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ABSTRACT

Hydrological modeling in mountainous regions, where catchment hydrology is heavily influenced by snow

(and possibly ice) processes, is a challenging task. The intrinsic complexity of local processes is added to the

difficulty of estimating spatially distributed inputs such as precipitation and temperature, which often exhibit

a high spatial heterogeneity that cannot be fully captured by measurement networks. Hence, an inter-

polation step is often required prior to the hydrological modeling step. Usually, the reconstruction of me-

teorological forcings and the calibration of the hydrological model are done sequentially. The outputs of the

hydrological model (discharge estimates) may give some insight into the quality of the forcings used to feed it,

but in this two-step independent analysis, it is not possible to easily feed the interpolation scheme back with

the discrepancies between observed and simulated discharges. Yet, despite having undergone the rainfall–

runoff (or snow–runoff) transformation, discharge at the outlet of a (sub)catchment is still an interesting

integrator (spatial low-pass filter) of the forcing fields and is ancillary areal information complementing the

direct, point-scale data collected at gauges. In this perspective, choosing the best interpolation scheme partly

becomes an inverse hydrological problem. Here, a joint calibration strategy is presented where the param-

eters of both the interpolation model (i.e., reconstruction procedure of meteorological forcings) and the

hydrological model (snow cover, soil moisture accounting, and flow-routing schemes) are jointly inferred in a

multisite and multivariable approach. Interpolated fields are daily rainfall and temperature, whereas hy-

drological variables consist of discharge and snow water equivalent time series at several locations in the

Durance River catchment.

1. Introduction

a. Hydrological modeling in mesoscale mountain
catchments

The precise assessment of water resources in moun-

tain regions is an important issue, as these regions truly

are ‘‘water towers’’ for downstream, lowland regions

(Viviroli and Weingartner 2008): they provide water

not only for a wide range of uses such as hydropower

generation, irrigation, drinking water supply, and tour-

ism, but also for ecosystems. Moreover, the knowledge

of the hydrological functioning of mountain catchments

is an important safety issue for flood forecasting and

early warning systems in these regions.

In these regions, catchment hydrology is largely con-

trolled by the existence of a seasonal snowpack, which

delays runoff: an important part of winter precipitation

falls in the solid phase and is retained on the ground until

spring, where it is restituted to the hydrographic net-

work when climate conditions allow snowmelt.

However, at the scale of a mountain catchment from a

few tens to thousands of square kilometers (mesoscale),

the amount of water stored in the snowpack is a very

spatially heterogeneous variable. At first order, this
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heterogeneity is controlled by temperature that usually

decreases with elevation. During the accumulation pe-

riod, the higher the elevation, the earlier the snow starts

to accumulate; conversely, during the melt period, the

higher the elevation, the later the snow starts to melt.

Many other variables are heterogeneous in space: total

precipitation (which usually increases with elevation; see

next section), soil cover (snow will melt at a different rate

in forest and on bare soil), orientation (north-facing

slopes receive less incoming radiation than south-facing

slopes), etc. To sum up, the evolution of snowpack con-

figuration and hence discharge throughout the year will

depend on the spatial distribution of mass and energy

inputs, which are very heterogeneous in mountain re-

gions and often poorly sampled by observational net-

works. As pointed out byDettinger (2014), we are largely

blind to what is happening in these high-altitude regions.

There is an urgent need for a better knowledge of the

water balance components and their evolution in these

regions, as ‘‘we cannot adapt to something we cannot

observe or predict’’ (p. 167). For this reason, building

reliable spatial estimates of climate forcings is a key step

to hydrological modeling of mountain catchments.

b. Precipitation and temperature patterns in complex
terrain

In the lower regions of a well-mixed atmosphere, in

which the vertical pressure profile is close to hydrostatic

equilibrium, temperature will exhibit a strong, predict-

able decrease with elevation (Daly et al. 2008) at a lapse

rate G52›T/›z ranging from 10Kkm21 (dry adiabatic

lapse rate) to 3Kkm21 (moist adiabatic lapse rate),

with a standard value of 6.5Kkm21. Conversely, de-

viations from this behavior occur when the atmosphere

stratifies (e.g., in the absence of wind or in periods of

weak solar heating): as a result, denser, cooler air sinks

into topographic lows, producing stable temperature in-

versions. Since these inversions are rather the exception

than the rule, especially at larger time steps (monthly to

annual), the statistically robust decrease in temperature

with elevation is widely used to interpolate temperature

data in complex terrain, provided that we can specify

realistic spatially and temporally varying lapse rates

(Lundquist and Cayan 2007; Jabot et al. 2012).

The effect of elevation on precipitation patterns is far

more complex and depends on the type of precipitation

(stratiform or convective). In this study we will focus on

the region of the southernFrenchAlps, wheremost of the

moisture is brought through stratiform, orographically

induced precipitation events (Gottardi 2009). In such

situations, the condensation rate C (kgm22 s21) in as-

cending regions upstream of the mountain ridge can be

written as (see, e.g., Siler and Roe 2014):

C52$ � (rqu) , (1)

where u is the horizontal velocity of the near-ground

airflow layers, r is the air density, q is the specific hu-

midity (mass of water vapor per unit mass of air), and

$� is the (two-dimensional) divergence operator. For an

idealized, steady-state anelastic airflow we would have

C’2u � $(rq)

C’2(u � $z) ›(rq)
›z

, (2)

where z is the terrain elevation and $z its gradient

vector. Equation (2) helps understand why an oro-

graphically enhanced precipitation field can be locally

modeled, as a first guess, by an increasing function of

elevation (at least on windward flanks). A parcel of

air encountering a mountain barrier is forced to ascend

with vertical velocity w5 u � $z and to expand

adiabatically, a process that results in the cooling of the

parcel and the condensation of water vapor once the

saturation is reached. Because the saturated water con-

tent rqsat decreases with elevation (due to the Clausius–

Clapeyron relation and the decrease in temperature with

elevation), the term2›rq/›z is positive but exponentially

decreasing with elevation, with a scale height Hm on the

order of 2–4km (Roe 2005). In contrast, because of the

concave profile of mountain flanks, the slope k$zk, and
hence the vertical velocity w, usually increase as the air

parcel moves closer to the mountain crest, with a usually

shorter scale height. The combination of the two effects

tends to produce increasing precipitation rates with ele-

vation, though in many conditions the maximum rate will

be observed in the middle of the windward flank, below

the crest. On the leeward flank, temperature and pre-

cipitation patterns are controlled by adiabatic descent

and evaporation (Siler and Roe 2014).

As a result of these processes and on a statistical basis,

precipitation appears positively correlated with eleva-

tion, and this correlation improves as the time step be-

comes larger: this has led to the concept of ‘‘orographic

gradient,’’ often in a linear form, that has been used

since the beginning of the twentieth century to describe

and predict precipitation patterns in complex terrain

(see, e.g., Alter 1919; Henry 1919; Barrows 1933; Hart

1937 for the first studies on this subject).

c. Interpolation methods based on point-scale
measurements

Ahuge amount of literature has been published on the

subject of precipitation and temperature interpolation

in complex terrain, and it would be an impossible task to

review all techniques and datasets here. In this section
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we rely on the review and classification proposed byDaly

(2006), who classifies them into six broad categories:

d inverse distance weighting (IDW; e.g., Legates and

Willmott 1990a,b; Dai et al. 1997);
d various forms of kriging, from simple kriging of raw

station data to more complex procedures such as

kriging with external drifts, as proposed by Goovaerts

(2000);
d ANUSPLIN trivariate splines (e.g., New et al. 2002;

Hijmans et al. 2005);
d local regression models such as Daymet (Thornton

et al. 1997) or PRISM (e.g., Daly et al. 1994, 2002,

2003) that use a local regression function between

elevation and climate at each grid cell;
d regional regression models (e.g., Brown and Comrie

2002; Johansson and Chen 2005), which in contrast

use a single, domainwide, multivariate regression func-

tion between predictors (climate, latitude, longitude,

elevation, wind direction, distance from the coast,

etc.); and
d climatologically aided interpolation (CAI), a method

that relies on the assumption that local spatial patterns

of the variable being interpolated closely resemble

those of an existing climate grid (sometimes called the

background or predictor grid). An example of this

technique would be the interpolation of monthly

deviations from a mean climatology in order to pro-

duce monthly precipitation fields (see, e.g., Willmott

and Robeson 1995; New et al. 2000; Funk et al. 2003;

Hamlet and Lettenmaier 2005).

