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On Three-Dimensional ALE Finite Element
Model For Simulating Interstitial Medium

Deformation in the Presence of a Moving Needle

Yannick Deleuze, Marc Thiriet, and Tony Sheu

Abstract The effects of inserted needle on the subcutaneous interstitial flow is stud-

ied. A goal is to describe the physical stress affecting cells during acupuncture

needling. The convective Brinkman equations are considered to describe the flow

through a fibrous medium. Three-dimensional simulations are carried out employ-

ing an ALE finite element model. Numerical studies illustrate the acute physical

stress developed by the implantation of a needle.

1 Introduction

In recent years, computational techniques have been widely used by researchers to

investigate and simulate biological flow within three dimensional context. Applica-

tions include blood flow models, air flow models in the respiratory tract, interstitial
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flow models, and chemical mediators transport. Most of the structure and fluid inter-

actions have been considered with simplified rigid wall or deformable wall models.

Methods to predict flows that account for moving domains or domain deforma-

bility using the finite element method are based on fixed mesh methods or mov-

ing mesh methods. On the one hand, fixed mesh methods include the immersed

boundary formulation and the fictitious domain formulation. These methods are well

adapted to moving bodies in the fluid or fluid-structure computation with interface

of a highly geometric complexity. On the other hand, moving mesh methods include

the Lagrangian method, the moving finite element (MFE) method, the deformation

map method, the Geometric Conservation Law (GCL) method, the space/time fi-

nite element method, and the Arbitrarily Lagrangian–Eulerian (ALE) method for

the solution of fluid dynamic problems.

The mathematically rigorous ALE framework has been well accepted to be ap-

plicable to simulate transport phenomena in time and allows some freedom in the

description of mesh motion. A theoretical analysis of the ALE method can be found

in [5, 8]. However, ALE equations are computationally expensive when considering

a large domain because of the necessity of continuously updating the geometry of

the fluid and structural mesh. Interface tracking with time discretization also raises

some implementation questions. The implementation of the ALE method can be

done in FreeFem++ [2].

Study of biological flows plays a central role in acupuncture research. For a de-

scription of the underlying acupuncture mechanism, one can refer to [3, 14, 15].

Interstitial flow models take into account interstitial fluid, cell membrane interac-

tion, and fiber interactions [10]. Mastocytes, among other cells, are able to respond

to fluidic stimuli via mechanotransduction pathways leading to the degranulation

and liberation of chemical mediators [7]. Degranulation mechanisms include inter-

action of the cell membrane with interstitial and cytosolic flow [16]. Ion transport in

narrow ion channels is another challenging task to model. Indeed, degranulation of

chemical mediators upon stimulation can be triggered by a rapid Ca2+ entry in the

cytosol [12].

Modeling the three-dimensional interstitial flow in tissues is extremely challeng-

ing for a large number of reasons: a complex geometry of the tissue, an accurate

constitutive description of the behavior of the tissue, and flow rheology are only a

few examples. Macroscopic models for incorporating complex microscopic struc-

ture are essential for applications [1, 10, 12, 19, 20]. In the context of acupuncture,

the interstitial flow has been modeled by the Brinkman equations [3, 19, 20].

In this paper, a porous medium formulation of the interstitial fluid is presented

for modeling mastocyte-needle interaction in deformable connective tissues. This

formulation is based on a conventional ALE characteristic/Galerkin finite element

model for an unsteady flow thought a porous medium modeled by the incompress-

ible Brinkman’s equations in a three-dimensional moving domain. The motion of

the needle in the fluid is taken into account. The main features of the model can be

summarized as follows:

1. The loose connective tissue of the hypodermis is constituted of scattered cells im-

mersed in extracellular matrix. The extracellular matrix contains relatively sparse
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fibers and abundant interstitial fluid. The interstitial fluid contains water, ions

and other small molecules. Such a fluid corresponds to plasma without macro-

molecules and interacts with the ground substance, thereby forming a viscous

hydrated gel that can stabilize fiber network [11, 13].

2. The Darcys law is used to approximate fibers of the media as a continuum and

allows us to compute the actual microscopic flow phenomena that occur in the

fibrous media.

3. Brinkman’s law then allows us to describe the flow field around solid bodies such

as the embedded cells in extracellular matrix.

4. Transient convective Brinkman’s equations are applied to simulate the interstitial

flow in a fibrous medium driven by a moving needle.

Although the previously stated approach cannot give information on microscopic

events, it can describe macroscale flow patterns in porous media. Focus is given to

the effects of interstitial fluid flow during implantation of an acupuncture needle

until the tip has reached the desired location within the hypodermis. The objective

of this work is to give a description of the physical stress (shear stress and pressure)

influencing tissue and cells.

2 Methods

Due to biological complexity, the interstitium is considered as a fluid-filled porous

material. The interstitial flow is simulated using the incompressible convective

Brinkman equation.

