
HAL Id: hal-01240254
https://hal.sorbonne-universite.fr/hal-01240254

Submitted on 8 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Service functional test automation
Lom Messan Hillah, Ariele-Paolo Maesano, Fabio de Rosa, Libero Maesano,

Marco Lettere, Riccardo Fontanelli

To cite this version:
Lom Messan Hillah, Ariele-Paolo Maesano, Fabio de Rosa, Libero Maesano, Marco Lettere, et al..
Service functional test automation. 10th Workshop on System Testing and Validation, Fraunhofer
Fokus, Oct 2015, Sophia Antipolis, France. �hal-01240254�

https://hal.sorbonne-universite.fr/hal-01240254
https://hal.archives-ouvertes.fr

Service functional test automation

Lom Messan Hillah, Ariele-Paolo Maesano
Laboratoire d’Informatique de Paris VI, Sorbonne Universités, UPMC
lom-messan.hillah@lip6.fr, ariele.maesano@lip6.fr
Fabio De Rosa, Libero Maesano
Simple Engineering France SARL
fabio.de-rosa@simple-eng.com, libero.maesano@simple-eng.com
Marco Lettere, Riccardo Fontanelli
Dedalus S.p.A
marco.lettere@dedalus.eu, riccardo.fontanelli@dedalus.eu

Abstract:
This paper presents the automation of the functional test of services
(black-box testing) and services architectures (grey-box testing) that has
been developed by the MIDAS project and is accessible on the MIDAS
SaaS. In particular, the paper illustrates the solutions of tough functional
test automation problems such as: (i) the configuration of the automated
test execution system against large and complex services architectures,
(ii) the constraint-based test input generation, (iii) the specification-based
test oracle generation, (iv) the intelligent dynamic scheduling of test
cases, (v) the intelligent reactive planning of test campaigns. The paper
describes the usage of the MIDAS prototype for the functional test of an
operational distributed application in the domain of healthcare.

Introduction

Services are everywhere. They are involved in services architectures
built of service components that: (i) expose service APIs, (ii) interact
through service protocols (REST/XML, REST/JSON, SOAP…) and (iii)
are deployed independently of each other. The SOA approach has
been used for fifteen years to let distributed vertical applications coop-
erate. More recently, systems have exposed service APIs for interac-
tion with mobile apps. Presently, the internal structure of applications,
once monolithic, is going to be designed as a micro-services architec-
ture [9] that is particularly well adapted for cloud deployment. Services
are loosely coupled, allowing agility of design, development, integration
(continuous integration - CI), delivery (continuous delivery - CD) and
deployment.
The Calabria Cephalalgic Network (CCN) [3] is a multi-owner distrib-
uted application that supports the headache integrated care processes,

effectively coordinating
different care settings
(general practitioners,
specialists, clinics,
labs...) in a patient-
centred vision. The
application is designed
as a services architec-
ture (Figure 1), is op-
erational today and its
components’ services
are physically de-
ployed in different data
centres. The service
APIs are compliant
with the HL7/OMG
HSSP international
standards (RLUS, IXS,
CTS2...) [13].
Dedalus [12], a com-

pany specialised in healthcare systems, is in charge of the provision
within the CCN of the Patient record, the Patient identity and the Ter-
minology services. CCN service-oriented architecture allows Dedalus
to put in place a modular integration process with one separate source
code repository and one separate build per service component.
Actually, the service integration process is a full testing process, consti-
tuted of all the testing activities: functional, security, fault tolerance and
performance test. In order to improve agility and time-to-market, these
activities shall be organised in an optimized manner. The service
integration and delivery process pattern that is becoming popular is the
CD pipeline [15], in which the testing activities are placed as stages
between the service build formation and its deployment in the produc-
tion environment. The transition from a stage to the next is permitted
only whether the stage tests pass, otherwise the sequence is interrupt-
ed and restarts with the check-in of the updated code. An example of
service CD pipeline is sketched in Figure 2.
The test tasks in each stage and the chosen sequence of the test stag-
es can and should maximise the effectiveness (the fault exposing po-
tential and the troubleshooting efficacy) and the efficiency (the fault
detection rate) of the testing tasks. Test effectiveness and efficiency
are important even for completely automated stages - to say nothing
about manual ones - that can be heavyweight and can slow the entire
process.