In particular, the simplest techniques using a lesser

amount of expertise may be sensitive to the configura-

tion of the measurement network. For example, almost

no precipitation gauges are found above 2000m in the

Alpine environments because of the constraints of power

supply (see, e.g., Gottardi 2009; Le Moine et al. 2013).

Similarly, temperature stations are most often found in

valley bottoms, where inversions aremore likely to occur,

which leads to a bias in temperature estimates at higher

elevations if inversions are not explicitly accounted for in

the interpolation scheme.

Whatever the method chosen, it is necessary to assess

the errors in estimated values (Daly 2006). Besides inter-

nally generated model error estimates (such as in

kriging), the most straightforward way to do so is cross

validation: some stations are removed from the dataset

in order to provide independent validation data once the

interpolation process is completed. Several methods can

be used to remove stations, such as jackknife (each

station is removed one at a time) or stratified sample

(e.g., removal of all stations in a given region or eleva-

tion range). The obvious issue with cross validation is

that no error estimates can be produced at locations

where no station is available.

Another independent way to evaluate precipitation

datasets is to check for the water balance closure at a

regional scale. Figure 1a describes this approach: first,

the precipitation and temperature dataset is produced

using one of the abovementioned techniques; then, the

dataset is used to force one or several hydrological

model(s), and the simulations are compared with several

reference streamflow time series. This method has be-

come increasingly popular since the availability of a

large number of atmospheric reanalyses, precipitation

downscaling products (either statistical or dynamical;

e.g., Hagemann and Gates 2001; Duethmann et al. 2013;

Bastola and Misra 2014), or satellite precipitation esti-

mates. This approach can of course be extended to other

hydrological diagnostic variables such as snow water

equivalent measurements (e.g., Gottardi 2009). It usu-

ally provides interesting information about large-scale

biases, complementary to cross-validation data. How-

ever, as mentioned earlier, in this independent analysis

it is not possible to easily feed the interpolation scheme

back with the discrepancies between observed and

simulated streamflow time series. This can be a problem

if the quality of the forcings is deemed insufficient for

the applications projected.

d. Areal precipitation estimates based on water
balance closure with streamflow measurements

Recognizing that streamflow measurements may be

more spatially integrative and informative of actual

precipitation amounts than point-scale measurements,

several authors have proposed to reverse the problem

and to directly infer spatial patterns of precipitation and

temperature from streamflow data. Weingartner et al.

(2007) use this approach to produce areal precipitation

estimates on a topographic partition of Switzerland,

with ‘‘mesh’’ elements (subcatchments) of about

150 km2. Valéry et al. (2009) use two datasets of catch-

ments and three simple long-term water balance formulas

Q5 f (P, E) to assess mean altitudinal precipita-

tion gradients in Switzerland and Sweden. Using

similar formulas and the notion of point-to-block or

block-to-block covariances (top kriging; Skøien et al.

2006), Yan et al. (2012) perform a joint interpolation of

water balance components based on precipitation

gauges and streamflow data, which respects the water

conservation at all levels within the hydrographical

network. Kirchner (2009) uses a slightly different

method based on the inversion of a storage–discharge

relationship Q5 g(S) at the daily time step in order

to infer catchment-scale precipitation in two Welsh

catchments.
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These attempts at ‘‘inverting’’ the hydrological cy-

cle in order to infer catchment-scale precipitation

from streamflow have so far been restricted to large

time steps (usually mean annual water balance com-

ponents) and/or very crude representations of the

water balance (relations between precipitation P,

evapotranspiration E, storage S, and discharge Q):

these include mainly empirical, Budyko-like formulas

to estimate mean annual evapotranspiration E

(Weingartner et al. 2007; Valéry et al. 2009; Yan et al.

2012), or monotonic storage–discharge relationships

[e.g., at the daily time step in Kirchner (2009)]. These

approaches give acceptable first guesses for areal

precipitation as long as the errors caused by the sim-

plifying assumptions in the rainfall–runoff relation-

ship are of lesser importance than the uncertainties in

FIG. 1. Comparison of the independent vs joint calibration of hydrometeorological parameters. (a) In the independent analysis, the drift

parameters udrift, allowing for the estimation of precipitation and temperature fields, are first estimated on the sole basis of point-scale

measurements (rain gauges and temperature stations), using, for example, a mean criterion in jackknife validation at each gauge. Then,

the hydrological model is calibrated; that is, the parameter set uhydro is identified by comparing observed and simulated hydrological

responses (e.g., streamflow at gauges and point-scale SWE measurements). (b) In the joint calibration, the two subsets (udrift and uhydro)

are calibrated at once; that is, we allow the hydrological responses to inform about the values of the drift parameters udrift, which was not

the case in the independent analysis.
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the precipitation input. They are related to climato-

logically aided interpolation in that the ‘‘background’’

or ‘‘predictor’’ is the field P5 f21(Q, E) given by

the analytical inversion of the simple water balance

model.

However, it is clear that these approaches are not well

suited for finer time scales and/or catchments with

more complex hydrological functioning such as snow-

dominated catchments. Moreover, they do not give

access to subgrid variability, that is, the variability in-

side the (sub)catchments used for deconvoluting the

rainfall–runoff relationship: since they invert lumped

formulations relating the areal rainfall to the streamflow

at the outlet, it is not possible to produce gridded pre-

cipitation datasets.

e. Objective of this study

In this paper we show that the idea of hydrological

inversion—or hydrologically aided interpolation

(HAI)—is applicable on a daily basis using a full hy-

drological model, in order to produce gridded, daily

precipitation and temperature fields. In section 2, we

present the Durance River dataset used for this study.

Then in section 3, we present the geostatistical model

used to produce gridded daily precipitation and tem-

perature fields using point-scale measurements. The

purpose of the paper is not to introduce a state-of-the

art model for the orographic dependency of pre-

cipitation and temperature: the objective is rather to

propose a methodology to help identify the parameters

of such a model, whatever its formulation. In section 4

we first present the hydrological model used to solve

the direct problem (i.e., producing streamflow esti-

mates with the knowledge of spatially distributed daily

forcings). Then, we present the calibration procedure

allowing for the joint identification of both the pre-

cipitation and temperature gradients (subset of pa-

rameters denoted udrift in Fig. 1) and of the hydrological

model’s parameters (denoted uhydro). It is a stochastic

inversion procedure using a multiobjective evolution-

ary algorithm (MOEA). Section 5 presents the results

of the procedure in the Durance River catchment and

gives the proof of concept that the parameters of a

precipitation and temperature interpolation scheme

are better identified when the interpolation is hydro-

logically constrained. We show that, using this multi-

objective framework, it is possible to take advantage of

measurements having very different spatial support

(Clark et al. 2011) in order to constrain the model’s

behavior both at local and mesoscale. In the conclu-

sions (section 6), we sum up our findings and give

perspectives on future applications.

FIG. 2. Map of the upperDurance catchment. (left) Context map locating the Durance River within the RhoneRiver catchment. (right)

Extension of the domain modeled in this study and location of precipitation, temperature, streamflow, and SWE measurements in the

upper Durance catchment. Red-gray circles indicate gauging stations: Briançon (Durance River), L’Argentière-la-Bessée (Durance

River), Mont-Dauphin (Guil River), Embrun (Durance River), Barcelonnette (Ubaye River), Lauzet-Ubaye (Ubaye River), and Es-

pinasses (Durance River).
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2. Study area: The upper Durance catchment

The Durance River is a left-bank (eastern) tributary of

the Rhone River and rises in the southern Alps near the

French–Italian border, as illustrated in Fig. 2. The catch-

ment has an area of 14000km2 at the confluence with the

RhoneRiver next to the city ofAvignon (a few kilometers

before it flows into the Mediterranean Sea), making it its

last major tributary. In this study, we focus on the Alpine

part of the Durance River catchment, upstream from

the large Serre–Ponçon hydropower dam and its lake

(1.3billionm3). This catchment has an area of 3580km2

with amean annual discharge of 79m3 s21; it has a strongly

snow-dominated function, with peak discharges occurring

in May and June and low flows occurring during winter.

