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CHOICE OF MEASURE SOURCE TERMS IN INTERFACE
COUPLING FOR A MODEL PROBLEM IN GAS DYNAMICS

FRÉDÉRIC COQUEL∗, EDWIGE GODLEWSKI† , KHALIL HADDAOUI‡ , CLAUDE

MARMIGNON§ , AND FLORENT RENAC¶

Abstract. This paper is devoted to the mathematical and numerical analysis of a coupling
procedure for one-dimensional Euler systems. The two systems have different closure laws and are
coupled through a thin fixed interface. Following the work of [5], we propose to couple these sys-
tems by a bounded vector-valued Dirac measure, concentrated at the coupling interface, which in
the applications may have a physical meaning. We show that the proposed framework allows to
control the coupling conditions and we propose an approximate Riemann solver based on a relax-
ation approach preserving equilibrium solutions of the coupled problem. Numerical experiments
in constrained optimization problems are then presented to assess the performances of the present
method.

Key words. Model coupling, hyperbolic systems of conservation laws, measure source term,

Riemann solver, relaxation, constrained optimization.
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1. Introduction
The study of large-scale and complex problems exhibiting a wide range of phys-

ical space and time scales (see for instance [62, 35, 14]), usually requires separate
solvers adapted to the resolution of specific scales. This is the case of many industrial
flows. Let us quote, for example, the numerical simulation of two-phase flows applied
to the burning liquid oxygen-hydrogen gas in rocket engines [58]. This kind of flow
contains both separated and dispersed two-phase flows, due to atomization and evap-
oration phenomena. This requires appropriate models and solvers for separated and
dispersed phases that have to be appropriately coupled. Another example concerns
turbomachine flows which can be modeled by the Euler equations of gas dynamics
with different closure laws between the stages of the turbine, where the conditions of
temperature and pressure are strongly heterogeneous. The coupling of these different
systems is thus necessary to give a complete description of the flow inside the whole
turbine.

The method of interface coupling allows to represent the evolution of such flows,
where different models are separated by fixed interfaces. First, coupling conditions
are specified at the interface to exchange information between the systems. The
definition of transmission conditions generally results from physical consideration,
e.g. the conservation or the continuity of given variables. Then, the transmission
conditions are represented at the discrete level. The study of interface coupling for
nonlinear hyperbolic systems has received attention for several years. In [43], the
authors study the scalar case from both mathematical and numerical points of view.
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2 INTERFACE COUPLING WITH MEASURE SOURCE TERM

They couple two different one-dimensional conservation laws at a fixed interface. The
case of system has been considered in [40], where admissible coupling conditions are
defined at the interface. Indeed, since the systems we consider are hyperbolic, the
boundary conditions must be imposed in a weak sense [29].

From previous studies, coupling conditions [43, 40, 10, 6, 50, 51, 7, 4, 39, 8, 52, 23,
18, 34, 56] can be classified in three categories: flux coupling, state coupling and cou-
pling with measure source term. The flux coupling method is a conservative approach
which ensures the continuity of the physical flux through the coupling interface. Con-
versely, the state coupling method is a non-conservative approach which imposes (at
least weakly) the continuity property of either the (conservative) variables or a nonlin-
ear transformation of them (say, primitive variables). Finally, the coupling condition
can be modelled thanks to a bounded vector-valued Dirac measure concentrated at
the coupling interface [40, 4, 5, 34]. The coupling condition is then prescribed from
the definition of the mass of the measure. This modelling presents several advan-
tages. It allows the consideration of both conservative and state couplings. Moreover,
it enables the control of the coupling conditions by taking into account the mass,
momentum or energy losses located through the discontinuity.

In this study, we focus on a model case which concerns the coupling of gas dynam-
ics equations with different closure laws for the pressure. We propose an extension of
the works [4, 34, 5] to the full Euler system (with energy) in the general case where all
the source terms may be non zero. Indeed, in these previous contributions, the authors
assumed the strict conservation of the density. The motivation of this present study
is to extend the panel of applications, and the computations we present do involve
test cases involving the energy equation which could not be covered in the previous
work. These test cases are motivated by the applications among which the model-
ing of some sophisticated control devices meant to protect instruments from damages
due to overheating. A few references on discharge relationships and component head
losses for hydraulic structures or the modeling of pressure drop are already given in
[5](see references [19, 34, 36, 37] therein). Some devices for the flow control involve
the momentum and impact the energy conservation, note however that the topic of
flow control is much broader and the simple models we are considering are but a small
step in this direction for improving the simulation (see [32, 33] concerning aerospace
for instance). One may also mention in the context of oil recovery the possibility of
drawing out and reinjecting elsewhere a certain amount of gas (which is referred to
as gas-lift and active bypass, see [30]), in order to prevent severe slugging, and this
may be modeled as point losses in the mass conservation equation.

