burke, 1978). In the passive
or plate scenario, rifting occurs as a result okitenal intra-plate far-field forces transmitted
within lithospheric plates, while mantle upwellingnd melting is a consequence of
lithospheric stretching (McKenzie, 1978). At ocaaspreading centres the major driving
mechanism is mantle upwelling. However, ridge pushces associated with mantle
upwelling and near ridge topographic gradients eitber initially smaller or become
progressively smaller than the far-field forcesoassed with slab pull of the subducting
lithosphere (Olson et al.,, 2001). Hence, at largales, even oceanic rifting would be
impossible without far-field forces driving matuoeeanic lithosphere away from the ridge,
thus allowing for continuous creation of space fioe accretion of new lithosphere. In
continents, rifting and passive margin developnoamicepts and models are based on the so-
called “passive rifting” mechanism where mantle efwgs are not playing a significant role
in rift dynamics (Buck, 1991; Burov and Poliako02; Whitmarsh et al., 2001; Huismans
and Beaumont, 2003; Buck, 2007; Cloetingh et @132 Burov et al., 2014). However, it is

generally accepted that some continental riftshs@scthe Afar and Central Africa rift regions
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(Ritsema et al., 1999; Nyblade et al, 2000) orRIne Grande system (Satsukawa et al., 2011)
involve significant mantle contribution. The dynanesontribution of large mantle upwellings
in other continental rifts such as Baikal (e.g.r@uet al., 1994; Petit et al., 1997), the Rhine
graben, or the Pannonian basin (e.g., Cloetingth. €1999) is still debated due to the absence
of the records of magmatic pre-rift activity andal seismological signatures of deeply-
rooted mantle upwellings. However, while the oba&onal signature of mantle-induced
rifting is often equivocal, a purely passive medhanalso meets a number of problems,
specifically in zones of ultra-slow rifting. Thissue was termed the “tectonic force paradox”,
which states that far-field tectonic forces trarsedi in the lithosphere are not sufficient to
rupture normal continental lithosphere, unlesssipreviously weakened (e.g., Behn et al.,
2006; Buck, 2006, 2007). Indeed, simple estimadibiine forces needed to extend lithosphere
(Buck, 2006) shows that for reasonable driving doievels (5x1& N m™), only extremely
thin lithosphere (< 30 km) can be rifted tectorlicah absence of magmatic dyke intrusion.
Hence, it is often suggested that continentalngftand breakup either require meso-scale
strain softening (Behn et al., 2006; Buck, 2007jsFhans and Beaumont, 2007; Precigout et
al., 2007) or additional strain localization medsars associated, for example, with the
interactions between mantle plume ad the overljithgsphere (Burov et al., 2007; Burov
and Gerya, 2014; Koptev et al., 2015; Stamps £2@L5).

The role of mantle upwellings in continental rifyrdimics is a long debated topic,
illustrated by the classic “passive versus actiniting debate (Fitton, 1983; Foulger et al.,
2000; Foulger and Hamilton, 2014). Seismic tomolyyapeveals deep-seated low-velocity
anomalies in the mantle underneath several rifegde.g., Ritsema et al., 1999; Nyblade et
al, 2000; Nolet et al., 2006; Nolet et al., 200¥gttcannot be interpreted as a consequence of
passive lithospheric stretching. In particular, dgfdow seismic velocity zones observed

throughout the upper mantle cannot be easily iatefrom small-scale mantle convection
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induced by passive stretching of the lithospheye gkample in the East African (Ritsema et
al., 1999; Nyblade et al, 2000; Adams et al., 2@kRio Grande (Satsukawa et al., 2011) rift
systems. Evidence for strain accommodation by maigitnasion in young continental rift
basins (Calais et al., 2008) is also indicativenagigma-assisted rifting (Kendall et al., 2005;
Kendall et al., 2006). Finally, the EARS shows pletgical evidence for pervasive elevated
mantle temperature under the rift requires sigaiftcheating from below and/or fluid-assisted
melting (Rooney et al., 2012; Fergusson et al.,320Armitage et al., 2014). These
observations are indicative of a contribution oéglenantle processes in the evolution some
continental rifts, in particular the EARS.

Our understanding of rift formation and evoluticesimatured thanks to our ability to
guantify surface kinematics from geodetic data.(eStamps et al., 2008; Saria et al., 2014),
seismically image crustal and lithospheric strugsu(Whitmarsh et al., 2001; Buck 2007;
Nolet et al., 2007), and to model the mechanicdlab®ur of a rheologically layered
lithosphere in physically consistent frameworks r@@uand Poliakov, 2001; Huismans and
Beaumont, 2003; Burov et al., 2007; Huismans anauB®nt, 2007; Guillou-Frottier et al.,
2012; Burov et al., 2014; Burov and Gerya, 2014pt€w et al., 2015). However, most
continental rift models explore 2D passive riftingenarios, probably because most of the
available observational data is derived from stsidiepassive margins, where the records of
the initial stage of rifting are buried under thipkst-rift sedimentary sequences, or to fossil
rifts, where the tectonic, thermal, and magmagnaiures of rifting have long decayed away.
The seismically and volcanically active EARS therefprovides a unique complementary
setting of a young and on-going continental rifaittdevelops in the presence of large-scale
mantle upwelling (Lithgow-Bertelloni and Silver, 98) and slow far-field plate motions
(Stamps et al., 2008; Saria et al., 2014). Heréomes on the central part of the EARS, where

seismic tomography shows warm mantle material gisumder the old, thick, and cold
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Tanzania craton (Mulibo and Nyblade, 2013a; Fig.This context requires 3-dimensional
thermo-mechanical models with sufficiently high alesion to accurately capture strain
localization in the brittle crust, as shown in &pous, generic, study (Koptev et al., 2015).
Here we follow-up on this study with a series ofmasical experiments that explore various
boundary conditions and initial geometrical andritin@rheological configuration of the rift
system. We test the upwelling of more than one upptle plume below the central EARS.
Indeed, body-wave tomography shows strong indinatbosmall-scale upper-mantle plumes
rising from a single lower-mantle mega-plume ponthetbw the 660 km phase transition
boundary (Mulibo and Nyblade, 2013a,b) . We alsstei@® the impact of plume size,
temperature, composition and initial position beltdve Tanzanian craton, as well as the
impact of the lithosphere structure and of inhdrg&uctures such as rheologically weakened

suture zones along the borders of the craton.