The elevation ranges from 756m at the Espinasses

gauging station to 4102m at the Barre des Écrins (the
most southerly four-thousander in Europe). Some small

glaciers are located in theÉcrins range in the west of the

catchment, such as the Glacier Blanc (6 km2) and the

Glacier Noir (4.5 km2). Figure 3 shows the hypsometric

curve of the catchment.

In this study we use a dataset of 26 rain gauges and six

temperature stations belonging to Électricité de France

and Météo France observational networks over the pe-

riod 1981–2004. The configuration of the stations is

typical of observational networks in mountain areas:

there is approximately one rain gauge per 150 km2 and

none above 2000m in elevation. The elevations of the 26

gauges are plotted on the hypsometric curve in Fig. 3: we

can see that the 2000-m limit roughly corresponds to the

median elevation, whichmeans that the upper half of the

catchment, which is the part receiving the most pre-

cipitation, is not monitored at all.

Streamflow data at the outlet (Espinasses) and at six

internal subcatchments are provided by Électricité de

France and the French Ministry for Environment (see

Table 1): four of them are located on the main stream of

the Durance River (Briançon, L’Argentière-la-Bessée,
Embrun, and Espinasses) while the others are located

on tributaries: the Ubaye River (Barcelonnette and Lauzet-

Ubaye) and the Guil River (Mont-Dauphin). We also use

snow water equivalent time series measured at seven

cosmic-ray snow sensors operated by Électricité de France

and locatedat various elevations:Cézanne (1877m), Passaur

(2002m), Sanguinière (2058m), Izoard (2275m),Chardonnet

(2438m), Prapic (2492m), and Les Marrous (2685m).

3. Geostatistical model formulation for daily
precipitation and temperature fields

a. Weather typing

In this study we use a precipitation and temperature

interpolation scheme based on a weather typing ap-

proach.Wewill assume that precipitation (temperature)

fields occurring on days having a similar atmospheric

circulation pattern at the synoptic scale will share com-

mon properties such as orographic gradients (tempera-

ture lapse rate), correlation length between stations, etc.

This study is based on the classification in use atÉlectricité
de France Division Technique Générale (DTG; see, e.g.,

Paquet et al. 2006; Garavaglia et al. 2010), which com-

prises eight weather patterns (WPs), defined according to

the pattern of geopotential height at 700 and 1000hPa.

Figure 4 illustrates the typical synoptic situation (1000hPa

only) for each WP, and Table 2 sums up the statistics of

occurrence of these situations. Table 2 also shows the

mean precipitation amounts at the gauges in each weather

pattern: it can be seen that the patterns that bring themost

precipitation are WPs 1, 2, 4, and 7.

b. Formulation of the precipitation model

1) REQUIREMENTS AND RATIONALE

The objective of this study is to demonstrate the po-

tential of using different categories of observations (rain

gauges, SWEmeasurements, and streamflow data) to help

assess precipitation elevation gradients and temperature

TABLE 1. Gauging station summary.

Gauging station River Area (km2)

Mean discharge

1981–2004 (m3 s21)

Briançon Durance 548 13.4

L’Argentière-
la-Bessée

Durance 984 26.7

Mont-Dauphin Guil 723 12.1

Embrun Durance 2170 50.9

Barcelonnette Ubaye 549 10.1

Lauzet-Ubaye Ubaye 946 20.3

Espinasses Durance 3580 78.6

FIG. 3. Hypsometric curve of the upper Durance catchment. The

quantiles corresponding to the elevations of the rain gauges are

plotted with triangles. We can see that the highest rain gauge at

2031m corresponds to a probability of exceedance of 0.55, which

means that the highest 55% of the catchment has no observations

at all.
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lapse rates (drift parameters). The main difficulty—but

also the interest—is that these observations have very

different spatial supports (or representative scales):

rain gauge data and SWE measurements have a very

small spatial support (nearly a point). On the contrary, a

streamflowmeasurement has a very large spatial support:

this support is the catchment. Hence, if we want to

make use of all these observations, we have to be able

to produce acceptable temperature and precipitation

forcings at very different support sizes. At the point

scale, we need correct temporal mean and variance,

correct number of zero-precipitation days (e.g., for

comparison with jackknife rain gauges), correct correla-

tion (e.g., for simulating snow accumulation episodes at

SWE gauges), etc. At the catchment scale, we need un-

biased areal precipitation estimates (i.e., volumes) in or-

der to force the hydrological model. Hence, we need

correct spatial statistics for each event, such as spatial

mean and variance, spatial intermittence (fractional area

which receives no precipitation at all), etc. At this scale,

the orographic enhancement is only a statistical effect,

because on a given day there is nomonotonic relationship

between elevation and precipitation amount: it depends

on where the precipitation event occurs in the first place.

The rationale behind the precipitationmodel presented

hereafter is to decompose each daily field into two parts,

with each part satisfying one of the previous requirements.

The first is a deterministic part (called the template),

with low spatial frequency, which will ensure that areal

precipitation estimates are unbiased at large temporal

and spatial scales (seasonal–catchment scale). This tem-

plate field is not random and contains deterministic ef-

fects that need to be explicitly modeled. In mountain

terrain, a dominant effect is orographic enhancement,

which can be modeled at first order with a monotonic

function of elevation (e.g., linear, exponential). This ef-

fect is better modeled with a weather pattern approach,

because precipitation gradients depend at first order on

the direction and intensity of the synoptic atmospheric

circulation as it encounters the mountain range [Eq. (2)],

that is, the faster the circulation, the higher the gradient.

The second is a stochastic part (called the scaling

factor), with high spatial frequency, which will ensure

acceptable statistics at small spatial and temporal scales

(point–event scale).

The decomposition used in this study is illustrated in

Fig. 5. On a given day j belonging to weather pattern

WP( j), we write the precipitation amount at location x as

P(x, j)5P
WP( j)
* (x)L(x, j) . (3)

The daily precipitation field is thus seen as a ‘‘mean’’

realization (or template field; Fig. 5c) for the weather

pattern WP( j), PWP(j)* (x), deformed by a local scaling

factor L(x, j) (Fig. 5e). The template is itself the product

of a deterministic drift/trend (Fig. 5a) and of a stochastic

part (Fig. 5b). It is a rather smooth field (it does not have

the variance of an actual daily precipitation field) without

spatial intermittence and is meant to embed as many

deterministic effects as possible (such as orographic

forcing, represented by the deterministic drift). Con-

versely, the fieldL(x, j) may exhibit spatial intermittence.

The product of the two parts gives the estimated pre-

cipitation (Fig. 5f) field for each day. If the decomposition

FIG. 4. Maps of the average geopotential height at 1000 hPa

(m) for (top left) WP 1 to (bottom right) WP 8 (adapted from

Garavaglia et al. 2010). The color scale runs from 0 (dark blue) to

.200 (orange). Arrows indicate the atmospheric flow of low layers,

and the rectangle indicates thewindow inwhich the distance between

geopotential fields is computed.
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is correct (notably, if the drift parameters control-

ling the orographic enhancement are correctly esti-

mated), the previous requirements should be met,

that is, we would should have acceptable temporal

and spatial statistics on a wide range of scales/sup-

ports (from point scale to catchment scale, and from

event scale to seasonal or annual scale). Figure 6 il-

lustrates the transformation of the daily map into

areal estimates, used as inputs in the semidistributed

hydrological model.

In the following sections, we give some details about

the mathematical formulation of the model. Indeed,

the joint calibration strategy strongly relies on the

ability of the interpolation model to meet the afore-

mentioned requirements: for this reason, it seems

important to give some insight into this model. In

our opinion, the one presented here is an attempt of

minimal complexity to meet all the requirements;

it is clearly not the only possible one. We only pres-

ent the main statistical hypotheses: numerical details

and algebra are provided in the appendix. Bold

symbols usually denote vectors; as much as possible,

random variables are denoted with a capital letter

and realizations of this random variable are denoted

in lowercase [e.g., l(x) will denote a realization

of the random field L at location x]. Tilded symbols

denote estimated values (expected values for random

variables).