Indeed, an important remark is that the above mentioned devices are localized and
small with respect to some characteristic length of the flow. Hence, in the modeling
of the situation by a system of PDE, a natural scaling of the equations yields a point
source at the interface, which means a multiple of a Dirac measure, classically placed
at the origin. Following [37, 36], this can be interpreted as a scattering problem, with
nonlinear waves interacting on a scale large compared to the scale of the interface
which is then considered as infinitely thin.

Then, as explained in [37], the solution of the Riemann problem for the let us say
simplified scaled model gives to the leading order the large time behavior of the full
system with unscaled source. Thus, the study of Riemann problems comes naturally
from the study of the interaction of nonlinear localized waves, and following this
scattering setting, the Riemann solution represents the outgoing wave operator.

We show that the present framework is fairly flexible. In particular, it allows to
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handle coupling problems constrained by the property that the Riemann solutions
should keep their values in a given set while minimizing some convex nonlinear cost
functions built on the source terms at the interface. These cost functions are defined
by physical motivations.

Before we conclude this introduction, let us mention some very interesting works
which, by some aspects, are strongly related to the present one. Interface coupling
is clearly related to the study of conservation laws with discontinuous fluxes. In
the scalar case, it is possible to give a rigorous framework in which existence and
uniqueness results hold [11]. Then, singular source terms appear in different contexts
which may correspond either to some (more or less) physical modelling as in [28] or
[12, 13] or to numerical devices. Indeed, measure source terms are naturally introduced
in many approaches for the construction of well balanced schemes for hyperbolic
systems with geometric source terms [45] and, in turn, there is a natural link with
the analysis of resonant systems [38] (and references therein). If general theoretical
existence and uniqueness results may be obtained in the scalar case, for instance L1

stability results in the non resonant case [49] or partial results in the resonant case [2],
also for the existence of traces [61, 54], it is beyond the scope of the present work to
give a rigorous notion of solution and well-posedness for the general coupling Cauchy
problem in the case of systems. We rather focus on the solution of Riemann problems
with coupling, which as mentioned above do represent at some scale wave the result
of nonlinear wave interactions and moreover are naturally involved in the numerical
approach, and on the optimization of source terms. Last, even if the link is not yet as
close with interfacial coupling as the above subjects are, we should however mention
the control of nonlinear hyperbolic systems [19] a subject appearing naturally with
flow in networks [3].

The paper is organized as follows. The coupling problem is introduced in §2. The
numerical approach to solve this coupling problem is described in §3. The method we
consider relies on a relaxation approximation which is presented before the associated
Riemann problem is solved. Then the source terms are chosen in order to preserve
steady solutions of the coupled problem. Strategies for the dynamic evaluation of the
source terms satisfying various criteria are then given. Several numerical experiments
based on Riemann problems associated to the coupling model are then described in
§4. Finally, the last section summarizes the conclusions of this study.

2. Coupling with measure source term

2.1. Physical problem and governing equations
We focus on the one-dimensional problem of interface coupling between two hy-

perbolic systems of conservation laws. More precisely, we consider the systems of
Euler equations that model the flow of a compressible polytropic ideal gas. Both
models are separated in space by a thin interface localized at x= 0 and differ from
their definition of the pressure. The flow is described by a system SL in the left do-
main DL={x<0, t>0} and by a system SR in the right domain DR={x>0, t>0}.
We look for a function u : (x,t)∈R×R+ 7→u(x,t)∈Ω⊂R3, solution of:

SL : ∂tu+∂xfL(u) = 0, (x,t)∈DL, (2.1a)

SR : ∂tu+∂xfR(u) = 0, (x,t)∈DR, (2.1b)

with initial condition

u(x,0) =u0(x), x∈R.
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The conservative variable vector and smooth flux functions are defined by:

u=

 ρ
ρu
ρE

 and fα(u) =

 ρu
ρu2 +pα(τ,ε)
ρEu+pα(τ,ε)u

, α=L,R.

The variables ρ, τ = 1/ρ and ε=ε(τ,s) stand for the density, the specific volume
and the specific internal energy of the gas, respectively, where s denotes the physical
entropy. The variable u denotes the velocity and E=ε+u2/2 the specific total energy.

The thermodynamic variables are related by two ideal gas equations of state

pα(τ,ε) =
(γα−1)ε

τ
, α=L,R, (2.2)

where γL and γR denote the respective ratio of specific heats (satisfying γα>1).
Introducing the sound speed in the fluid

cα= cα(τ,s) =

√
γαpα
ρ

, α=L,R, (2.3)

the pressure laws are assumed to verify the following inequalities

pα>0,

(
∂pα
∂τ

)
s

=−ρ2c2α<0,

(
∂2pα
∂τ2

)
s

>0, α=L,R, (2.4)

for all ρ>0 and all s in R.
The systems SL and SR are strictly hyperbolic over the following set of states

Ω =
{
u∈R3 :ρ>0,u∈R,ε>0

}
.