In the CD pipeline sketched in Figure 2, the successfully constituted
build is firstly submitted to acceptance white-box tests. All the subse-
quent test stages target different aspects of the service external behav-
iour and are independent of the service implementation technology.
The subsequent two stages are about functional test and are detailed
in the section ‘Automated functional test’. The security tests follow -
they can be effective and efficient only whether the service build pass-
es the functional tests. The last two stages are about quality of service:
the fault tolerance tests challenge the resilience of the service imple-
mentation in the face of failures of the underlying computing resources
or the unavailability of the services it interacts with. Lastly, the perfor-
mance tests concern mainly the service invocation and provision laten-
cy. The CD pipeline can be more or less automated. A single CD pipe-
line stage can be fully automated whether: (i) its internal tasks can be
fully automated and produces automatically a meaningful report and (ii)
the automated tasks can be invoked through APIs by the CD server
(for instance Jenkins [14]).
This paper reports a solution of automation of service functional test.
The section ‘Related work’ gives the motivation for doing research on
the topic and a short review of the state of the art. The section
‘Automated functional test’ presents the prototype developed within
the MIDAS project and provided as-a-service by the MIDAS SaaS [16].
Dedalus has incorporated the functional test automation services in its
integration process: this experience is presented in the ‘Prototype
usage in an operational environment’ section. The ‘Conclusion’
discusses major advantages and drawbacks of the new solution and
outlines future work.

Related work

Service test and, in particular, end-to-end test of complex services
architectures is difficult, knowledge intensive, hard to manage and

expensive in terms of labour effort, hardware/software equipment and
time-to-market. Since the inception of the service orientation, service
testing automation has been a critical challenge for researches and
practitioners [2] [1] [11]. In particular, tasks such as: (i) automated op-
timised generation of test inputs [2], (ii) automated generation of test
oracles [1], and (iii) optimised management of test suite for different
test activities - such as first testing, re-testing, regression testing [11],
has not yet found automation solutions that can be applied to real
complex services architecture such as those that are implemented in
healthcare [3].
Model-based testing (MBT) utilises formal models (structural, functional
and behavioural) of the services architecture under test to undertake
the automation of the testing tasks [5]. The “first-generation” MBT re-
search is essentially focused on test input generation. More recently,
formal methods, especially SAT/SMT-based techniques have been
leveraged [6] that allow the exhaustive exploration of the system exe-
cution traces, and efficient test input generation satisfying constraints
(formal properties expressed in temporal logic). Jehan and colleagues
[6] use a constraint solver to compute the expected inputs for each
particular execution of the business process as extracted from the con-
trol flow graph.
The MIDAS approach to the prioritization of test cases [11] is entirely
original [8]: it is based on the usage of probabilistic graphical models
[10] [7] in order to dynamically choose the next test case to run on the
basis of the preceding verdicts. Moreover, the scheduler is able to es-
tablish a dynamic relationship between test case prioritization and the
generation of new test cases, by supplying on the fly to the generator
evidence-driven directives based on the preceding verdicts.

Automated functional test

Test environments

The service functional test automation
is illustrated through an example of a
simplified services architecture related
to the CCN application (Figure 3). In
order to provide its service, eHealth
service consumes the Patient record,
the Patient identity and the Terminolo-
gy services. These services that are

not consumers of other services are called
terminal services.

Unit test stage
The unit test stage includes the following
tasks: (i) produce test inputs (stimuli), (ii)
produce test oracles (expected out-
comes), (iii) deploy and initialise the build
in an appropriate environment (service under test - SUT), (iv) configure
and generate the test system, (v) bind the test system with the SUT,
(vi) run test cases (transmit stimuli, collect and log outcomes), (vii)
arbitrate test outcomes against test oracles, (viii) schedule test case
runs (dynamic scheduling), (ix) plan test campaigns (reactive planning)
and (x) report test campaigns. For every terminal service, the unit test
environment architecture is similar to that sketched in Figure 4.
For non-terminal services, such as the eHealth service, the typical unit
test environment is depicted in Figure 5. The test tasks involved in the
stage are the same as those for terminal services, but in the test sys-
tem are generated, in addition to the stimulator, three mocks that “vir-
tualise” the downstream services. The binding sub-task enables the
mocks receipt the requests of the eHealth service, and send back the
canned responses. The test system must be able to evaluate against
the oracles that the requests that are issued target the appropriate
services, are in time, are in the exact sequence and are the right ones.

End-to-end test stage
The services architecture under test
(SAUT) distributed environment is
deployed with the lastest release
builds of the downstream services. In
the test system are generated the
interceptors that catch the exchang-
es forth and back between the
eHealth service and the downstream
services (Figure 6). This test envi-
ronment is put in place in the end-to-
end stages of the CD pipelines of all
the services involved in the SAUT,
including the terminal services. An
interesting point is that the end-to-
end tests can highlight functional
failures of any of the SAUT services -
not only of the service of the pipeline

in which the stage is accom-
plished - and so eventually reveal
service tight coupling - when a
change in one service produces
an unexpected failure in another
service.
End-to-end testing of multi-owner
services architecture requires
collaborative testing projects that
involve all the service owners and
that explore systematically the
cooperation scenarios between
all the services. Systematic end-
to-end testing campaigns are
mandatory for first testing of new
distributed applications, but are
also recommended as regular
activities of re-testing and regres-
sion testing. A collaborative test-

ing project involving all the owners of the CCN application services is in
progress.