2) ESTIMATION OF THE PRECIPITATION

TEMPLATE FOR EACH WEATHER PATTERN

Given the properties mentioned above, we chose a log-

linear model to represent the orographic enhancement of

precipitation in weather pattern k, that is, we have locally

dP
k
*

P
k
*

�����
x0

5 d(lnP
k
* )j

x0
5a

k
dz . (4)

The SI unit for the increase rate ak is m21 (1/ak is a

scale height), but for the sake of clarity we will express it

in percent of increase every 100m (%hm21).

We perform a kriging with an external drift (KED)

with elevation z(x) as an auxiliary variable in order to

get an estimation of lnPk* (x0) at an ungauged location

x0, given the values pk* (x1), . . . , pk* (xn) at the n condi-

tioning rain gauges:

lnP
k
* [x

0
j p

k* (x1), . . . ,pk* (xn);ak
]

5 b
k
1a

k
z(x

0
)1m

KED,k
(x

0
)1s

KED,k
(x

0
)U(x

0
) , (5)

where pk* (xi) is the mean daily precipitation amount at

gauge location xi computed on all days of weather pat-

tern k, U is a standard Gaussian random variable, and

m
KED,k

(x
0
)5 �

i

w
i
(x

0
)[lnp

k
* (x

i
)2a

k
z(x

i
)] (6)

is the simple kriging estimate of the detrended field

(stochastic part of the template, Fig. 5b) at location x0.

The value of the template at location x0 is then given by

the expected value

~p
k
* (x

0
)5EfP

k
* [x

0
j p

k
* (x

1
), . . . ,p

k* (xn)]g
5 exp[b

k
1a

k
z(x

0
)

1m
KED,k

(x
0
)] exp

�
1

2
s2
KED,k(x0)

�
, (7)

where the correcting factor exp[(1/2)s2
KED,k] comes

from the fact that the expectation of the raw variable

is not the exponential of the expectation of its

logarithm.

3) ESTIMATION OF THE LOCAL SCALING FACTOR

FOR EACH DAY

As mentioned at the beginning of section 3b, han-

dling the local scaling factor l(x, j) is more complicated

TABLE 2. Yearly and seasonal statistics of occurrence for the eightWPs for the period 1981–2004 and related precipitation statistics on the

network of 26 precipitation gauges used in this study.

Occurrence statistics (%)

Mean amount

(mm)

Class WP name Year Winter Spring Summer Autumn Daily Yearly

WP 1 Atlantic wave 7.6 4.7 7.2 11.1 7.3 5.9 164

WP 2 Steady oceanic 23.8 38.0 21.4 12.2 23.8 2.1 183

WP 3 Southwest circulation 7.8 4.9 6.8 11.5 7.7 2.6 74

WP 4 South circulation 18.4 20.0 19.8 11.0 23.0 2.6 175

WP 5 Northeast circulation 5.9 6.4 7.2 5.2 4.8 1.8 39

WP6 East return 5.6 4.7 7.6 5.6 4.7 4.7 96

WP 7 Central depression 3.6 2.1 4.0 3.6 4.6 10.4 137

WP 8 Anticyclonic 27.3 19.3 26.0 39.8 23.9 0.6 61
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because of the spatial intermittence of this field: the

cumulative distribution function (CDF) of Lmay have

an atom at zero (i.e., the discrete value l 5 0 may

have a strictly positive probability of occurrence). In

the following, we will omit the subscript j for the sake of

clarity, but the estimation of the field has to been done

for each day. Since the actual precipitation amount and

the value of the template for day j are known at the

gauging locations x1, . . . , xn, we have the set of con-

ditioning values l(x1), . . . , l(xn). We will build a

Gaussian transformation of L, that is, a function f such

that

Y(x
0
)5f[L(x

0
)]

is a Gaussian random variable. This transformation re-

lies on the following hypotheses:

1) the rate of spatial intermittence f0 can be estimated

by the proportion of nonrainy gauges;

FIG. 5. Construction of a daily rainfall field: example of 1 Mar 1993, belonging to WP 6 (East return). The procedure consists of five

steps: (a) construction of the drift forWP 6; (b) lognormal kriging of the residuals to the drift based onmultiplicative residuals observed at

the gauges; (c) construction of the template forWP 6, which is the product of (a) and (b); (e) kriging of the daily residuals to the template;

and (f) construction of the daily field, which is the product of (c) and (e).Grid size is 1 km3 1 km, and the domain shown is 80 km3 120 km

(9600 grid points).The color scale runs from 0–5 (gray) to 80–100 (cyan) mm.

DECEMBER 2015 LE MO INE ET AL . 2603



2) the local scaling factor in the rainy part of the field

follows a lognormal distribution; and

3) the location and scale parameters m and s of this

lognormal distribution are related or, equivalently,

there is a functional relation between the mean and

the variance of the nonzero part of the field L:
s2
L1 5 g(mL1).

4) MEAN–VARIANCE RELATIONSHIP

Hypothesis 3 is very important, as a strong decreasing

relationship between the mean and the coefficient of

variation of L appears in the data for all weather pat-

terns. It basically says that if the average value of the

daily field is smaller than the average value of the tem-

plate, we may have locally very high or low values of the

scaling factor. Conversely, if the average value is much

higher than the average of the template, it is likely that

the scaling factor is quite uniform and that the daily field

is more or less homothetic to the template (by a factor

greater than 1). We will use this property to get robust

estimates of the parameters m and s describing the

lognormal distribution of nonzero values, on the basis of

the mean scaling factor mL.

According to the hypotheses, we have mL1 5
E[L jL. 0]5 em1(s2/2). For the variance, we have

s2
L1 5V[L jL. 0]5 (es

2
2 1)m2

L1 .

Inverting this formula and expressing s2
L1 as a func-

tion of m2
L1 yields

8>>>><
>>>>:

s2 5 ln

"
11

g(m
L1)

m2
L1

#

m5 ln(m
L1)2

s2

2

. (8)

If on a given day we have only a few gauging sites with

nonzero rainfall—let us say 3 in n, for example—we

do not need to compute the mean and variance of the

logarithm of the three scaling factors in order to es-

timate m and s for that day: a more robust guess is

found by computing only the mean cumulate mL1

on the three points and using the mean–variance

relationship.

For a given weather pattern, we fit a relationship

s2
L1 5 g(mL1) in the form

g(m
L1)5

c

�
m

L1

b

�g

11

�
m
L1

b

�g2d
, c. 0, b. 0, g. 2, d, 2.

(9)

This form ensures that the coefficient of variation

sL1 /mL1 remains bounded when mL1 / 0 and decreases

when mL1 increases. In log–log coordinates, the plot s2
L1

versus mL1 clearly shows two asymptotes with distinct

slopes g. 2 and d, 2 (see Fig. 7 for WP 1).

c. Gaussian transformation and kriging of the
Gaussian field

Now that we have described the CDF FL of L, we can
use the transformation

L5F21
L [N

0,1
(Y)] 5 Y5N 21

0,1 [FL
(L)] ,

where N 0,1 is the CDF of the standard normal distri-

bution. The procedure is illustrated in Fig. 8. However,

problems may arise for computing the transformation

Y5 (N 21
0,1 + FL)(L). Indeed, since FL has an atom at

zero (i.e., the discrete value l5 0 has a strictly positive

probability) in case of spatial intermittence, then F21
L is

not injective, and the image of l5 0 is the whole seg-

ment [0, f0].

Once we have estimated the structural function

(semivariogram) of Y using nonzero data, we generate

Gaussian samples at locations where the rainfall amount

FIG. 6. Daily areal rainfall (zonalmean) for the 17mesh elements

for 1 Mar 1993 (same day as in Fig. 5). Control nodes (hydrometric

gauging sites) are displayed with black dots, and main streams are

drawnwith solid black lines. The color scale runs from 0–5 (gray) to

80–100 (cyan) mm.
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is zero using aGibbs sampling procedure (adapted from,

e.g., Vischel et al. 2009). This procedure is described in

the appendix.