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

2. Geological settings and data

The EARS is a linear active volcano-tectonic suetthat cuts across the 1300 km-
wide, 1100 m-high Ethiopian and East African platedFig. 1), whose high elevation is
dynamically supported by whole-mantle convectiveweiting (Lithgow-Bertelloni and
Silver, 1998; Nyblade et al, 2000) that initiate®&-40 Ma (Burke, 1996; Ebinger and Sleep,
1998). Passive mechanisms of EARS formation dugrdawity-driven far-field forces caused
by crustal thickness gradients have been also dered in earlier studies (e.g., Logatchev et
al., 1972).

The lithospheric structure of the African continénthighly heterogeneous as many
old suture zones of Proterozoic mobile belts weeetivated as rifts during the Paleozoic and
Cretaceous (Burke, 1996). Small yet well-preserttadk cratons such as the Tanzania,
Congo and Kaapvaal cratons are found throughouE&RS. These cratons, characterized by
greenstone belts, tonalites, and various other-gigde metamorphic rocks, may play an
important role in the localization and reactivatioh deformation thanks to rheological
contrasts with ancient suture zones running albeg borders (e.g., McConnell, 1972; Mohr,
1982; Morley, 1988; Versfelt and Rosendahl, 198@gR1994; Corti et al., 2007; Guillou-
Frottier et al., 2012).

Two eastern and western rift branches in the ceBf&RS are superimposed onto
sutures and shear zones formed by Proterozoic enbbilts that embrace the rigid Archean
Tanzanian craton. Intense magmatism and contineotabnism are largely present in the
eastern rift branch, while other branches sucthasvestern rift to the west of the Tanzanian
craton and the Malawi rift to the south, show osiiyall amounts of Cenozoic volcanics. The
eastern rift is characterized by a southward pssgoa of the onset of volcanism (Baker,

1987; Ebinger, 1989; Forster et al., 1997; Geotgs.£1998), with widespread extension and
7
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uplift of rift shoulders between 30 and 20 Ma (Ej&n et al., 1989; Morley et al., 1992;
McDougall et al., 2009; Wichura et al., 2011) ahd establishment of localized rift basins
around 20 Ma (Ebinger, 1989; Wolfeden et al., 200Aprowicz, 2005; Stab et al., 2015).
Using a combination of detrital zircon geochronglogephro- and magnetostratigraphy,
Robert et al. (2012) documented the synchronoumtion and development of volcanism
and basin development in the western and eastemmches of the EARS, in contrast to
previous geological models that inferred a considigr younger western rift that initiated
around 12 Ma only (Ebinger et al., 1989; Cohen.etl893; Lezzar et al., 1996; Tiercelin and
Lezzar, 2002).

Most of the seismicity of the central EARS is camicated in the narrow, amagmatic
Western rift, with hypocenters reaching depths@®+#4) km and large normal faults indicative
of large historical events (Yang and Chen, 2010utha and Forte, 2011). In contrast, the
magma-rich eastern rift is characterized by eadkglhypocenters confined to the upper ~15
km and heat flow anomalies reaching 110 m/(hyblade, 1997). These two rift branches
are separated by a relatively aseismic domain egrdn the 2.5-3 Ga old Tanzanian craton
where seismic (Ritsema et al.,, 1998; Nyblade et28D0; Nyblade and Brazier, 2002;
Weeraratne et al., 2003; Venkataraman et al., 2A84ms et al., 2012), xenolith (Chesley et
al., 1999; Lee and Rudnick, 1999), and gravity i(Retd Ebinger, 2000) data showed a 170—-
250 km-thick keel and a largely resisted extendi@enozoic tectonism lithosphere that is
colder and stronger than the surrounding orogeaitsbNeogene kinematics of the Nubia-
Somalia plate system refers to 2 mndiwergence between the onset of rifting (25-30 Ma)
and 4 Ma, accelerating to 4 mm/yr after 4 Ma (Staueipal., 2008; Saria et al., 2014).

The Tanzanian craton (Fig. 1) is underlain by aabirtow seismic velocity anomaly
extending across the 410 km discontinuity downht transition zone (660 km) (Nyblade et

al, 2000; Huerta et al., 2009; Nyblade, 2011; Mul#gnd Nyblade, 2013a,b). This anomaly is
8
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indicative of high temperature and melt presena# ianconsistent with the spreading of a
mantle plume head beneath the craton (Weeraratak, &@003; Adams et al., 2012). Below
the transition zone, this plume may connect with African Superplume, a large-scale low
shear-wave velocity anomaly extending from the -¢oamtle boundary into the mid-mantle
under eastern Africa (Ritsema et al., 1999; Masteral., 2000; Mégnin and Romanowicz,
2000; Gu et al., 2001; Grand, 2002) — though seistata is equivocal (Ritsema et al., 2011;
Simmons et al., 2011). Despite the debate on oreisdéwo mantle plumes below the EARS
based on geochemical (Rogers et al., 2000; Mac@aatal., 2001; Pik et al., 2006; Nelson et
al., 2008; Nelson et al., 2012) and geophysicab(@hand van der Lee, 2011; Hansen et al.,
2012) data as well as on the results of numericaeating (Ebinger and Sleep, 1998; Lin et
al., 2005), new He, Ar, Nd, Sr and Ne isotopic datd major and trace element compositions
from Neogene volcanics across the EARS suggestnanom heterogeneous deep mantle
source for the whole rift system (Furman et alQ&durman, 2007; Chakrabarti et al., 2009;
Hilton et al., 2011; Halldérsson et al., 2014), sibly indicating a source rooted in the
African Superplume (Ershov and Nikishin, 2004; Baghnd Nyblade, 2013) with upward
transport via localized thermal upwellings (Nybla@@11; Mulibo and Nyblade, 2013a,b).
Here we take advantage of these recent improvenrents understanding of deep structures,
geological evolution and recent kinematics togethath new cutting edge numerical
modelling techniques (Gerya and Yuen, 2007, se@l8opentary Methods) to design a 3D
ultra-high resolution viscous plastic thermo-mecebannumerical model that accounts for
thermo-rheological structure of the lithosphere &edce captures the essential geophysical

features of the central EARS.
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3. Numerical model

3.1. 3D Model Setup

We use the staggered grid/particle-in-cell 3D viseplastic 3DELVIS code (Gerya
and Yuen, 2007), based on a combination of a fatifference method applied on a staggered

Eulerian grid with a marker-in-cell technique (Sgplementary Methods for more details).