Test automation methods

The MIDAS functional test prototype brings automation solutions (test
automation methods) for the most critical test tasks: (i) configuration of
the test system against distributed services architectures, (ii) test case
(input/oracle) generation based on constraint propagation and symbolic
execution, (iii) intelligent dynamic test case prioritisation and scheduling,
(iv) intelligent reactive planning of test campaign with on-the-fly, evi-
dence-based generation of new test cases. These test automation
methods are provided as services by the MIDAS SaaS.

Automated configuration of the test system
The structure of the test system (stimulators, mocks, interceptors) is
automatically generated from the SAUT model and the test configura-
tion model. The former model is represented through an XML docu-
ment depicting the actual components of the SAUT and the actual
wires between them – interaction links that are typed by service speci-
fications (e.g. WSDL documents). The latter model is obtained from the
former model: (i) by adding virtual components (stimulators, mocks)
and the corresponding virtual wires to actual components and (ii) by
designating the actual wires to be observed (interceptors).

Automated genera-
tion of test cases
Each SAUT compo-
nent is equipped with
a protocol state ma-
chine (PSM), mod-
elled as a Harel
state-chart [4], that
represents the inter-
action states of the
component and the transitions triggered by received messages
(events), filtered by conditions (guards) and producing effects de-
scribed as data-flow transfer functions. The service component PSMs
are represented through standard SCXML documents [17] and the
conditions and transfer functions are expressed in Javascript.
Test cases (inputs and oracles) are generated from the set of models
(Figure 7). The test cases generation process relies on model-checking
the PSM models using TLA+ [18], a well-known formal specification
language based on temporal logic. TLA+ is backed by the TLC model
checker to exhaustively check correctness properties across all possi-
ble executions of the system and by the TLAPS proof system that re-
lies on SMT (Satisfiability-Modulo Theory) solvers for checking TLA+
proofs. The PSMs and the generation parameters are translated into a
TLA+ companion algorithm language (PlusCal) that is afterwards com-
piled into TLA+. Through assertions, execution traces of the system
that match some criteria - for instance where messages of some spe-
cific types, or containing some specific values, are exchanged - are
requested to the proof system. Input data are then extracted from the
execution traces and fed to the SCXML engine, which executes the
PSMs for the scenarios triggered by the input data and produces the
related oracles.

Automated dynamic scheduling of test runs
Automated dynamic scheduling takes places in the MIDAS test system
that is equipped with automated execution and arbitration of test cases
(Figure 8). In this context, the scheduler is able to choose the next test
case to run on the basis of the past test verdicts. The cycle sched-
ule/execute/arbitrate continues until there are no more test cases to run
or some halting condition is met. The objectives of dynamic scheduling
are (i) precocious detection of failures and (ii) localisation of faulty ele-
ments (troubleshooting).

The dynamic scheduler
builds a Bayesian Net-
work (BN) model [10]
from (i) the SAUT model,
(ii) the test suite and (iii)
user’s beliefs on the
SAUT. The BN is com-
piled into an Arithmetic
Circuit (AC) [7]. At each
test run the verdicts are
inserted as evidences in
the AC and the subse-
quent inference calcu-

lates a fitness probability for each remaining test case that, combined
with a scheduling policy (e.g. max-fitness, max-entropy...), allows the
scheduler to choose the next test case.

Automated reactive planning of test campaigns
The idea behind a fully automated workflow for functional testing is to
use the scheduler to drive not only the choice among a set of existing
test cases but also the generation of new test cases. The test cam-
paign starts with a minimal test suite and, on the basis of evidences
(verdicts) brought from the past test runs, the scheduler calculates the
degree of ignorance (Shannon entropy) on SAUT elements and rec-
ommends the generation of test cases whose execution would diminish
this ignorance. This feature is operational and its usage in test cam-
paigns is in progress.