EXPECTATION OF THE LOCAL SCALING FACTOR

Once we have generated Gaussian samples at every

conditioning location, we can estimate the distribution

of Y(x0) at an ungauged location by ordinary kriging

using the values y(x1), . . . , y(xn): it is a Gaussian dis-

tribution with mean mSK(x0) and variance s2
SK(x0)

[Fig. 9, probability density function (PDF) in gray in

the top panel].

The expectation of the (untransformed) local scaling

factor is then given by the following integral:

~l(x
0
)5E[L(x

0
) j l(x

1
), . . . , l(x

n
)]

5

ð1‘

2‘

f21(y)
1

s
SK

ffiffiffiffiffiffi
2p

p e2[(y2mSK)
2/2s2

SK
] dy . (10)

Given the form of the direct and reverse trans-

formations (f and f21), this expectation does not

have a closed form. It can nonetheless be estimated

very quickly using a quadrature formula (see the

appendix).

d. Temperature model

We apply a similar procedure for temperature, but we

use a simpler additive model without transformation:

temperature is not restricted to positive values, does not

span several orders of magnitude, and its CDF has no

atomic component. The mean daily temperature at lo-

cation x on day j is written as the sum of a template for

weather pattern k5WP( j) at location x and a local

offset Q(x, j):

T(x, j)5T
WP(j)
* (x)1Q(x, j) . (11)

The value of the template at ungauged location x0 is

again obtained by kriging with an external drift using

altitude as an auxiliary variable (i.e., simple kriging of

the residuals to the drift):

T
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* [x
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j t

k
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1
), . . . , t

k
* (x
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)]5 b

k
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k
z(x

0
)1m
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0
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1s
KED,k
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0
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0
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(12)

where Gk is the mean temperature lapse rate for weather

pattern k andU is a standard Gaussian random variable.

The value of the template at location x0 is then given by

the expectation

FIG. 7. Mean–variance relationship in daily scaling factor fields.

Each dot represents a day and the shade of gray indicates the inter-

mittence f0 of the field on that day. Days with less than four

nonzero gauges are not displayed. The gray scale runs from f0
between 0.8 and 0.9 (lightest shade) to,0.1 (darkest shade) in 0.1

increments.

FIG. 8. Construction of a Gaussian transformation of the daily

local scaling factor. First, the lognormal distribution of nonzero

scaling factors is estimated using the mean mL and intermittence

rate f0 of the sampled field and the mean–variance relationship

presented in section 4 (the empirical CDF is shown in dotted gray

but is not used in the computations). Then, the values at the n

conditioning rain gauges l(x1), . . . , l(xn) (gray dots on bottom x

axis) are mapped to Gaussian samples y(x1), . . . , y(xn) (black dots

on top x axis). Where the scaling factor is 0, a Gaussian value is

obtained by Gibbs sampling. The y axis runs from 0.0 to 1.0 in in-

crements of 0.1. The bottom x axis runs from 0 to 10 in increments

of 2 and the top from23 to13 in increments of 1. The values in the

figure are Sy 5 20.194 and f0 5 0.42.
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Then, on each day the temperature field is obtained

as the sum of the template field and the offset field

Q(x, j), which is obtained by simple kriging of the

observed offsets at the temperature stations:

u(x1, j), . . . , u(xn, j)5 t(xn, j)2 tk* (xn).

As mentioned in the introduction, such a simple

model is not able to reproduce temperature inversions.

However, since inversions correspond to periods with

stable conditions without precipitation or, more often,

cold or low-sun periods without much snowmelt, the

hydrological effect of missing inversions is not expected

to be large.

4. Hydrologically aided interpolation of
precipitation and temperature fields

a. Hydrological model

In this sectionwebriefly present the hydrologicalmodel

used for simulating the rainfall–runoff relationship,

namely, a modified version of the CEQUEAU model

currently in use at theLaboratoireNational d’Hydraulique

et Environnement (LNHE; Électricité de France Re-

search and Development; see Bourqui et al. 2011). This

semidistributedmodel is designed to run on a topographic

mesh; in this study, we use 17 subcatchments with an av-

erage area of 210km2 (Fig. 2). Only the conceptual soil

moisture accounting and storage routine is taken from the

original CEQUEAU scheme (Charbonneau et al. 1977).

The snow routine has been replaced by a single-layer,

simplified surface energy balancemodel and is distributed

in five elevation bands in each subcatchment. The full

surface energy balance (SEB) reads

R
swY

2R
sw[

1R
lwY

2R
lw[

5Q
cc,snow

1H1LE, (14)

where Qcc,snow is the conductive/convective heat flux

entering the snowpack. Since we do not have access to

many atmospheric and aerodynamic variables, we use a

strongly degraded formulation of Eq. (14) in which

those unknown values are set to conceptual, time-

averaged climatological values and are calibrated. Sec-

ond, we do not take turbulent fluxes H and LE into

account because of the lack of a robust interpolation

method for wind speed and relative humidity in our

model (this will be the object of future work). Finally, in

order to solve more rapidly for the (conceptual) snow

surface temperature Tsnow,s we linearize the longwave

radiative components around a reference temperature

T0 (i.e., T0 5 273:15K). The resulting equation reads
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FIG. 9. Illustration of the reverse transformation. Simple kriging in the Gaussian space leads

to (top) theGaussian PDF gSK(y) (gray).What is needed in order to get an estimate of the local

scaling factor at location x0 is the expectation of the PDF fSK(l)5 gSK[f(l)]f
0(l)] (black, with

an atomic value at 0). Given the form of f, this expectation is evaluated using a quadrature

formula. The bottom part of the figure is the same as Fig. 8.
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where Re(u, j) is extraterrestrial radiation for calendar

day j at latitude u and s5 5:671028 Wm22 K24 is the

Stefan–Boltzmann constant. For the sake of brevity

readers are referred to Table 3 for the meaning of other

parameters. If the conceptual surface temperature

Tsnow,s is found greater than 08C, it is set to zero in

Eq. (15) and the convective flux entering the snow-

pack is equal to the left-hand side. These assumptions

are clearly quite bold, and the resulting model stands

at a midpoint between true SEB models and concep-

tual degree-day models. Such a formulation tries to

trade-off between efficiency, parsimony, and spatial

transferability.

The soil moisture accounting procedure uses a single

storage and three thresholds for generating infiltration

and slow and fast runoff components. In this study, we use

the potential evapotranspiration formula by Oudin et al.

(2005), which is very robust for hydrological modeling.

Finally, the contribution of each subcatchment is

routed to the different control nodes using a diffusive

wave model with uniform, lumped celerity and diffu-

sivity parameters (see, e.g., Hayami 1951) instead of the

original Nash cascade. The same parameter set is used

for all subcatchments of the topographic mesh (i.e., only

the forcings and the state variables are distributed).

Table 3 lists the 29 parameters of the model; 15 of them

are calibrated.

b. Inferred parameters

As mentioned earlier, the main objective of the pro-

cedure is to let streamflow measurements help the

inference of the drift parameters controlling the pre-

cipitation and temperature templates in each weather

pattern. Hence, for each trial value of the precipitation

increase rate ak (temperature lapse rate Gk) in WP k,

we have to perform the variographic analysis of the

TABLE 3. List of the parameters of the daily time step hydrological model. The list is divided into three parts: snow routine (14

parameters, 4 calibrated), soil moisture and deep storage routine taken from the original CEQUEAU scheme (13 parameters, 9 cali-

brated), and diffusive wave flow routing model (2 parameters, calibrated).