3.1.1. Spatial dimensions and resolution

The spatial dimensions of the 3D model are 1500>%M500 km x 635 km. The
regular rectangular Eulerian grid of the model dontansists of 297 x 297 x 133 nodes and
offers spatial resolution of 5 km x 5 km x 5 km geid element (Fig. 2). This implies very
large mesh dimensions (more than ten million elédmend hundred million randomly
distributed Lagrangian markers) and hence requirggecedented numerical efforts. The
computations have taken 200 years of cumulated gbtngp time in single CPU core
equivalent (with average 4 years of single CPU dore per experiment) on SGI shared

(NUMA) fat-node cluster with 2.8 Ghz Intel Xeon CRbDres.

3.1.2. Internal model structure and rheological pameters

The initial model setup comprises a stratified ¢hieyer continental lithosphere
composed of an upper and lower crust and lithospmeantle overlaying the upper mantle.
The lithosphere mantle embeds a rectangular (808 K®0 km) cratonic block characterized

by greater thickness (250 km; Smith, 1994; Ritsezhaal., 1998; Mulibo and Nyblade,
10
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2013a,b) and smaller density due to its depletedtlmaomposition (Conolly, 2005). The
total crustal thickness is 36 km. Depth to thedrotbf the embedding “normal” lithosphere is
150 km, except for the cases specified in the sestion.

The mantle plume(s) was (were) initiated by seeditgmperature anomaly(ies) at the
base of the upper mantle. Following Burov et ab0@) and Koptev et al. (2015), its (their)
starting geometry is modeled as a hemisphere wigtdias of 200 km, except for the several
test models with smaller and larger plumes (TahleThe initial position of the mantle
plume(s) with respect to the craton is one of tammeters tested in this study (see section
3.2).

Mantle densities, thermal expansion, adiabatic cesgibility, and heat capacity are
computed as function of pressure and temperaturacaordance with a thermodynamic
petrology model Perple_X (Conolly, 2005), which ures thermodynamically consistent
variation of material properties, including phasamges. Perple X was used in all models
except for one experiment specified below. Uncatii@s in mineralogical composition may
result in 15-30 kg/thbias in thermodynamic estimates of mantle der(8igtremez et al.,
2013). This specifically refers to cratons, whosantie composition may be subject to larger
variations than normal lithosphere. Accordingly, aréificially decreased the craton density
calculated from the standard petrology model by KiBm® to ensure initial isostatic
equilibrium of the system. For the crustal rockswged a simple Boussinesq approximation
(see Supplementary Table 1) since metamorphic @samgthese rocks would be of minor
importance in the context of our problem.

A series of numerical experiments also explores ithpact of the rheological
properties of the lower crust — wet granite (WetQzpranulite (Ars) — whereas the ductile
part of the upper crust was represented by wetitgré&WetQz) in all experiments. The latter

assumption is valid since in bi-layer crusts thetiiei rheology of the upper crust is of minor
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importance since the corresponding depth inter@&-Ad5 km is mainly dominated by rock-

type independent brittle failure (e.g. Burov, 2Q1h)the models the ductile rheology of the
mantle lithosphere (dry olivine) is controlled by alivine dislocation and Peierels creeping
flow, while the sub-lithospheric mantle (dry olienas well) deforms by diffusion creep

(Caristan, 1982; Karato and Wu, 1993; Durham ¢t28l09). The mantle plume is supposed
to be slightly “moist” and has the rheology of wétine. The complete list of the rheological

parameters of the model materials is provided ippBmentary Table 1.

The effectively free surface topography is impletednby inserting a 30 km thick
low-viscosity “sticky air” layer between the uppaterface of the model box and the surface
of the crust. The viscosity of the “sticky air"16'® Pa s and its density is 1 kg/naccording
to optimal parameters established in the previtudiess (Duretz et al., 2011; Crameri et al.,

2012; Burov and Gerya, 2015).

3.1.3. Velocity boundary conditions

Although some have proposed dominant deviatoricpression acting on the African
plate in consideration of surrounding mid-oceamgegl (e.g., Zeyen et al., 1997), calculations
of deviatoric stresses arising from lateral gradadrgravitational potential energy (GPE) due
to elevation — most of eastern and southern Abigiag at elevations > 1500 m — and lateral
density variations show that the EARS undergoes MBP& of E-W extensional deviatoric
stresses (Coblentz and Sandiford, 1994; Stamps,e2040; Stamps et al., 2014). This is
equivalent to a force per unit length of 1 TN/m 8400 km-thick lithosphere, of the same
order as slab pull forces. This extensional deviatress regime is the source of the far-field

extension, which, in our models, is applied asnekiatic boundary condition.

12



282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

We simulate this weak tectonic forcing by applyiagconstant divergent velocity
normal to the “eastern” and “western” sides of thedel box. Following geological and
geodetic estimates for the EARS extension ratesyamed this velocity between 1.5 and 6
mm/yr (Table 1). The corresponding horizontal feroa the borders of the model are small
(on the order of typical ridge push forces, i.e~)x10" N per unit length). Free slip
boundary conditions are used on the “northern” ‘@odithern” sides of the model, which are
not subject to extension. Compensating verticalixn¥elocities through the upper and lower

boundaries are introduced to ensure mass consamvatthe model domain (Gerya, 2010).

3.1.4. Initial temperature distribution and thermdloundary condition

The initial geotherm is one of the variable pararsetof our experiments. In the
reference experiment, the initial geotherm is picse linear, with 0 °C at the surface30
km, the air), 400 °C at the upper/lower crustagrnfaice, 700 °C at the Moho, 1300°C at the
bottom of the lithosphere (i.e. deeper below thetar and shallower below the embedding
lithosphere) and 1630 °C at the bottom of the mddehain at 635 km depth. The resulting
adiabatic thermal gradient in the mantle is 0.520/km. The mantle plume(s) has (have) an
initial temperature of 2000 °C (except for one mpdee Section 3.2). We chose an initial
mantle plume temperature of 2000 °C, 300 °C watirear the surroundings, consistent with
the 20-40 km depression of the 410 km discontinoibgerved seismically beneath the
Tanzanian craton (Huerta et al., 2009).