2.1 Flow equations

The governing equations of the unsteady flow of an incompressible fluid through a

porous medium (with mass density ρ , dynamic viscosity µ , and kinematic viscosity

ν = µ/ρ) can be derived as [17]:

ρ

α f

(

∂ ū

∂ t
+ ū ·∇

(

ū

α f

))

− µ∇2ū+
1

α f

∇(α f p f ) = −
µ

P
ū in Ω(t), (1)

∇ · ū = 0, (2)

ū(x,0) = ū0(x), (3)

where − µ
P

ū denotes the Darcy drag, P the Darcy permeability, ū the averaged ve-

locity vector, and p f the pressure. The averaged velocity is defined as

ū = α f u f , (4)

where u f is the fluid velocity and
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α f =
fluid volume

total volume
(5)

is the fluid volume fraction. This volume fraction corresponds to the effective poros-

ity of the medium. The fluid fractional volume α f is taken as a space-dependent

parameter to model the distinguished properties of an acupoint.

The system of equations (1-2) is applied to the case of a flow driven by the

motion of a needle in the deformable domain Ω(t) [3]. The domain boundary can be

decomposed into three surfaces: the needle boundary denoted by Γ1, an impervious

boundary (wall) denoted by Γ2, the mastocyte membrane denoted by Γ3 and the open

boundary on the sides denoted by Γ4. The classical no-slip condition is applied to

the needle surface Γ1, the rigid wall Γ2, and the cell surface Γ3. At the outer boundary

Γ4 a traction-free boundary condition is prescribed. Thus, the entire set of boundary

conditions reads as

ū = vneedle, on Γ1, (6)

ū = 0, on Γ2, (7)

ū = 0, on Γ3, (8)

−µ∇ū ·n+ p f n = 0, on Γ4. (9)

2.2 Finite element model

The governing equations in section 2.2.1 are solved using the finite element soft-

ware FreeFem++ [6]. This code programs the discrete equations derived from the

finite element weak formulation of the problem presented in section 2.2.3 using a

characteristic/Galerkin model to stabilize convection terms.

2.2.1 Scaling and setting for numerical simulations

L denotes the characteristic length that is the needle width and V is the characteristic

velocity set to be the needle maximum velocity. Rescaling the variables leads to

x′ = x
L
, t ′ = t

(L/V) , p′ =
p f

(ρV 2)
, u′ = ū

V
. (10)

In the resulting dimensionless form, after removing the prime in the rescaled vari-

ables, the dimensionless incompressible convective Brinkman equations read as

1

α f

∂u

∂ t
+

1

α f

u ·∇

(

u

α f

)

−
1

Re
∇2u+

1

α f

∇(α f p) = −
1

DaRe
u, (11)

∇ ·u = 0. (12)
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where Re is the Reynolds number and Da is the Darcy number. The previous dimen-

sionless parameters are defined as

Re = ρLV
µ , Da = P

L2 . (13)

In considering the above dimensionless governing equations, the normalized bound-

ary conditions on the domain boundary are prescribed as

u = v on Γ1, (14)

u = 0 on Γ2, (15)

u = 0 on Γ3, (16)

−
1

Re
∇u ·n+ pn = 0 on Γsides. (17)

2.2.2 ALE implementation on moving meshes

In the present paper, the ALE framework built in FreeFem++ is employed to com-

pute the flow in the moving domain. In the current problem setting, the motion of

needle is prescribed with respect to time. The boundary of the domain is thus exactly

known at each time so that an area preserving mesh can be precisely generated.

The framework of the ALE approach employed is briefly described below. Let

Ω(t) be the domain at each time t with regular boundary ∂Ω(t). In the Eulerian

description, the fluid is described by

u(x, t) and p(x, t),∀x ∈ Ω(t). (18)

To follow a moving domain, one can define the ALE map as

˜A : ω̃ ×R
+ → R

2 (x̃, t)→ ˜A (x̃, t) := ˜At , (19)

such that ω(t) = ˜A (ω̃ , t), where ω̃ is the reference computational domain. Given

an ALE field q̃ : ω̃ ×R
+ →R, its Eulerian description is given by

∀x ∈ Ω(t),q(x, t) = q̃( ˜A
−1

t (x), t) (20)

In ALE framework, the computational domain velocity (or ALE velocity or grid

velocity) is defined as

ã(x̃, t) =
∂ ˜A

∂ t
(x̃, t), ∀x̃ ∈ ω̃ , (21)

so that we can get

a(x, t) = ã( ˜A
−1

t , t). (22)

The ALE time-derivative is defined as
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∂q

∂ t

∣

∣

∣

∣

˜A

=
d

dt
q( ˜A (x̃, t), t), (23)

and the following identity holds

∂q

∂ t

∣

∣

∣

∣

˜A

= (a.∇)q+
∂q

∂ t
. (24)

A general method is used to construct the mapping or, equivalently, the domain

velocity a. The domain velocity is computed by solving the following Laplace equa-

tion subjected to the Dirichlet boundary condition [4]

−∇2a = 0, a|∂ Ω
= v. (25)

In the ALE framework, the equations (11-12), subject to a prescribed needle

motion, become

∂ (u/α f )

∂ t

∣

∣

∣

∣

˜A

+

((

u

α f

−a

)

·∇

)

u

α f

−
1

Re
∇2u+

1

α f

∇(α f p) =−
u

DaRe
, (26)

∇ ·u = 0. (27)

The solutions u and p are sought subject to the initial condition (3) and the boundary

conditions (7-9) described in section 2.2.1.