No. Symbol Units Description Value/range Optimized

1 amax — Albedo of new snow 0.9 No

2 amin — Albedo of very old snow/ice 0.4 No

3 ta days Characteristic time for the decrease

of snow albedo with age

35 No

4 f sw 5 hRswY/Rei — Climatological (time averaged) ratio

of incoming to extraterrestrial shortwave radiation

[0.4, 0.8] Yes

5 ra s m21 Aerodynamic resistance for turbulent

sensible heat flux

— No

6 lsnow,0 Km21 s21 Effective thermal conductivity of new snow [0.03, 0.3] Yes

7 «air — Climatological (time averaged) effective emissivity

of the atmosphere

[0.9, 1] Yes

8 Trs,min 8C Minimum temperature for rain/snow mixture 21 No

9 Trs,max 8C Maximum temperature for rain/snow mixture 13 No

10 fret — Maximum liquid fraction in snowpack 0.075 No

11 r0 kgm23 Density of new snow [100, 200] Yes

12 h0 Pa s Compressive viscosity of new snow 2 3 1011 No

13 r* kgm23 Characteristic scale for the increase of viscosity with

density: h(r)5h0e
(r2r0)/r*

400 No

14 Zact m Maximum depth of thermally active snow layer 10 No

15 dsoil mm Maximum capacity of soil moisture accounting store [300, 500] Yes

16 dinfil mm Minimum SMA content for infiltration generation [0, dsoil] Yes

17 dslow mm Minimum SMA content for slow surface flow generation [dinfil, dsoil] Yes

18 dquick mm Minimum SMA content for quick surface flow generation [dslow, dsoil] Yes

19 Kc — Crop coefficient for potential evapotranspiration scaling 1.0 No

20 fimper — Impervious fraction of the subcatchment 0.0 No

21 tinfil days Characteristic time for infiltration release Yes

22 tslow days Characteristic time for slow surface flow release ]0, tinfil] Yes

23 tquick days Characteristic time for quick surface flow release ]0, tslow] Yes

24 dgw mm Maximum capacity of deep storage [300, 500] Yes

25 dgw,int mm Deep storage threshold for intermediate flow generation — No

26 tgw days Characteristic time for deep storage release Yes

27 tgw,int days Characteristic time for deep storage intermediate release — No

28 C m s21 Celerity for diffusive wave flow routing Yes

29 D m2 s21 Diffusivity for diffusive wave flow routing Yes
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residuals to the drift and of the daily residuals to the

template once the latter has been computed (note that

with the transformation, the structural function has to be

specified for the transformed variable Y; see, e.g.,

Matheron 1974). However, the advantage of working

with the decomposition proposed above is that the daily

residuals l(x1, j), . . . , l(xn, j) [u(x1, j), . . . , u(xn, j)] to

the template at the conditioning locations do not depend

on the drift parameters, because by construction the

value of the template at those conditioning locations is

always the observed value. Consequently, the variography

of the daily residuals to the template has to be done only

once for each weather pattern.

Finally, we will identify three subsets of parameters:

1) the first subset will be referred to as the precipitation

drift parameters: these degrees of freedom are the

eight precipitation increase rates a1, . . . , a8 for each

weather pattern;

2) the second subset will gather the temperature drift

parameters, namely, the eight temperature lapse

rates G1, . . . , G8; and

3) the last subset consists of the 15 parameters of the

hydrological model (including the snow routine).

The whole model (hereafter called hydrometeorological

model) thus consists of 31 calibrated parameters.

c. Multiobjective optimization procedure

As mentioned earlier, the whole hydrometeorological

model can produce four types of daily estimates that can

be compared with observations, namely, point-scale pre-

cipitation estimates, point-scale temperature estimates,

point-scale SWE estimates, and catchment-scale stream-

flow estimates. For a given parameter set (31 parameters),

we can thus compute as many goodness-of-fit criteria:

1) If we put a rain gauge aside, we can use it as an

ungauged location for independent evaluation of the

spatialization scheme (jackknife procedure). We can

repeat this procedure for each rain gauge in the

network and compute a mean criterion in jackknife

validation for the 26 rain gauges hCPijk (the brackets
and the subscript jk indicate that we have to run the

interpolation 26 times to compute this mean, which is

not the case for criteria 3 and 4 below).

2) We can do the same thing for each temperature

station and produce a goodness-of-fit criterion for

temperature series hCTijk.
3) The hydrological model transforms the precipitation

and temperature fields into discharge time series at

one or several subcatchment outlets. Hence, we can

compute evaluation criteria for the seven streamflow

gauges available and produce a mean criterion CQ.

4) Similarly, we can run the snow routine at point-scale

with the forcings estimated at the locations of the

seven cosmic-ray snow sensors, in order to compare

the simulations with observed SWE time series.

Hence, we can produce a mean criterion CSWE.

For all variables, the criterion used is the Kling–Gupta

efficiency (KGE; see Gupta et al. 2009), which reads

C
X
5 12
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1
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s
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s
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2 1

�2

1 (r2 1)2

s
, (16)

where mX and sX are the mean and standard deviation

of the time series of the observed variableX, mX̂ and sX̂

are the mean and standard deviation of simulated vari-

able X̂, and

r5
Cov(X, X̂)

s
X
s
X̂

is the Pearson correlation coefficient between X and X̂.

The KGE has three components: a penalty on bias

(simulated-to-observed mean, i.e., the first moment of

the distribution of the variableX), a penalty on the ratio

of simulated-to-observed standard deviation (second

moment), and a penalty on correlation (i.e., on timing

errors). A perfect simulation would have all penalties

equal to zero under the square root in Eq. (16), hence a

KGE equal to 1. Then, CX is simply the mean value for

all sites where a time series of variable X is available:

C
X
5

1

n
sites

�
nsites

i51

C
Xi
. (17)

The first two criteria on rainfall and temperature are

solely dependent on the drift parameter subsets (more-

over, the search for the optimal parameter subset with

respect to these criteria can be split into eight single-

parameter searches). However, the third and fourth

criteria are sensitive to all three subsets since the quality

of the discharge and SWE simulations produced by the

hydrological model relies not only on its own parame-

ters, but also on the quality of the estimated forcing

fields. For these reasons, we can perform amultiobjective

calibration of the whole parameter set using a multi-

objective evolutionary (i.e., trial and error) algorithm,

namely, the CaRaMEL algorithm (Calage Rapide par

Algorithme Multi-Objectif Evolutionnaire; see, e.g., Le

Moine 2009; Rothfuss et al. 2012; Magand et al. 2014).

In practice, since temperature is much easier to

interpolate than precipitation, we perform a three-

objective optimization using criteria hCPijk on pre-

cipitation, CQ on discharge time series, and CSWE on
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snow water equivalent time series. The algorithm starts

with a randomly generated ‘‘population’’ of parameter

sets. For each trial parameter set (‘‘individual’’ in the

population), we run the whole hydrometeorological

model and we compute the three criteria. Then, on the

basis of the previously tested parameter sets, the algo-

rithm proposes new trial parameter sets (new ‘‘genera-

tion’’) in order to identify the Pareto solutions to the

multiobjective problem.

d. Implementation

For a given parameter set (i.e., 31 parameters), gen-

erating the gridded forcings at the resolution of 1 km2

over the whole catchment (3600km2, hence 3600 grid

points) is the most computationally demanding task. All

models (interpolation schemes and hydrological model)

are run in a Scilab environment with calls to subroutines

written in C and FORTRAN. Multiple right-hand-side

kriging systems are solved using LAPACK subroutines

(symmetric positive definite solver using Cholesky fac-

torization for simple kriging and general symmetric

solver using Bunch–Kaufman lower/upper/permutation

factorization for ordinary kriging; see Anderson et al.

1999). Since the kriging weights solely depend on the

kriging configuration and not on the daily values at the

conditioning points, the factorization and the computa-

tion of the weights have to be done only once for each

weather pattern, nomatter the length of the period to be

simulated. As a result, one run of the whole direct model

(generation of forcing fields 1 semidistributed hydro-

logical simulation) takes 5–10 s to complete for a 20-yr

period on a typical desktop machine. This is reasonably

fast enough for use with an MOEA that converges in a

few thousand evaluations of the direct problem.

5. Results

The two approaches (independent analysis versus

joint calibration) are evaluated using a classical split-

sample test technique (Kleme�s 1986). The complete

period 1981–2004 is divided into two subperiods: the first

period starts on 1 August 1981 and ends on 31 July 1993,

and the second period starts on 1 August 1992 and ends

on 31 July 2004. A 1-yr warm-up period is used each

time, so that the criteria are calculated on strictly non-

overlapping periods, from 1 August 1982 to 31 July 1993

and from 1 August 1993 to 31 July 2004, respectively, in

order to maximize the use of available data.