More precisely, for α=L,R, the system Sα admits the three following eigenvalues

λα1 (u) =u−cα, λα2 (u) =u, λα3 (u) =u+cα,

which are real and distinct. The characteristic field associated with λα2 is linearly
degenerate, while the characteristic fields associated with λα1 and λα3 are genuinely
nonlinear.

2.2. Coupling model
Following [4, 5], and [34], we propose here to model the coupling between sys-

tems (2.1) thanks to a bounded vector-valued Dirac measure concentrated at the
coupling interface x= 0. Let us consider an application of the form t∈R∗+ 7→M(t) =
(Mρ(t),Mρu(t),MρE(t))T ∈R3; we then look for a solution to the following initial
value problem

∂tu+∂xf(u,x) =M(t)δx=0, x∈R, t>0, (2.5a)

u(x,0) =u0(x), x∈R, (2.5b)

where δx=0 denotes the Dirac delta function. The components of M represent re-
spectively the losses of mass, momentum and energy through the coupling interface.
The discontinuous flux function introduced in (2.5a) is defined by:

f(u,x) =

{
fL(u), x<0,

fR(u), x>0,
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where the flux depends on x through the pressure law

p(τ,ε,x) =

{
pL(τ,ε), x<0,

pR(τ,ε), x>0.
(2.6)

Using standard arguments (see for instance [41]), any solution to the coupling
problem (2.5) is subject to the following coupling conditions through the interface:

fR(u(0+,t))− fL(u(0−,t)) =M(t), t>0, (2.7)

where u(0−,t) and u(0+,t) denote the left and right traces of the solution u at time
t. This model allows the application of various coupling strategies. Indeed, the
weight M(t) can be seen as a user parameter, whose definition results generally from
physical motivations. For instance, the definition of a weight M≡0 allows to ensure
the conservation of u over the whole space domain. Conversely, a state coupling
method with transmission of a set of variables may lead to the definition of a non zero
weight. Given an admissible change of variables v=ϕα(u), α=L,R, the state v can
be transmitted through the coupling interface by setting ϕL(u(0−,t)) =ϕR(u(0+,t)),
t>0 (see [8] for more details). For example, the transmission of primitive variables
ρ, u and p through this interface results from ϕα(ρ,ρu,ρE) := (ρ,u,pα(τ,ε)), α=L,R.
The present contribution investigates the general case where all the weights may be
non zero.

Note that (2.5a) can be written equivalently{
∂tu+∂xF(u,H)−M(t)∂xH=0, x∈R, t>0,

∂tH= 0,
(2.8)

where H=Hx=0 is the Heaviside function and F(u,H) = (1−H)fL(u)+HfR(u).
Thus we get a non conservative system in variables (u,H), for which the initial data
is (2.5b) for u augmented by H(x,0) =H(x). The matrix of (2.8) writes

M(u,H) =

(
∂uF fR− fL−M(t)

0 0

)
with ∂uF(u,H) = (1−H)f ′L(u)+Hf ′R(u). This shows clearly that the presence of
the measure source terms adds to the initial waves, associated to the eigenvalues of
f ′L/R(u), a stationary discontinuity at x= 0. The system is resonant if a genuinely

nonlinear field (thus associated to an acoustic wave) superimposes this discontinuity,
we will thus restrict ourselves to the study of subsonic flows; this assumption prevents
this resonance phenomenon which brings non uniqueness.

3. Numerical method
The numerical method we present will eventually result in a classical algorithm

which can be implemented as section 4 proves. It is however interesting to understand
the main elements which guided us to its derivation, since the scheme properties are
obviously inherited from this construction.

3.1. Relaxation approximation
We are interested in solving numerically (2.5). In the context of finite volume

methods, the Godunov method requires the exact solution of Riemann problems as-
sociated to (2.5) and may be expensive because of the presence of nonlinearities due
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to the pressure law. The relaxation approach we will follow is an attempt to reduce
the computational cost, still involving the Godunov method but on a simpler system
approximating (2.5). It consists in the construction of a linear or quasilinear enlarged
system, with only linearly degenerate fields, involving a source term which ensures
that, in the regime of large values of a relaxation parameter λ>0, the solution of
this system converges to the solution of the original system. We refer the reader to
[55, 24, 17] for discussions on the relaxation approach in the approximation of hy-
perbolic systems of conservation laws, [53, 16] for relaxation numerical methods in a
general setting, or [20, 22, 25, 26, 27, 60, 59, 9] for precise examples in the context of
fluid flows.