The thermal boundary conditions correspond to fiteedperature values at the upper
surface and the bottom of the model (0 and 1630@€hectively; Koptev et al., 2015) and

zero horizontal heat flux across the vertical bauies.
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3.2. Experiments and key variable parameters

We tested 34 different experimental settings bymarten controlling parameters that
characterize the properties of plume(s) and lithesp and the velocity boundary conditions
(Table 1):

1. Number of mantle plumes;

2. Initial position of the mantle plume(s) with pest to the craton;

3. Initial size of the mantle plume(s);

4. Density of the mantle plume(s);

5. Temperature of the mantle plume(s);

6. Presence, number and shape of the weak rhealagterface(s) along the craton

border(s);

7. Rheology of the lower crust;

8. Craton thickness;

9. Normal (non-cratonic) lithosphere thickness;

10. Horizontal extension velocity.

We started our experiments with a reference mdelgl @, modell.R2) characterized
by a single mantle plume (initial hemisphere raditi200 km, initial temperature of 2000°C,
and dynamic P-T dependent density structure defibgdthe thermo-dynamic model
Perple_X, Conolly, 2005). In this reference expemmthe initial plume is seeded exactly
below the central part of the craton and the lighase does not contain any weak predefined
rheological zones; the rheology of its lower crusters to wet quartzite (WetQz). The
thicknesses of the “normal” and “cratonic” lithogpé correspond to commonly inferred

values of 150 and 250 km, respectively (e.g., Bwioal., 2007; Guillou-Frottier et al., 2012).
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The horizontal velocities applied along the “eastand “western” sides of the model are 3
mm/yr.

The first parameter that has been varied in themx@nts is the initial position of the
plume with respect to the center of the craton. Thedels 2.R3.PosPL=North-East,
3.R3.PosPI=North and.R3.PosPI=East correspond to a lateral shift ofntlaatle plume to
the NE (225 km), to the north (200 km) and to tast€100 km), respectively. Note that all of
the models listed below refer to either centralnpdu position (prefix R2) or to that
characterized by a north-east shift (prefix R3)cept for the models with a different
thicknesses of the “normal” lithosphere (models38--where the initial plume position has
been shifted westward (see below).

The next series of experiments (models 5-10) igacterized by a weak narrow
vertical interface(s) between the craton and théesiding lithosphere that mimics suture
zones. These zones have rheological parametetsealgper crust: for the “weak” zone(s)
along long the side(s) of the craton we used graWetQz) rheology whereas the
surrounding area of the lower crust consists ofien@nys) rocks. Therefore the implemented
weak zones are not over-softened and are weakethasurroundings within the depths
below the upper-lower crustal interface. Severatlet® with one and two weak interfaces (in
presence of centered and NE shifted plume) haven beeplemented (models
5.R2.WeakZone=1, 6.R2.WeakZone=2, 7.R3.WeakZoned18aR3.WeakZone=2). Also we
have tested the configurations with one weak zoe&ed into stronger crust within the
western part of model and weak lower crust fordhtre opposite half of the studied domain
(model 9.R3.WeakZone=3). Finally, the curved shapdwo weak interfaces embracing
cratonic bloc has been tested in the model 10.R@)\\eakZone.

The experiments with two plumes (models 11-17) @iontg a second mantle plume

shifted to the southwest (225 km) from the centethe craton. The first two experiments of
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this series (11.R3.2plume and 12.R3.2plume+LowGArsts) refer to different rheologies of
the lower crust (WetQz and An75, respectively) wlasrthe second plume has the same
parameters as the first one, except for a slighthaller radius of 150 km. The next 3 models
were implemented with the goal to explore the gy of the model 12 to the properties of
the second plume. In these experiments the sedantephas been made, respectively, bigger
(initial radius of 175 km, model 13.R3.2plume+Bigile), hotter (initial temperature of
2100°C, 14.R3.2plume+HotPlume), and lighter (Penglderived density was artificially
reduced by 30 kg/fh 15.R3.2plume+LightPlume). Two plumes of the sasize (200 km)
were tested in model 16.R3.2plume.EqualSize whemeadel 17.R3.2plume+WeakZone=2
refers to the additional introduction of two weakerfaces along the craton borders into the
setup of the model 11.

The impact of much smaller initial NE shifts andstightly bigger (=250 km) initial
plume are studied in experiments 18.R3.E=50; N80t is 112 km; eastward component
is 50 km, northward component is 100 km), 19.R3;EN510 (shift is 11 km; eastward
component is 5 km, northward component is 10 knd) Z20R3.E=10; N=~20-30 (shift is ~25
km; eastward component is 10 km, northward compioiseP0—30 km). Model 21.R3.E=10;
N=~20-30+R=200 refers to a shift of ~25 km for tiederence plume siza%200 km).
Inserting two weak zones into the model 20 vyieldodet 22.R3.E=10; N=~20-
30+WeakZone=2.

The series of experiments with different thicknesse“normal” lithosphere (150 km
within eastern half of model domain, 200 km witlwestern one) starts with a central initial
position of a plume of reference size=Z00 km) (model 23.R2.H_lit=150-200). Then we
sequentially shift the mantle plume to 25, 50 an@0 1km westward (models
24.R3.H_lit=150-200+W=25, 25.R3.H_lit=150-200+W=50and 26.R3.H_lit=150-

200+W=100, respectively). We combine a model witteanispherical plume shifted by 50-
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387
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km has with a hemi-ellipsoidal plume of bigger s{berizontal radius of 400 km; vertical
radius of 200 km) to design model 27.R3.H_lit=1508-PE=50+BigPlume.

Models 28-31 refer to different sizes={50, 200 and 300 km) of the north-east
shifted (225 km) plume in presence of differentéowrustal rheologies (WetQz or An

Finally, the last 3 models (models 32-34) illugréte impact of craton thickness
(model 32.R3.H_crat=200) and velocity boundary domas (the models with slower
(33.R3.Vext=1.5) and faster (34.R3.LC=AfVext=6) external extension).