Also, in order to make a full use of all available data,

we perform a symmetrical split-sample test: the first

cross-validation test is done by calibrating the model in

the first period 1982–93 (i.e., identifying the Pareto

solutions) and then evaluating the solutions in the

validation period 1993–2004. Then we switch the roles of

the two periods: we build the Pareto front in the second

period 1993–2004, and then we evaluate the solutions

with period 1 (1982–93) as the control period.

a. Independent analysis experiment

The independent analysis consists of first calibrating

the increase rate parameters a1, . . .a8 against rainfall

gauges data only, and then calibrating the parameters of

the hydrological with these fixed parameters. The ak

values are calibrated so as to maximize the mean KGE

hCPijk in jackknife validation for the 26 gauges: the values
obtained in the two periods are displayed in Table 4.

Then, the hydrological model is calibrated using the

multiobjective algorithm with two objective functions:

the mean KGE CQ at the seven streamflow gauges and

the mean KGE CSWE at the seven cosmic-ray snow

sensors. Figure 10 presents the Pareto fronts obtained in

calibration.

b. Joint calibration experiment

As stated in the description of the HAI procedure, we

performed the joint calibration of the drift parameters

and the parameters of the hydrological model. The three-

objective Pareto fronts obtained in each period are dis-

played in Fig. 11.

The concept of Pareto optimality is intrinsically linked

to the notion of trade-off between different re-

quirements, which is exactly what the HAI procedure

aims at. For this reason, we will focus on two subsets of

solutions extracted from the Pareto fronts of Fig. 11:

d The subset displayed in blue represents all the trade-

off solutions between CQ and CSWE, with the con-

straint that hCPijk is maximum. This subset is precisely

TABLE 4. Drift parameters (precipitation increase rates) in each

weather pattern obtained in the independent analysis.

Calibration

1982–93

Calibration

1993–2004

a1 increase rate in WP 1 0.10%hm21 1.55%hm21

a2 increase rate in WP 2 2.64%hm21 4.95%hm21

a3 increase rate in WP 3 3.48%hm21 7.95%hm21

a4 increase rate in WP 4 1.82%hm21 4.37%hm21

a5 increase rate in WP 5 4.35%hm21 3.47%hm21

a6 increase rate in WP 6 1.26%hm21 0.10%hm21

a7 increase rate in WP 7 3.32%hm21 2.06%hm21

a8 increase rate in WP 8 4.57%hm21 1.95%hm21

hCPijk mean KGE in jackknife

validation at the 26 rain gauges,

in the calibration period

0.769 0.776

Mean KGE hCPijk in jackknife

validation at the 26 rain gauges,

in the other (validation) period

0.771 0.764
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the same as the 2DPareto front obtained in the second

step of the independent analysis (Fig. 10).
d The subset highlighted in red is the solutions that

maximize a weighted mean of the three criteria, with

the weights set to the inverse of the standard de-

viation of each criteria in the full Pareto front (so as

to eliminate the effect that each criterion spans a

different range). We selected 30 solutions in order to

be able to produce distributions of the parameters in

this set.

c. Posterior distribution of drift parameters in the
joint calibration versus independent analysis

In Fig. 12 we show the empirical PDFs for the pre-

cipitation increase rates in the eight weather patterns,

for each approach (independent analysis and joint cali-

bration) and each period (1982–93 and 1993–2004). A

perfectly formulated and perfectly identifiable inter-

polation model would yield identical drift parameters

in these two periods. These plots show that most of the

time, the distributions obtained in the two periods are

closer to each other with the joint calibration (solid

black and gray histograms) than with the independent

analysis (vertical dotted bars, black and gray). The

overlap is especially improved for weather patterns that

occur frequently and/or have strong gradients, such as

WP 2: in both periods, the PDF of parameter a2 is

centered around 5%–6%hm21, while the mismatch is

important with the independent analysis (2.64% versus

4.95%hm21). An improvement is also observed for a3,

a4, and a7, which all bring significant amounts of

precipitation (see Table 2). Conversely, parameter a5

(WP 5) seems better identified in the independent

analysis than in the joint calibration: this is a conse-

quence of its rare occurrence and low hydrological im-

portance (5.9% of all days and only 39mmyr21 on

average; see Table 2 again).

Interestingly (and reassuringly), the weather pattern

associated with the fastest circulation (WP 2, Steady

oceanic) has the highest calibrated increase rate, in ac-

cordance with Eq. (2).

d. Robustness of parameter identification

To assess the robustness of both approaches (in-

dependent versus joint calibration), we have to evaluate

them in a period different from the one used for cali-

bration (Andréassian et al. 2009). This is the reason why

we performed a symmetric split sample test (Kleme�s

1986). The results are shown in Fig. 13: for each criterion

(on jackknife P gauges, on SWE, and on streamflow Q)

and each period (from August 1982 to July 1993 and

from August 1993 to July 2004), we plot four box plots:

1) the distribution of the criterion on the period, given

by the subset of parameterizations obtained with the

independent analysis in the same period;

2) the distribution of the criterion on the period, given

by the subset of parameterizations obtained with the

joint calibration in the same period;

3) the distribution of the criterion on the period, given

by the subset of parameterizations obtained with the

independent analysis on the other period (temporal

cross validation of the independent analysis); and

FIG. 10. Two-objective Pareto fronts obtained during calibration of the parameters of the hydrological model in

(left) period 1 (1982–93) and (right) period 2 (1993–2004). In each period, the drift parametersCSWE andCQ are fixed

to their values obtained through independent analysis.
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FIG. 11. Three-objective Pareto fronts obtained during calibration in (top) period 1 (1982–93) and

(bottom) period 2 (1993–2004). Each dot is a simulation (i.e., a parameter set) for which three criteria

are computed: CQ is the mean KGE on the seven streamflow gauges, CSWE is the mean KGE on the

seven point-scale SWEmeasurements, and hCPijk is themeanKGE in jackknife validation at the 26 rain

gauges (26 jackknife tests for each parameter set).
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FIG. 12. Empirical densities for the precipitation increase rates in the eight weather patterns: (top left) WP 1 to

(bottom right) WP 8. Solid black lines indicate the PDFs in joint calibration in the period 1982–93; solid gray lines

indicate the PDFs in the period 1993–2004. Thick vertical bars with a dot at the top indicate the values of the same

rates obtained through independent analysis in each period (these are Dirac distributions), with the same

color code.
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FIG. 13. Temporal cross-validation results. For each criterion—(top) CQ on streamflow times series, (middle)

CSWE on cosmic-ray snow sensors, and (bottom) hCPijk on jackknife rain gauges—and for each period—(left)

from August 1982 to July 1993 and (right) from August 1993 to July 2004—we show four box plots. The dis-

tribution of the criterion on the period given by 1) the subset of parameterizations obtainedwith the independent

analysis in the same period, 2) the subset of parameterizations obtained with the joint calibration in the same

period, 3) the subset of parameterizations obtained with the independent analysis in the other period, and 4) the

subset of parameterizations obtained with the joint calibration in the other period. The bottom and top of each

box are the first and third quartiles (figures are displayed); the line inside the box is the median, and the ends of

the whiskers are the 5th and 95th percentiles. Arrows indicate how the cross-validation distributions (which are

the true measures of model performance) change when we use the HAI approach instead of the independent

analysis.
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4) the distribution of the criterion on the period, given

by the subset of parameterizations obtained with the

joint calibration on the other period (temporal cross

validation of the joint calibration).

The first two plots (top left and top right) show that the

joint calibration outperforms the independent analysis

during calibration (as anticipated, since more parameters

are calibrated at once). In cross-validation tests, it yields a

small loss in streamflow simulation compared with the

independent analysis for one cross validation (calibration

on 1993–2004 and validation on 1982–93), and almost no

difference in the symmetric validation (calibration on

1982–93 and validation on 1993–2004). This means that,

from the sole point of view of streamflow simulation, the

joint calibration is not superior to the independent anal-

ysis: even if the precipitation and temperature drift pa-

rameters are biased in the first step of the independent

analysis, the second step (the calibration of the hydro-

logical model) can compensate for biases in a way that is

still robust (i.e., in a way that can be transferred suc-

cessfully in validation).