Let us introduce the following system

∂tUλ+∂xF(Uλ) =λR(Uλ,x)+M̃(t)δx=0, x∈R, t>0, (3.1)

with

F(U) =


ρu

ρu2 +π
ρEu+πu
ρπu+a2u

 , R(U,x) =


0
0
0

ρ(p(τ,ε,x)−π)

, M̃(t) =

(
M(t)
Mρπ(t)

)
,

where a>0 is a given constant which will be specified below. We have introduced a
new variable π which can be seen as a linearization of the original pressure p and is
called the relaxed pressure; in the source term R, the pressure p is defined by (2.6).
With some abuse of notation, we note U= (u,ρπ) (the rigorous notation should be
U= (uT ,ρπ)T ), the vector of variables U is assumed to be defined on the set of states
Ωr = Ω×R and we introduce Π the projection operator Π :R4→R3 such that ΠU=u.
Formally, we can observe that the projection ΠUλ of the solution of the relaxation
system (3.1) converges to a solution of the original system (2.5) (this last system is
thus called the equilibrium system) when the relaxation parameter λ goes to infinity
since the fourth equation in (3.1) imposes

lim
λ→∞

πλ=p,

(at least formally).
The time dependent weight Mρπ(t)∈R corresponds to a new degree of freedom

and will be defined later on.
For ease of notation, we now omit the subscript λ. The homogeneous system (3.1)

with λ= 0 and M̃≡0 is hyperbolic on Ωr and possesses the eigenvalues

λr1(U) =u−aτ, λr2(U) =u, λr3(U) =u+aτ,

where the eigenvalue λr2 is double. All the characteristic fields associated with these
eigenvalues are linearly degenerate. As seen when writing system (2.8), the presence
of the source term in (3.1) results in an additional stationary discontinuity, which,
with some abuse, we also call a contact wave with speed λr0(U) = 0 located at the
coupling interface. The coefficient a has the dimension of a Lagrangian sound speed,
and appears as a linearization of ρc. In order to prevent system (3.1) from insta-
bilities in the regime of large values of λ, this coefficient a must verify the so-called
subcharacteristic condition

a>max(ρcα), α=L,R, (3.2)
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for all the states under consideration. This condition expresses the interlacing of the
eigenvalues of the relaxation and equilibrium systems u−τa<u−cα<u<u+cα<
u+τa. We refer the reader to [17] for a rigorous study of stability conditions.

Any solution to (3.1) with initial condition (and a finite relaxation rate λ>0), is
subject to the following coupling condition through the coupling interface

F(U(0+,t))−F(U(0−,t)) =M̃(t), t>0. (3.3)

Finally, note that the flux F(U) in (3.1) is now globally defined and does not depend
on the space variable, contrary to the flux f(u,x) in (2.5).

3.2. The main features of the scheme
The approach we follow involves an enlarged system (3.1) with two different source

terms. The first one corresponds to relaxation and the second one to the original point
source term. The items are linked in that the relaxation procedure is introduced as
a practical mean to ensure the well balanced property, i.e., to preserve the stationary
solutions associated to the point source. However, the two source terms are not treated
in the same way in the time discretization which involves a time splitting technique.

Let ∆t be a time step, and set t(n) =n∆t, n≥0. Using a time splitting tech-
nique, the first step concerns an enlarged system, one solves (3.1) with λ= 0 on an
interval of length ∆t, say ]t(n),t(n+1)], which allows solutions away from equilibrium
but ensures the well balanced property. Relaxation towards equilibrium is performed
instantaneously in a second step, which amounts to solve

∂tUλ=λR(Uλ,x) (3.4)

on ]t(n),t(n+1)], starting with the data, noted Uλ(t(n+1)−), given by the solution of
the first step at time t(n+1), and let λ→∞. In the time discretization of this step, we
use a simple implicit Euler method, so that uλ(t(n+1)) =uλ(t(n+1)−) and as λ→∞,
ρ(p−π)(t(n+1),x)→0.

For our fully discrete scheme, in which well balanced and time stepping techniques
complete each other, several ingredients are needed, they are described precisely in the
following subsections. Let us make first two comments ((i) and (ii) below) because the
similarity between the two source terms, similarity pointed out in [45], may however
introduce some confusion. Indeed, the treatment of the relaxation source term (in the
limit λ→∞) is responsible for discontinuity in the approximate solution at each time
t(n+1)−. While the well balanced property is achieved on the ground of a geometric
source term taking the form of a Dirac measure in space. We detail these points
in paragraph (ii). Moreover, both relaxation and point source terms involve some
notions of equilibria. We must however distinguish the underlying notions which we
do in the following lines.
- (i) Concerning relaxation, the first notion of equilibrium refers to instantaneous
relaxation. The formal limit, letting the relaxation time λ−1 goes to 0 in (3.1), yields
the equilibrium system (2.5). Associated to this latter system are the equilibria states
Ueq = (u,ρp). This naturally defines an operator U→Ueq which we note E . This
operator is involved in the second step of the splitting method and precised in section
3.4.

The second notion of equilibrium refers to the well balanced property, which is
often defined as preserving equilibria. In this context, equilibria are thus stationary
solutions of the PDE with point source (cf. Definition 3.1 below). They are analyzed
in section 3.5.
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Fig. 3.1. Space mesh.