2.2.3 Finite element discretization

The convective incompressible Brinkman equations are approximated with the

method of characteristics for the nonlinear convection term and a Galerkin method

for the rest of the spatial derivative terms. The time discretization gives

1

∆ t

(

un+1

α f

−

(

un

α f

)

◦Xn

)

−
1

Re
∇2un+1 +

1

α f

∇(α f pn+1) = −
un+1

DaRe
, (28)

∇ ·un+1 + ε pn+1 = 0, (29)

in Ω n+1. Note that Xn is approximated by Xn ≈ x−
(

un

α f
− an

)

(x)∆ t. A small stabi-

lization parameter ε is introduced following the so-called artificial compressibility

method.

For all ϕ ∈ H1/2(Γ1), let us introduce the product space

Vϕ =
{

(w,q) ∈ [H1(Ω)]2 ×L2(Ω),w = ϕ on Γneedle,w = 0 on Γwall

}

. (30)

Let

(a,b) =

∫

Ωn+1
ab dx. (31)
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The weak formulation becomes the following finite dimensional linear system: find

(un+1, pn+1) ∈Vg such that

1

∆ t

(

un+1

α f

−

(

un

α f

)

◦Xn,w

)

+
1

Re

(

1

α f

∇un+1,∇w

)

−

(

α f pn+1,∇ ·

(

w

α f

))

+
1

DaRe

(

un+1,w
)

= 0,

(

∇ ·un+1,q
)

+ ε
(

pn+1,q
)

= 0,

(32)

for all (w,q) ∈V0.

The Taylor-Hood P2–P1 elements are adopted to ensure satisfaction of the LBB

stability condition [9]. Note that temporal accuracy order of the presented charac-

teristic/Galerkin method is one. Meshes are generated within FreeFem++ and mesh

adaptation is performed prior to simulations so as to enhance mesh quality around

the needle and the cell.

8.846e-02
velocity_Z
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0

z =−3

z =−6

z =−9

z =−12

Fig. 1 The predicted contours of velocity along the z-direction resulting from the needle (blue)

motion in interstitial fluid.
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4.000e+00
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z =−6

z =−9

z =−12

Fig. 2 The predicted contours of velocity along the z-direction resulting from the needle (blue)

motion in interstitial fluid.

3 Results

In the present work, the needling direction is perpendicular to the skin surface. In

practice, it is possible that the needling direction is oblique to the skin surface. The

simulation results show that the insertion of an acupuncture needle can influence

interstitial fluid flow. The computed velocity field shows that at a location away

from the needle, the effect of the stress field vanishes (Fig. 1). Furthermore, when

the needle reaches its maximum speed, the interstitial pressure gradient becomes

higher at a location close to the needle tip (Fig. 2). The changes in the interstitial

fluid flow and the high pressure gradient can affect the activities of the mastocyte

pools in the stimulated area.

Another subject of interest is the effects of the fluidic stimuli on an interstitial

cell. Local mechanical forces can trigger the activation of mechanoresponsive pro-

teins on the cell surface [14, 18] so that Ca++ is allowed to enter the cytosol via



On 3D ALE Finite Element Model For Simulating Interstitial Medium Deformation 9

2.666e-01
pressure

0.06

0.18

0.000e+00

0.12

0.24

Fig. 3 The predicted pressure contours on the needle and cell surfaces as the needle moves toward

the cell.

pressure and shear stress gated ion channels. Simulations are carried out by con-

sidering fixed cells and no-slip boundary condition prescribed at the cell surface.

Figure 3 shows the pressure contours on the surface of a cell added closely to the

needle. The pressure on the cell surface is higher in the region closest to the needle

tip.

4 Conclusions

The proposed three-dimensional ALE finite element model is able to describe the

interstitial flow and pressure from the macroscopic point of view when a needle

is inserted and moving within the hypodermis. High local fluid pressure and shear

stress on cells are most likely to appear near the needle tip region. However, the

proposed method does not allow the rotation of the needle to be taken into account.

When considering the rotation of the needle, a large deformation of the tissue is

observed with the twisting of the fibers around the needle, that in turn makes the

corresponding change in interstitial flow. A fluid/structure model taking into account

the mechanics of the fibers should then be considered. This study has shown that the

numerical prediction of the interstitial pressure and shear stress is an essential tool

to gain a better understanding of the mechanism involved in acupuncture needling.
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