Every model run took about 4 years of CPU time (hth of physical run time on a

shared memory SGI parallel supercomputer).
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4. Experimental results

4.1. Reference model (Model 1)

The reference moddl.R2 shows a rapid plume ascent after the experimeset: the
mantle plume reaches the bottom of the cratorfiodiphere in 0.5 Myrs, which is similar to
previous models with cratons (Burov et al., 2000pt€v et al., 2015). The cratonic block
causes the plume head to split into two initiakarly symmetrical parts, each of which flows
towards the base (LAB) of the “normal” lithospherear the craton borders (Fig. 3a). As
shown in Koptev et al. (2015), brittle strain lagation in the crust, initially caused by far-
field stresses, is amplified by heat transport aadres to channelize the plume material,
without requiring regions of pre-existing thinning rheological weakness. This channeling
helps localizing strain in two symmetric narrow thesouth rifts above the zones of plume
heads emplacement (Fig. 3b). This positive feeddaeiveen lithospheric thinning and
channelized flow of the plume material is a key haasm for strain localization in the
models.

The next stage of the system development corresptmdocalized ascent of the
plume material (at 55 Myr) along the narrow anetstied zones (Fig. 3c) that further leads to
fast (<1 Myrs) destruction of the continental cr(at75 Myr, Fig. 3d) by hot mantle material
and transition from pre-breakup rifting to postdkep spreading (>75 Myr).

Strain distribution within the crust shows two syetnc N-S stretched (i.e.
perpendicular to far-field extension) rifting zoreggpearing simultaneously on either side of
craton just above mantle hot material concentrdietbw the lithosphere-asthenosphere

boundary (Fig. 3).
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4.2. Initial position of the mantle plume with resgt to the craton

(Models 2-4)

The initial position of the mantle plume with resp& the craton is one of the most
important parameters tested in this study (Tabléihure 4 shows that different initial plume
positions (model2—-4) result in very different evolutions of the systemompared to the
reference model (moddl). A common feature of these models is the detheactf plume
material by the craton and the formation of a lagalift centered above a secondary plume
head. The direction of this deviation of the plumaterial by the cratonic block is controlled
by the initial position of the plume, whereas strdocalization within the upper crust
(horizontal slices on the Fig. 4) is conditioned thg spatial distribution of hot material
ponding under “normal” lithosphere. The model walplume head deflected to the north
(3.R3.PosPI=North, Fig. 4b) shows strain localizatwithin the central part of the model
domain, while models with a east and north-eastexshplume 4.R3.PosPI=East (Fig. 4and
2.R3.PosPI=North-East (Fig. 4c)) both show an eastweplaced rift.

The central cratonic block, less deformable than dtarrounding lithosphere, moves
eastward and rotates slowly anticlockwise (mo2&3.PosPl=North-East, Fig. 4c). This
rotation is consistent with observed geodetic dispinents (Stamps et al., 2008; Saria et al.,
2014). It results from the torque due to asymmelligdistributed forces exerted by the plume
material on the craton keel. The deflection of gieme material towards the eastern rift
basins, together with the lateral motion of thetama block driven by the plume, preserves
the craton from thermo-mechanical erosion until sgstem reaches steady state at 20 Myr
(Sleep et al., 2002). This provides new insightsunderstanding of the survival of small

cratonic terrains.
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As shown above, model2 and 4 (Fig. 4a,c) are in good agreement with the
observations in the EARS, as they reproduce thenmmatg eastern branch and of the
anticlockwise rotation of the craton. However, the@sodels do not reproduce the observed

strain localization along the western margin ofc¢hetonic bloc in the western rift branch.

4.3. Rheological properties along the craton bordéModels 5-10)

The most obvious way to produce strain localizatierto locally impose weaker
rheological properties (e.g. McConnell, 1972; Moh®82; Ring, 1994; Corti et al., 2007,
Guillou-Frottier et al., 2012). Thus, to allow foft formation along the western side of the
craton, we perform mod&.R3.WeakZone=1 (Supplementary Fig. 1c), a variatiomodel2
(Fig. 4c) where we insert of zone of weaker (Wet@®ology between the western side of
the craton and the embedding lithosphere. To teste nsymmetrical and geologically
consistent cases we also conducted experil®@&8.WeakZone=2 (Supplementary Fig. 1d)
with two weak interfaces along both sides of tredann.

The results of these models expectedly show additiones of deformation along the
western boundary of craton (Supplementary Fig.)1dJde only difference between these two
models is the more restricted fault distributiorthv the “magmatic” rift branch in modél
(Supplementary Fig. 1djlue to the predefined eastern weak zone.

To make the style of deformation within the easteranch more similar to that of
model 2, we designed moded.R3.WeakZone=3 (Supplementary Fig. 1e) with only one
western weak interface (as in modelSupplementary Fig. 1c) and a weaker rheology ef th
lower crust for the entire eastern part of the nhattemain (note that the lower crustal
rheology of the mode? (Fig. 4c) is that of wet quartzite (weak) everywherehis model

shows the same timing and style of deformationhendastern “hot” side of the craton as in
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model 2, but also shows the formation on an additionalezof deformation along the
opposite craton boundary, a feature in better ageee with geological observations within
the EARS (Supplementary Fig. 1e).

Supplementary Fig. 1f shows the results of moddélR2.LongWeakZones
characterized by a central plume position and aencomplex geometry of weak zones. It
aims at reproducing more accurately the embradiage of the EARS rift branches around
the Tanzanian craton.

Models with a central plume position in the preseraf weak zones (models
5.R2.WeakZone=1 an@.R2.WeakZone=2) are shown in Supplementary Fig..1a,b

Note that modeb that contains only one weak interface (along tkestern edge of the
craton, Supplementary Fig. 1a) demonstrates thenmgyry not only at the crustal level as
deformation expectedly develops only within thiegefined weak zone, but also in the deep
mantle plume where the plume ascent takes place within its westward deflected half.
This indicates that the rheological properties e tontinental crust not only impact the
surface morphology and crustal strain patterns,atad influence the distribution of plume
head material at depth, which, in turns, bears equsnces for magmatic processes and

mantle lithosphere stability.

4.4. Two-plumes (Models 11-17)

Recent seismic tomography data indicates the pceseina second, possibly smaller,
mantle plume under the western branch of the EARMIlpo and Nyblade, 2013a,b). Such
secondary upper mantle plumes could be stemmimg fh@ ponding of superplume material

beneath the 660 km discontinuity (Yuen et al., 2007
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We tested this hypothesis with a series of experimeontaining two mantle plumes.
The first one is shifted to the NE as in most advious models, the second one is smaller
(r=150 km versus=200 km for the “ordinary” first plume) and shiftealthe SW.