- (ii) The treatment of the relaxation source term by a time splitting procedure is
responsible for a discontinuity wrt. the time variable, for all x∈R. Indeed, following
L. Gosse in [46] (who refers to a prior work by F. Bouchut [15]), the classical time-
splitting discretization of (3.1) leads to write

∂tU+∂xF(U) =
∑
n>0

(
E(U(n)−)−U(n)−)

)
δt=tn +M̃(t)δx=0, x∈R, t>0, (3.5)

where δt=t(n) denotes the Dirac measure at point t(n), acting on functions of the time
variable. We have noted U(n)−=U(.,t(n)−) the limit of U(.,t) as t→ t(n), with t<t(n).
The added delta measure terms may be seen as coming from the discretization of the
time variable, approximating t by a step function equal to t(n) on [t(n),t(n+1)). This
amounts to approximate 1 =∂tt by a sum ∆t

∑
nδt=t(n) of Dirac measures at points

t(n) with weight ∆t. This approximation mimicks the pioneering approach of [48] for
the derivation of well balanced schemes. Note that the approach in [48] considered
an equation with geometric source term, which thus concerned the space variable.
Then, the discretization of the singular relaxation source term λR(U) in the limit
λ→∞ takes the form

∑
n>0

(
E(U(n)−)−U(n)−)

)
δt=tn . Formally, in the numerical

treatment of (3.4), the relaxation time 1
λ is replaced by a time step ∆t.

We now give the great lines of our fully discretized numerical method. In the above
described time splitting algorithm, only the first step needs a space discretization. We
use a Godunov type scheme with an exact Riemann solver for the enlarged system
((3.1) with λ= 0) which is introduced in section 3.3. Thus we need to solve the
Riemann problem, which is performed in section 3.6 (uniqueness requires we are away
from resonance, a condition which is fulfilled by assuming that the flow is subsonic).
We will see that adding the energy equation, while assuming non zero weights, renders
the computations trickier than in [5]. The relaxation procedure adds a weight Mρπ

which may be chosen (see section 3.7) in order to preserve stationary solutions (defined
in section 3.5).

3.3. Godunov-type scheme
We aim at solving numerically the coupling problem (2.5) by a finite volume

method, and first introduce some notations. Let ∆x be the space step which we
take uniform for simplicity. The nodes of the spatial mesh are defined by xj+ 1

2
=

1
2 (xj+xj+1), j∈Z where the points xj = j∆x correspond to the interfaces between
elements Cj+ 1

2
= (xj ,xj+1).The coupling interface is located in x0 = 0 and the points

xj are in the left (resp. right) domain if j <0 (resp. j >0) (see figure 3.1).
At each time step t(n), we look for a piecewise constant numerical solution

u∆(x,t(n)) of the form:

u∆(x,t(n)) =u
(n)

j+ 1
2

, ∀x∈Cj+ 1
2
.
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For t= 0, the initial condition reads

u
(0)

j+ 1
2

=
1

∆x

∫
C
j+1

2

u0(x)dx, ∀j∈Z.

For simplicity, we consider a three point finite volume scheme of the form:

u
(n+1)

j− 1
2

=u
(n)

j− 1
2

− ∆t

∆x

(
(gL)nj −(gL)nj−1

)
, j≤0, (3.6)

u
(n+1)

j+ 1
2

=u
(n)

j+ 1
2

− ∆t

∆x

(
(gR)nj+1−(gR)nj

)
, j≥0, (3.7)

where the numerical flux

(gα)nj =gα

(
u

(n)

j− 1
2

,u
(n)

j+ 1
2

)
, α=L,R,

corresponds to a consistent approximation of the exact flux fα and is obtained by an
approximate Riemann solver. In order to construct this solver, we use the relaxation
approach and consider system (3.1). At each time iteration, Riemann problems must
be considered:

• a Riemann problem defined at any internal interface xj , j 6= 0:
∂tU+∂xF(U) = 0, ∀x∈ (xj− 1

2
,xj+ 1

2
), t∈ (t(n),t(n+1)],

U(x,t(n)) =

U
(n)

j− 1
2

, x<xj ,

U
(n)

j+ 1
2

, x>xj ,

• a Riemann problem with source term at the coupling interface x0 = 0:
∂tU+∂xF(U) =M̃

(n)
δx=0, ∀x∈ (x− 1

2
,x+ 1

2
), t∈ (t(n),t(n+1)],

U(x,t(n)) =

U
(n)

− 1
2

, x<0,

U
(n)

+ 1
2

, x>0,

where M̃
(n)

denotes some consistent discretization of 1
∆t

∫ t(n+1)

t(n) M̃(s)ds, the average

weight on (t(n),t(n+1)). In the above Riemann problems, for both cases we have

defined the data U
(n)

j± 1
2

as:

U
(n)

j− 1
2

=
(
u

(n)

j− 1
2

,ρ
(n)

j− 1
2

pL

(
τ

(n)

j− 1
2

,ε
(n)

j− 1
2

))
if j≤0, (3.8)

U
(n)

j+ 1
2

=
(
u

(n)

j+ 1
2

,ρ
(n)

j+ 1
2

pR

(
τ

(n)

j+ 1
2

,ε
(n)

j+ 1
2

))
if j≥0, (3.9)

which means we have completed the state u
(n)

j± 1
2

by a relaxed pressure at equilibrum,

so that all the data U
(n)

k+ 1
2

,k∈Z are at equilibrium.