The results for SWE simulation have a much clearer

trend. Again, as anticipated, the joint calibration

outperforms the independent analysis in calibration.

However, for this variable the improvement is very well

transferred in validation (for both cross validations from

1982–93 to 1993–2004 and from 1993–2004 to 1982–93).

This means that the joint calibration yields much more

robust point-scale precipitation and temperature esti-

mates at high elevation than the independent analysis.

This result confirms the previous observations about the

distributions of the drift parameters in both periods,

which seemed closer to each other with the joint cali-

bration than with the independent analysis.

Surprisingly enough, the same results are found for

the last criterion hCPijk. Note that in this case, the cross

validation is both temporal and spatial: for example, we

try to simulate the daily precipitation at one of the 26

gauges during the period 1993–2004, using the remain-

ing 25 gauges and a parameter set (a1, . . . , a8) cali-

brated in the period 1982–93. This time, we verify that

the independent analysis gives better results in calibra-

tion (by definition, we first maximize this criterion

hCPijk, and then calibrate the hydrological model).

However, the joint calibration, which is only suboptimal

on hCPijk by construction, yields better results in tem-

poral cross validation.

FIG. 14. (left) Map of a reference control simulation in the period 1993–2004 using the parameters obtained in the period 1982–93 with

the independent analysis. (right) Differences with the corresponding control runoff of the joint calibration. Red and gray circles indicate

the precipitation gauges with their associated KGE scores and white snowflakes, the SWE gauges and scores.
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e. Summary of the differences

The maps in Fig. 14 summarize the changes in dif-

ferent variables simulated in the catchment and are a

mere illustration of the results shown in Fig. 13. The

left map is a reference control simulation in the period

1993–2004, that is, the mean annual precipitation map

produced with the drift parameters a1, . . . , a8 ob-

tained in the independent analysis in the period 1982–

93, and the associated KGE scores at streamflow

gauges and SWE sensors. The right map is the corre-

sponding control run of the joint calibration; it shows

the difference in mean annual precipitation and the

differences in the KGE scores. The joint calibration

yields higher annual precipitation on average at the

catchment scale and also a different seasonal re-

partition (seasonal maps are not shown for the sake of

brevity). Increases are seen in amuch greater area than

decreases, and adjustments are much greater when

increased than decreased.

6. Conclusions

Because of the scarcity and lack of spatial repre-

sentativeness of point-scale temperature and pre-

cipitation observations inmountain areas, an interpolation

step of these key forcing variables is required before

any hydrological modeling exercise. The quality of

hydrological simulations strongly depends on the

quality of these forcings. From the point of view of

processes, meteorology comes first, and hydrology

comes second.

In this study, we tried to show that, from an in-

formation point of view, the estimation of meteoro-

logical variables (e.g., precipitation and temperature)

may actually benefit from hydrological measurements.

We presented a proof-of-concept that a joint calibra-

tion of the drift parameters (precipitation increase

rates and temperature lapse rates) and of the hydro-

logical model’s parameters was possible and, in fact,

desirable. Cross-validation results show that, in a

multiobjective framework, point-scale measurements

can help inform the model about mesoscale dynamics

and vice versa.

For this, we developed an interpolation scheme of

daily precipitation and temperature fields allowing for a

correct reproduction of spatial and temporal statistics at

various scales–support sizes (from event scale to annual,

and from point scale to catchment scale) with, for ex-

ample, full consideration of mean–variance relation-

ships and spatial intermittence in precipitation, in

addition to the more classical parameterization of oro-

graphic effects using increase or lapse rate parameters

(drift parameters). The main originality of this study is

the joint calibration of these drift parameters together

with the parameters of a semidistributed, daily time step

hydrological model.

The HAI procedure seems to demonstrate that it is

preferable to solve a single, loosely constrained prob-

lem (the joint calibration) rather than to solve a first,

very poorly constrained problem (the interpolation of

forcings based on gauge data only) and a second, arti-

ficially overconstrained problem (the calibration of the

hydrological model with prescribed forcings). Drift

parameters are better identified in the HAI approach,

and the identifiability is especially improved for the

weather patterns that bring a lot of precipitation on

average.

Our current work focuses on using other hydrological

observations for the joint calibration, such as satellite-

derived areal snow cover fraction (SCF): this variable is

already widely used to calibrate the parameters of hy-

drological models (e.g., Andreadis and Lettenmaier

2006; Duethmann et al. 2014). Another response vari-

able could be glacier extent, a variable that is used by,

for example, Immerzeel et al. (2012) in order to infer

catchment-scale annual precipitation from glacier mass

balance.

The methodology presented in the paper will also be

extended to other forcing variables, such as incoming

shortwave and longwave radiation and relative humid-

ity, in order to further improve the simulation of point-

scale snow water equivalent with the same domainwide

parameterization of the snow model. For this task, new

predictors such as aspect, slope, or windward or leeward

indices will be tested in order to improve the geo-

statistical model.
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APPENDIX

Gaussian Transformation of the Local Scaling Factor

a. Gibbs sampling at nonrainy gauges

1) At the locations xn,z where the rainfall (and hence

the local scaling ratio) is nonzero, we set y(xn,z)5
N 21

0,1fFL[l(x
n,z)]g. At the locations xz where

the rainfall is zero, we initialize y(xz)5
N 21

0,1(f0)5Sy.
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2) We randomly select a location xz with zero rainfall.

The distribution of the selected value is estimated

conditionally to all the other values by ordinary

kriging (a linear variogram being the best structural

function): its density is a Gaussian PDF p with mean

mSK and variance s2
SK.

3) Since we picked a zero-rainfall location, we know

that y(xz),Sy. To accelerate convergence, we thus

compute the conditional expectation

E[Y(xz) jY(xz),S
y
]5

1ðSy
2‘

p(y) dy

ðSy
2‘

yp(y) dy ,

(A1)

which, under the Gaussian assumption, admits the

closed form

E[Y(xz) jY(xz), S
y
]

5m
SK

2

ffiffiffiffi
2

p

r
s
SK

e2[(Sy2mSK)
2/2s2

SK
]

11 erf

 
S
y
2m

SK

s
SK

ffiffiffi
2

p
! . (A2)

4) We replace the old value y(xz) at the selected

location with this estimation, and loop back to step

2 until the norm of the vector of estimates at the n

locations changes by less than a given error criterion.

b. Reverse transformation

Given the expressions

8>>>><
>>>>:

F
L
(l)5 f

0
1

12 f
0

2

�
11 erf

�
lnl2m

s
ffiffiffi
2

p
��

(F21
L +N)(y)5f21(y)5 exp

(
m1s

ffiffiffi
2

p
erf21

"
erf(y/

ffiffiffi
2

p
)2 f

0

12 f
0

#) , (A3)

it is clear that there is no closed form for the expectation of

the local scaling factor (mean of the black PDF in Fig. 9):

~l(x
0
)5E[L(x

0
) j l(x

1
), . . . , l(x

n
)]

5Eff21[Y(x
0
)]y(x

1
), . . . , y(x

n
)g

5

ð1‘

2‘

f21(y)
1

s
SK

ffiffiffiffiffiffi
2p

p e2[(y2mSK)
2/2s2

SK
] dy

5
1ffiffiffiffi
p

p
ð1‘

2‘

f21(m
SK

1
ffiffiffi
2

p
s
SK
u)e2u2 du . (A4)

However, the latter integral can be efficiently evalu-

ated using Gauss–Hermite quadrature:

ð1‘

2‘

f21(m
SK

1
ffiffiffi
2

p
s
SK
u)e2u2 du

’ �
m

i51

w
i
f21(m

SK
1

ffiffiffi
2

p
s
SK
u
i
) ,

where ui and wi are the abscissas and weights, re-

spectively, of the m-point quadrature [see, e.g., Press

et al. (1992) for implementation].
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