The first model in this series (modELR3.2plume, Fig. 5) shows that the upwelling
of a bigger plume starts much faster (Fig. 5a,ld)ictv causes the initiation of the eastern
branch in the absence of visible deformation atajgosite side of the craton. After 15 Myr
the head of the second plume, deflected by theomrataches the bottom of “normal”
lithosphere (Fig. 5c) to the west where it causesrslocalization less pronounced than in the
east (Fig. 5d).

These results are weakly sensitive to variations lofver crust rheology
(Supplementary Fig. 2a) and properties of the sttooantle plume (size (Supplementary Fig.
2b), initial temperature (Supplementary Fig. 2c)d aensity (Supplementary Fig. 2d)).
Models 12-15 show mostly differences in timing and initiatiori the western branch
(Supplementary Fig. 2).

Model 16 R3.2plume.EqualSize (Supplementary Fig. 3) with theaplumes of equal
size (=200 km) show simultaneous and symmetric upwellang deflection causing pure
anti-clockwise rotation of craton block in contra$tall previous “asymmetric” models where
anti-clockwise rotation of the craton is combinedhwts westward motion. Note that the
position of the craton in reference modelon the contrary, remains stationary over the 80
Myrs of the model (Fig. 3).

Model 17 R3.2plume+WeakZone=2 that combines an additionalllsplume shifted
to the SE and weak interfaces along the cratondmsydioes not show much difference with
the other models in this series, except for momliped strain distribution in the rifts as

expected given the narrower predefined weak zddegdlementary Fig. 4).
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4.5. Small NE shifts of the initial position of theantle plume (Models 18-22)

This series of experiments shows that the asymoagtdistribution of hot mantle
material on the both sides of the craton causingR&Ake rifting with two coeval
asymmetric branches can be reproduced not onlyruhdeassumption of two mantle plumes
of different size shifted in opposite directionsit lalso by adjusting the initial position of a
slightly scaled-upr&250 km) single plume.

Model 18 R3.E=50; N=100 (Fig. 6a) is characterized by amahiNE shift of the
plume that is twice smaller than in previous mod&2 km instead of 225 km). However, it
still shows full deflection of the plume materiailmard one side of the craton as it is observed
in above-mentioned models with initially “shiftegfumes. On the contrary, a small (only 11
km) shift of the plume position to the NE (mod€) R3.E=5; N=10) results in an almost
symmetrical plume head splitting in both directicansd quasi-symmetrical crustal strain
distribution similar to reference mode[Fig. 6b). However, increasing the initial shift+25
km (model20R3.E=10; N=20-30) leads to plume head separation into twoetual parts,
which results in a distribution of mantle plume eral and crustal deformation roughly
similar to models with two plumes (Fig. 6¢).

Model 20 shows large amounts of melt produced on the riftagtern side of the
craton whereas the western border remains lessndedfoand relatively magma-poor. Melt is
produced as a result of both adiabatic decompressdhe plume rises, and of the extra heat
advected by the plume itself, leading to generatibrboth, plume-derived and mantle-
lithosphere-derived melts (Fig. 7). The mixing dbimpe-derived and lithospheric mantle-
derived melts is consistent with geochemical dedanfKenyan rift volcanics (Spath et al.,
2001). This melting, in turn, increases the ratditbbspheric thinning under the eastern rift

branch.
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Model 21 R3.E=10; N=20-30+R=200 illustrates the important role of thawe size
in asymmetric plume head separation: a “standaa-glume (=200 km) does not provide
enough material for splitting in both directionshieh leads to single-side deflection of the
plume head as in the “long-shifted” models (Sup@etary Fig. 5).

The addition of two weak zones along the cratordéx to the most “successful”
model of this series (mod&D) does not significantly modify the results (mo@2IR3.E=10;

N=~20-30+WeakZone=2; Supplementary Fig. 6).

4.6. Thicknesses of the embedding lithosphere (Me@3-27)

There is geological and geophysical evidence thatthickness of the lithosphere
embedding the Tanzanian craton is larger to the thies to the east (Artemieva and Mooney,
2001; Artemieva, 2006). We conducted experimentsd@ts 23—-27) with an embedding
lithosphere considerably thicker in the westerri bhthe model domain (200 km) than in the
eastern one (150 km) while keeping a 250 km-threkomn.

The most interesting feature of this model sesahat a central initial plume position
(23R2.H_Iit=150-200, Fig. 8) and even a slightly (26 knd 50 km (Supplementary Fig.
7a,e)) west-shifted plum@4R3.H_lit=150-200+E=25-50) lead to the complete deflection
of the plume head to the east as in ma@jeModels with a larger initial plume show similar
results 27R3.H_lit=150-200+W=50+BigPlume, Supplementary Fidp,f). Only models
with a westward shift of the plume position by 138 (model26 R3.H_lit=150-200+E=100)
provides the deviation of the bulk of the plume enial to the western side of the craton
(Supplementary Fig. 7c¢,g). An initial shift of 7&nl(the modeR5R3.H_lit=150-200+W=75;
Supplementary Fig. 7d,h) leads to plume head separato two non-equal parts as in model

20R3.E=10; N=20-30 (Fig. 6c).
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The magmatic eastern branch of the EARS is as®dciaith thinner lithosphere (150
km; Artemieva and Mooney, 2001; Artemieva, 2006)ilertihe magma-poor western rift
branch develops in a much thicker one (200 km)cdmse of equal thickness of “normal”
lithosphere this contrasted distribution of the matc activity can be explained by a
significant eastward shift of the uprising plumehniespect to the craton, which results in the
eastward deflection of the plume head by the cratkeel (e.g., model2 and4).

However, models with different (in western and eastsegments) thicknesses of the
embedding “normal” lithosphere show that only cdesable westward shift of the initial
plume position (about 75-100 km, i.e. ¥ of cratodtky) (models25-29 result in large-scale
magmatism to the west of the craton whereas ce(ratlels23—-24, 27 and, obviously,
eastward-shifted initial plume position result ievéhtion of the uprising hot material to the

east.

4.7. Plume size (Models 28-31)

We performed models with significant (225 km) NEtshin the initial plume position
to explore the impact of the plume sizeX50, 200 and 300 km, mod&8-3]). In general,
these models show a similar evolution of strairhwithe upper crust (Supplementary Figure
8). Only the combination of a small plume=150 km) with weak (WetQz) lower crust
rheology (modeR8 R3.R=150+LC=WetQz) leads to considerable differenndiming of the
rifting processes (Supplementary Fig. 8a).