3.4. Details of the time splitting method

In order to define the piecewise constant u∆(x,t(n)) = (ρ∆,ρu∆,ρE∆)T approxi-
mating the solution of (2.5) at time t(n+1), we proceed in two steps.
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• First step: evolution in time (t(n)→ t(n+1)−). We solve numerically the sys-
tem (3.1) with λ= 0. In this first step, we consider the Cauchy problem{

∂tU+∂xF(U) =M̃
(n)
δx=0, x∈R, t∈ (t(n),t(n+1)],

U(x,t(n)) =U∆(x,t(n)), x∈R,
(3.10)

with

U∆(x,t(n)) = (u∆(x,t(n)),(ρπ)∆(x,t(n))), (3.11)

and where ρπ verifies the equilibrium condition

(ρπ)∆(x,t(n)) =ρ∆(x,t(n))p(τ∆(x,t(n)),ε∆(x,t(n)),x).

The exact solution to (3.10) is obtained by juxtaposition of the solutions of
the local Riemann problems set at each interface separating two adjacent
elements. These solutions do not interact during the period ∆t if the space
and time steps are linked by the usual Courant-Friedrich-Lewy condition:

∆t

∆x
max
U
|λri (U)|< 1

2
, i= 0,1,2,3, (3.12)

where the maximum is taken over all the states U under consideration. We
note U(x,t(n+1)−) the solution obtained at the end of this step.

• Second step: instantaneous relaxation (t(n+1)−→ t(n+1)). In this step, we
solve the following initial value problem:{

∂tU =λR(U,x), x∈R, t∈ (t(n),t(n+1)],
U(x,t(n)) =U∆(x,t(n+1)−), x∈R, (3.13)

in the asymptotic regime λ→∞. This amounts to impose that the function

U∆(x,t(n+1)) = (u∆(x,t(n+1)),(ρπ)∆(x,t(n+1))), (3.14)

has the following components

u∆(x,t(n+1)) =u∆(x,t(n+1)−),

(ρπ)∆(x,t(n+1)) =ρ∆(x,t(n+1)−)p(τ∆(x,t(n+1)−),ε∆(x,t(n+1)−),x).

As usual these two steps are followed by a projection of u∆(x,t(n+1)) on piecewise

constant functions in order to define u
(n+1)

j+ 1
2

.

3.5. Equilibrium solutions
Following [34], given a weight M= (Mρ,Mρu,MρE)T , we look for a definition

of the weight Mρπ such that the above relaxation approach preserves the stationary
solutions of the original coupling problem (2.5) in the sense of the following definition.

Definition 3.1. Let M= (Mρ,Mρu,MρE)
T

be a constant weight and uL, uR two
constant states belonging to the space of states Ω such that

fR(uR)− fL(uL) =M. (3.15)

Then, the function defined by

u(x,t) =

{
uL, x<0, t>0,

uR, x>0, t>0,
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is called an equilibrium solution for the original coupling problem (2.5).

Let us note that the stationary solutions of the coupled Riemann problem are
an important tool in the study of solutions to conservation laws with discontinuous
flux since they play the role of constants in the classical situation of a smooth flux
(see [11] and references therein) and can thus be used in Kruzhkov type entropies;
they are called elementary solutions and the set of such states gives birth to the
notion of germs. The theory for systems with discontinuous flux is not as complete.
However, the above definition is a natural extension to systems with source term
(hence to the non-conservative problem (2.5)). We will require our scheme to be well
balanced in the sense that it should preserve these equilibria (we refer to [21] for some
general considerations on well balanced simple scheme). For a conservative system
with a continuous flux, constants are elementary solutions, a conservative scheme with
consistent flux preserves constant states. One simply imposes that there is only one
numerical flux at each interface, and that this flux coincides with the exact flux if the
states on each side are equal.

3.6. Riemann problem associated to the relaxation system

The first step of the splitting procedure in §3.4 requires the solution to the Rie-
mann problem associated to the system (3.1) with λ= 0. In this paper, we restrict
ourselves to the study of subsonic flows. Given two subsonic constant states UL and
UR in Ωr, we solve the following initial value problem


∂tU+∂xF(U) =M̃δx=0, x∈R, t>0,

U(x,0) =

{
UL, x<0,

UR, x>0,

(3.16)

together with the coupling condition (3.3), where M̃ does not depend on time to
ensure self similarity in the solution.