Prototype usage in an operational environ-
ment

Dedalus currently utilises a home-made framework for service unit
testing that has already significantly shrunk the effort of manually pro-
ducing and executing test cases and test suites. The major limitations
of this solution can be labelled as: (i) “test case overhead”, (ii) “unit
testing only”, (iii) “lack of planning and scheduling”, (iv) “manageability”.
The “test case overhead” issue relates to the necessity of creating a
huge amount of test cases since the services to be tested (such as
RLUS) are specified as generic and the payload structure varies ac-
cording to the instantiation of the service. In addition, typical content
transferred in the healthcare domain is made of very complex data
structures with several thousands of atomic data types. The automated

generation of test cases brought by the MIDAS prototype reduces dra-
matically the effort that was formerly dedicated to test case hand-
writing. Moreover, the home-made testing framework is able to support
only service unit testing. End-to-end test of service compositions with
MIDAS requires only the drafting of the appropriate SAUT, test configu-
ration and PSM models.
With the aforementioned huge amount of test cases, the optimisation of
the test campaigns is a must. The home-made test framework doesn’t
have any support for test cases prioritization and test case generation
optimization. MIDAS intelligent scheduler and reactive planning facility
propose solutions to the optimisation problem that are technically oper-
ational and whose evaluation is in progress.
Last but not least, with the home-made framework every change in the
deployed SAUT (IP addresses, ports, URIs, parametrizations) requires
a significant effort of reconfiguration by hands of every individual test
case, practically preventing any continuous integration approach. With
the MIDAS prototype, the SAUT models, the test configuration models,
the PSMs and the generated test suites are independent of the SAUT
physical locations that are indicated as configuration parameters to be
instantiated at test run time.

Conclusion

The collection of functional test automation methods of the MIDAS
prototype covers all the service functional test tasks, including the most
“intelligent” and knowledge-based ones. Furthermore, the test automa-
tion methods are provided as services, allowing the MIDAS SaaS user
both to invoke them individually and to easily combine them in service
integration and delivery processes directed by CI/CD servers. These
methods are actually integrated as services by a MIDAS partner
(Dedalus) in its specific integration and delivery process of healthcare
distributed applications and services architectures. Experiences for
assessing and mastering advanced features such as dynamic schedul-
ing for re-testing and regression testing and evidence-based test case
generation are in progress.
Current drawbacks of the MIDAS prototype are manageability and
usability issues and are the matters of future work: (i) taking into ac-
count REST/JSON service testing; (ii) automated check of the align-
ment of the SAUT deployment with the SAUT model; (iii) simplifying the
specification of the test configuration; (iv) better handling of passive
oracles (generated from incomplete specifications).

References

1. Barr, E., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2015).

The oracle problem in software testing: A survey. IEEE Transactions
on Software Engineering, 41(5).

2. Bozkurt, M., Harman, M., & Hassoun, Y. (2010). Testing web ser-
vices: A survey. Department of Computer Science, King’s College
London, Tech. Rep. TR-10-01.

3. Conforti, D., Groccia, M. C., Corasaniti, B., Guido, R., & Iannacchero,
R. (2014). EHMTI-0172.“Calabria cephalalgic network”: innovative
services and systems for the integrated clinical management of
headache patients. The journal of headache and pain, 15(1), 1-1.

4. Harel, D. (1987). Statecharts: a visual formalism for complex sys-
tems. Science of Computer Programming, 8 (3), 231-274.

5. Hierons, R. M., Bogdanov, K., Bowen, J. P., Cleaveland, R., Derrick,
J., Dick, J., Gheorghe, M., Harman, M., Kapoor, K., Krause, P.,
Lüttgen, G., Simons, A. J. H., Vilkomir, S., Woodward, M. R., & Zed-
an, H. (2009). Using formal specifications to support testing. ACM
Comput. Surv., 41 (2), 1-76.

6. Jehan, S., Pill, I., & Wotawa, F. (2013, May). Functional SOA testing
based on constraints. In Proceedings of the 8th International Work-
shop on Automation of Software Test (pp. 33-39). IEEE Press.

7. Maesano, A. P. (2015). Bayesian dynamic scheduling for service
composition testing. Ph.D. Dissertation, University Pierre et Marie
Curie, Paris.

8. Namin, A. S., & Sridharan, M. (2010). Bayesian reasoning for soft-
ware testing. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, FoSER '10, (pp. 349-354). New York,
NY, USA: ACM.

9. Newman, S. (2015). Building Microservices. O'Reilly Media, Inc.
10. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Net-

works of Plausible Inference. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

11. Yoo, S., & Harman, M. (2012). Regression testing minimization, se-
lection and prioritisation: a survey. Softw. Test. Verif. Reliab., 22 (2),
67-120.

12. http://www.dedalus.eu/
13. https://hssp.wikispaces.com/
14. https://jenkins-ci.org/
15. http://martinfowler.com/bliki/DeploymentPipeline.html
16. http://www.midas-project.eu
17. http://www.w3.org/TR/scxml/
18. http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