These results, however, do not permit to conclide the plume-head size has no
effective impact on system evolution since the abomentioned experiments with smaller

initial shift (models 18-22 demonstrate different modes of system developnigom

25



588

589

590

591

592

593

594

595

596

597

598

599

asymmetric splitting (mod&l0) to full deflection of plume head (mod2l)) resulting from to

plume-head size variation.

4.8. Additional experiments (Models 32—-34)

Model 32R3.H_crat=200 with a thinner (200 km) craton shoifecent strain
distribution within the upper crust compared topakvious models (Supplementary Fig. 9c).
Varying the boundary velocities (modé3 R3.Vext=1.5 an@4 R3.Vext=6) only affects the
timing of the main events (onset of rifting, begmm of the plume ascent, continental crust
break-up, and transition to spreading) without iiggmt impact on the other model output

features (Supplementary Fig. 9a,b).
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5. Discussion and conclusions

Our experiments show that a complex double riftespscan develop from relatively
simple initial conditions. In our preferred scepathe system, submitted to weak far-field
tensional stress, evolves as a consequence ofeftectibn of a rising mantle plume by a
craton keel. This preferred model produces featthiat bear strong similarities with first-
order geological and geophysical observations@BARS. Overall, our results reconcile the
active (plume-activated) and passive (far-fielddair stresses) rift concepts demonstrating
that both magmatic and a-magmatic rifts may develagentical geotectonic environments.

A feature common to all experiments is the rapiteas of a mantle plume toward the
bottom of the craton, followed by the deflectiordaor splitting of the plume head, depending
on the initial position of the plume. This resuitsthe ponding and lateral spreading of the
plume material at the base of the thinner lithosplieat embeds the craton, as also observed
in previous 2D experiments (Burov and Guillou-Fegatt2005; Burov et al. 2007; Burov and
Cloetingh, 2010; Guillou-Frottier et al., 2012). eT'mitial position of the strain localization
zones — the future rift basins — within the upperstis controlled by the presence of weak
zones in the crust and by the distribution of plunsgerial ponding below the lithosphere that
surrounds the craton.

A small asymmetry in the initial position of theupie can lead to a strongly
asymmetric system evolution. A rift zone forms gahe eastern side of the craton with
significant melt production from mantle plume makfBaker et al., 1987; Ebinger et al.,
1989), analogous to the eastern magmatic brantttedARS. To explain the formation of an

asymmetric system with the coeval initiation of Hmeagmatic western branch and magmatic
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eastern branch as observed in the central EAR&xperimentally explored several scenarios
of which three can be retained as specificallygemg to the EARS (Fig. 9):

(1) The most trivial scenario assumes mechanieadlgk vertical interfaces simulating
the suture zone observed in the geology along gstesn border of the craton only (modgl
In this case the initial position and the sizehaf plume are relatively unimportant.

(2) A second scenario involves a second smallemelinitially shifted to the SW
(model 11). In this case, rift basins develop on both sideéshe craton with no need for
weakening the interface between the craton andriteedding lithosphere.

(3) Finally, a broad mantle plume whose initial igos is slightly shifted to the
eastern side of the craton also results in comgastouble-rifting with an asymmetric
distribution of mantle material on either side bé tcraton (mode20). This model does not
require weakening the interface between the cratahthe embedding lithosphere.

It is not possible at this point to choose a preféiscenario because adequate data in
the central EARS are still quite sparse. Howewas noteworthy that only the third scenario
is compatible with two important features of theolggical evolution of the EARS, (1) the
guasi-simultaneous initiation of both rift brancli{&obert et al., 2012) and (2) their feeding
from a single mantle source according to geocheynikita (Chakrabarti et al., 2009; Hilton
et al., 2011; Halldorsson et al., 2014). Under gasnario, models with a thicker lithosphere
to the west of the craton, as indicated by geopglysibservations (Artemieva and Mooney,
2001; Artemieva, 2006) that provided the bestditobservations by further increasing rift

asymmetry and favoring intense magmatism along#s¢éern border of the Tanzania craton.
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FIGURE CAPTIONS

Figure 1. Geological and geophysical context.op: Geological map of the EARS showing
the surface extent of the Tanzanian craton, sudedion both sides by active rift branches —
the magma-poor western rift characterized by lov® volcanic activity, largeM > 6.5)
magnitude earthquakes, and hypocenters at deptite 89—40 km, while the magma-rich
eastern rift is characterized by a broad zone afl@h (5-15 km) and smaller magnitude
seismicity, but voluminous Cenozoic volcanism. Nthe geometry (dashed line) of the
craton boundary at 150 km depth (Adams et al., POBBttom: East-west cross-section
showing P-wave velocity mantle tomography obseovati(Mulibo and Nyblade, 2013a) that
illustrate the thick Tanzanian craton underlainnoy mantle material deflected towards the

eastern rift branch.

Figure 2. Model setup.Grey arrows show the velocity boundary conditioagplied in a

direction perpendicular to the model domain. Theahradius of the plume is 200 km.

Figure 3. Reference model (Model 1, Table 1 raton is the dark gray quasi-rectangular
volume. The plume material is shown in dark redueBto red colors at the model surface

indicate cumulative strain due to faulting.

Figure 4. Models with different initial position of mantle plume with respect to craton

(Models 2—-4, Table 1).

Figure 5. Model with 2 mantle plumes (Model 11, Tale 1).
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Figure 6. Models with small NE shifts of initial paition of bigger (R=250 km) mantle

plume (Models 18-20, Table 1).

Figure 7. Distribution of plume material and melt in the model 20 (Table 1)EW model
cross-section at 45 Ma that best-fits observatinriee EARS, shows plume head separation
onto two non-equal parts. The 18Q0isotherm delineates the base of the lithosphEre.
plume splitting and deflection preserves the cr&ieel while the deflected material thermally
erodes the mantle lithosphere to the east of thwrand pushes the craton to the west. The
produced melt percolates within the partially moltegion and accumulates below the rift
axis. It combines plume-derived and mantle-lith@phcomponents and has a strong effect
on the upwelling velocity within asthenospheric wedoelow the axis of the “a stern” rift

(right). Black arrow indicates initial position ofaton border.