The solution to (3.16) contains only contact discontinuities since all the fields
associated with the eigenvalues of the system (3.1) (with λ= 0) are linearly degenerate.
Moreover, the Whitham condition (3.2) associated to the subsonic flow hypothesis
lead us to consider two wave structures for the solution to (3.16). As shown in
figure 3.2, the intermediate states are denoted UL, U1, U−, U+, UR when λr2<
0 and UL, U−, U+, U3, UR when λr2>0. In particular, we note U± the traces

W(0±;UL,UR,M̃) at the interface x=λr0 = 0. In order to respect these structures,
the weights Mρ,Mρu,MρE and Mρπ must be defined in an admissibility domain
Dadm(UL,UR) =D−adm(UL,UR)

⋃
D+
adm(UL,UR). The definition of this domain is

linked to the fact that, on the one hand, these weights must respect the subsonic
structure of the solution and, on the other hand, the states are constrained to remain
in the space of states Ωr. More precisely, using obvious notations for the components
of the intermediate states, we define implicitly the admissible sets by

D−adm=
{
M̃∈R4 : (λr1,−τ1, u−,−τ−,−τ+,−λr3,−ε1,−ε−,−ε+)(M̃)<0

}
, (3.17)

D+
adm=

{
M̃∈R4 : (λr1,−τ3,−u+,−τ−,−τ+,−λr3,−ε3,−ε−,−ε+)(M̃)<0

}
. (3.18)
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(a) Case M̃∈D−adm. (b) Case M̃∈D+
adm.

Fig. 3.2. The two possible wave structures of the solution of the Riemann problem (3.16).

Let us introduce the following intermediate states:

u∗=
1

2
(uL+uR)− 1

2a
(πR−πL), τ∗L=

1

a
(u∗−λr1(UL)), ρ∗L=

1

τ∗L
,

π∗=
1

2
(πL+πR)− a

2
(uR−uL), τ∗R=

1

a
(λr3(UR)−u∗), ρ∗R=

1

τ∗R
,

and define the mass flows m± :=ρ±u± through the coupling interface. We also adopt
the notation w1 =u+ π

a (resp. w3 =u− π
a ), which is a 1- (resp. 3-) Riemann invariant

in the case without measure (see [21]). Then, the following proposition gives the weak
entropy self-similar solution to the Riemann problem (3.16).

Proposition 3.1. Let UL and UR in Ωr be two subsonic constant states, and
let Mρ,Mρu,MρE ,Mρπ be given source terms in Dadm(UL,UR). Then, the Rie-
mann problem (3.16) has a unique subsonic self-similar solution which we denote by

W
(
x
t ;UL,UR,M̃

)
. This function is defined by

W
(x
t

;UL,UR,M̃
)

=



UL,
x
t <λ

r
1(UL),

U1, λr1(UL)< x
t <λ

r
2(U1),

U−, λr2(U1)< x
t <λ

r
0,

U+, λr0<
x
t <λ

r
3(UR),

UR,
x
t >λ

r
3(UR),

if M̃∈D−adm, and respectively by

W
(x
t

;UL,UR,M̃
)

=



UL,
x
t <λ

r
1(UL),

U−, λr1(UL)< x
t <λ

r
0,

U+, λr0<
x
t <λ

r
2(U3),

U3, λr2(U3)< x
t <λ

r
3(UR),

UR,
x
t >λ

r
3(UR),
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if M̃∈D+
adm. Moreover, in the case where M̃∈D−adm, we have:

m−=
2au∗+Mρu+Mρπ/a−(w1L+2aτ∗R)Mρ

2aτ∗R
, (u,π)1 = (u,π)−,τ1 = τL+

u1−uL
a

,

m+ =
2au∗+Mρu+Mρπ/a−w1LMρ

2aτ∗R
, E1 =

aEL+πLuL−π−u−
a

,

E−=
m+E+ +π+u+−π−u−−MρE

m−
, E+ =

aER+π+u+−πRuR
a

,

and in the case where M̃∈D+
adm:

m−=
2au∗+Mρu−Mρπ/a−w3RMρ

2aτ∗L
, E3 =

aER+π+u+−πRuR
a

,

m+ =
2au∗+Mρu−Mρπ/a−(w3R−2aτ∗L)Mρ

2aτ∗L
, (u,π)3 = (u,π)+,τ3 = τR+

uR−u3

a
,

E+ =
m−E−+π−u−−π+u+ +MρE

m+
, E−=

aEL+πLuL−π−u−
a

.

Finally, the traces of the solution are given by the following relations:

u−=u∗+
aMρu−Mρπ−(auR−πR)Mρ

2a(a−m−)
, u+ =u∗+

aMρu+Mρπ−(πL+auL)Mρ

2a(a+m+)
,

π−=π∗− aMρu−Mρπ+(πR−auR)Mρ

2(a−m−)
, π+ =π∗+

aMρu+Mρπ−(πL+auL)Mρ

2(a+m+)
,

together with ρ−=
m−
u−

, ρ+ =
m+

u+
.

Proof. We only consider the case M̃∈D−adm, the case M̃∈D+
adm being symmet-

ric. Recall that all characteristic fields are linearly degenerate so that only contact
discontinuities are involved.