Figure 8. Model with different thicknesses (150 km within ea®rn half of the model
domain and 200 km within western one) of the embedialy “normal” lithosphere (Model

23, Table 1).Brown surface on Fig. 8e,f,g,h corresponds toithedpheric bottom.

Figure 9. Three possible scenarios explaining mailBARS features.(a) the assumption of
rheologically weak interface along the western bordf the craton (Model); (b) the
presence of second smaller plume initially shifte&W direction (Model 1). (c) the unequal
splitting of relatively big plume which initial pag®n is slightly shifted to the eastern side of

the craton (Mode20).
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Table 1. Controlling parameters of the experiments.

Experiment title

Controlling parameters

Mantle plume(s) properties Lithosphere properties Boundar
conditions
Number Initial position Initial]  Density Temper Weak rheological Rheology of Thickness (km) Horizonta
size ature | interface(s) craton border(g) lower crust Craton “Normal” extension
R, (K) lithosphere | Velocity
km) (mm/year)
1R2 1 Centre 200 Perple_X 200( - WetQz 250 150 3
2.R3.PosPL=North-East 1 NE (225 km) shift 200 Pergle| 2000 - WetQz 250 150 3
3.R3.PosPI=North 1 N (200 km) shift 20( Perple_[X 2000 - WetQz 250 150 3
4 R3.PosPIl=East 1 E (100 km) shift 20D Perple | X 2000 - WetQz 250 150 3
5.R2.WeakZone=1 1 Centre 200 Perple_[X 2000 One atteralong west An75 250 150 3
craton border
6.R2.WeakZone=2 1 Centre 200 Perple_X 2000 Two iates along west An75 250 150 3
and east craton borders
7.R3.WeakZone=1 1 NE (225 km) shift 200 Perple_|X 2000 One interface along west An75 250 150 3
craton border
8.R3.WeakZone=2 1 NE (225 km) shift 200 Perple_|X 2000 Two interfaces along west| An75 250 150 3
and east craton borders
9.R3.WeakZone=3 1 NE (225 km) shift 200 Perple_X 200(¢ One interfalmg west | west An75 250 150 3
craton border east | WetQz
10.R2.LongWeakZones 1 Centre 200 Perple | X 2000 Tweeclinterfaces along An75 250 150 3
west and east craton borders
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11 R3.2plume 2 NE (225 km) shift 200 Perple_K 2040 - etQz 250 150

SW (225 km) shift| 150
12 R3.2plume+ 2 NE (225 km) shift 200 Perple_X 2000 - An75 250 015 3
LowCrust=Ans SW (225 km) shift 150
13 R3.2plume+ 2 NE (225 km) shift 200 Perple_X 200(¢ - ANn75 250 015 3
BigPlume SW (225 km) shift | 175
14 R3.2plume+ 2 NE (225 km) shift 200 Perple_X 2000 - An75 250 015 3
HotPlume SW (225 km) shift 150 2100
15R3.2plume+ 2 NE (225 km) shift 200 Perple_X 200(¢ - ANn75 250 015
LightPlume SW (225 km) shift 150| Perple_X|-

30 kg/n?

16.R3.2plume.EqualSize 2 NE (225 km) shift 200 Perple_X 200¢ - WetQz 250 501

SW (225 km) shift
17R3.2plume+ 2 NE (225 km) shift 200 Perple_X 200¢ Two interedong west An75 250 150
WeakZone=2 SW (225 km) shift 150 and east craton borders
18 R3.E=50;N=100 1 NE (112 km) shift 25( Perple_X 2000 - WetQz 250 150
19R3.E=5;N=10 1 NE (11 km) shift 250 Perple_X 2000 - WetQz 250 150
20R3.E=10;N=20-30 1 NE €25 km) shift 250 Perple_X 2000 - WetQz 250 150
21 R3.E=10;N=20-30+ 1 NE 25 km) shift 200 Perple_X 2000 - WetQz 250 150
R=200
22 R3.E=10;N=-20-30+ 1 NE 25 km) shift 250 Perple_X 2000 Two interfaces alomgt WetQz 250 150
WeakZone=2 and east craton borders
23R2.H_lit=150-200 1 Centre 200 Perple_K 2040 - WetQz 250 west| 20(

east | 150
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24R3.H_lit=150-200+ 1 W (~25-50 km) 200 Perple_X 2000 WetQz 250 west 2P0
W=~25-50 shift east | 150
25R3.H_lit=150-200+ 1 W (75 km) shift 200 Perple_X 2000 WetQz 250 teasl150 3
W=75 west | 200

26 R3.H_lit=150-200+ 1 W (100 km) shift 200 Perple_X 2000 WetQz 250 stea 150 3
W=100 west | 200
27R3.H_lit=150-200+ 1 W (50 km) shift 400-| Perple_X 2000 WetQz 250 east 150
W=50+BigPlume 200 west | 200
28R3.R=150+LC=WetQz 1 NE (225 km) shift 150 Perple_X 200(¢ WetQz 250 501 3
29R3.R=150+LC=Ans 1 NE (225 km) shift 150 Perple_X 200( ANn75 250 501 3
30R3.R=200+LC=Ans 1 NE (225 km) shift 200 Perple_X 200( ANn75 250 501 3
31R3.R=300+LC=Ans 1 NE (225 km) shift 300 Perple_X 200( ANn75 250 501 3
32R3.H_crat=200 1 NE (225 km) shift 200 Perple_X 200(¢ WetQz 200 501 3
33R3.Vext=1.5 1 NE (225 km) shift 200 Perple__ 200 WetQz 250 150 1.
34 R3.LC=Ans+Vext=6 1 NE (225 km) shift 200 Perple_X 200(¢ ANn75 250 015 6
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a Presence of weak zone
along western side of craton

b Second smaller SW shifted plume w

¢ Relatively big plume that is slightly
shifted to the eastern side of the craton




Research highlights:

1. Mantle plume isdeflected by the cratonic keel and preferentially channeled along one of its
Sides.

2. Simultaneous contrasted continental rifts (magmarich and magma-poor) form due to
mantle plume interaction with a micro-craton.

3. Model reconciles the passive and active rift concept and demonstrates the possibility of the

devel opment of both magmatic and amagmatic riftsin identical geotectonic environments.