The continuity of the wave speeds for the λr1, λr2 and λr3- waves reads:

τ1 = τL+
u1−uL

a
, (3.19a)

u1 =u−, (3.19b)

uR+
a

ρR
=u+ +

a

ρ+
. (3.19c)

Through the steady interface λr0 = 0, the relations (3.3) read

Mρ=m+−m−, (3.20a)

Mρu=m+u+ +π+−m−u−−π−, (3.20b)

MρE =m+E+ +π+u+−m−E−−π−u−, (3.20c)

Mρπ =m+π+ +a2u+−m−π−−a2u−. (3.20d)

Across the λr1-wave, the Rankine-Hugoniot relations on the momentum and energy
balance equations read{

λr1(UL)(ρ1u1−ρLuL) =ρ1u
2
1 +π1−ρLu2

L−πL,
λr1(UL)(ρ1E1−ρLEL) =ρ1E1u1 +π1u1−ρLELuL−πLuL,
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which implies

π1−πL−auL+au1 = 0, (3.21a)

E1−EL−
1

a
(πLuL−π1u1) = 0. (3.21b)

Considering now the λr2-wave and the Rankine-Hugoniot relations applied to the en-
ergy balance equation, we have:

λr2(U1)(ρ−E−−ρ1E1) =ρ−E−u−+π−u−−ρ1E1u1−π1u1,

and using (3.19b), we obtain:

π1 =π−. (3.22)

From (3.19b) and (3.22), we obtain that the equation (3.21a) is equivalent to:

π−−πL−auL+au−= 0, (3.23)

which means w1L=w1−. Next, through the λr3-contact, the Rankine-Hugoniot rela-
tions on the momentum and energy balance equations read{

λr3(U+)(ρRuR−ρ+u+) =ρRu
2
R+πR−ρ+u

2
+−π+,

λr3(U+)(ρRER−ρ+E+) =ρRERuR+πRuR−ρ+E+u+−π+u+,

and it follows:

auR−au+ =πR−π+, or w3+ =w3R, (3.24a)

aER−aE+ =πRuR−π+u+. (3.24b)

The traces u−,u+,π−,π+ are then obtained by solving the linear system of equations
(3.20b), (3.20d), (3.23) and (3.24a), which is left to the reader.

From relations (3.24b) and (3.20c), we get:

E+ =
aER+π+u+−πRuR

a
, (3.25)

and

E−=
m+E+ +π+u+−π−u−−MρE

m−
. (3.26)

Next, we determine the expressions of m+ and m−. The expression of the state u+

gives

2a(a+m+)(u+−u∗) =aMρu+Mρπ−(au∗+π∗)Mρ, (3.27)

then, multiplying the relation (3.19c) by ρ+, we have

m+ +a=ρ+(uR+
a

ρR
),

so that

(a+m+)u+ =m+(uR+
a

ρR
),
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and

2a(a+m+)(u+−u∗) = 2am+(uR+
a

ρR
)−2a2u∗−2am+u

∗

=
2a2

ρ∗R
m+−2a2u∗.

Moreover, from (3.27), we obtain:

m+ =
2a2u∗+aMρu+Mρπ−(πL+auL)Mρ

2a2τ∗R
, (3.28)

and from (3.20a) we finally get

m−=
2a2u∗+aMρu+Mρπ−(πL+auL+2a2τ∗R)Mρ

2a2τ∗R
, (3.29)

which ends the proof of the case under consideration.
We check that we do recover the formulas of [5] in the caseMρ= 0. Now, we can

define the numerical fluxes (3.6)(3.7) introduced in §3.3. Recall that we have noted Π
the projection operator defined as Π : (x1,x2,x3,x4)∈R4 7→ (x1,x2,x3)∈R3. Then, the
numerical fluxes (gL)nj and (gR)nj are given by the following Godunov type numerical
fluxes:

(gL)nj = ΠF

(
W
(

0−;U
(n)

j− 1
2

,U
(n)

j+ 1
2

,M̃
(n)

j

))
, j≤0,

(gR)nj = ΠF

(
W
(

0+;U
(n)

j− 1
2

,U
(n)

j+ 1
2

,M̃
(n)

j

))
, j≥0,

where the weights M̃
(n)

j are defined by

M̃
(n)

j =

{
0, if j 6= 0,

M̃
(n)
, if j= 0.

Note that for j 6= 0, the solution W of the Riemann problem may be discontinuous at
0 but the flux F is continuous (see indeed (3.3)) so that the choice to take the value
of W(0±) is not important; the numerical flux is just the projection of the exact
Godunov flux for the relaxation system. While, for j= 0, there are two fluxes linked
by the discrete coupling condition (discrete version of (2.7))

(gR)n0 −(gL)n0 =M(n).

This situation with two fluxes at an interface is now classical for finite volume schemes
approximating a system with geometric source term.

3.7. Preserving equilibria
Next, it remains to determine the additional weightMρπ such that the relaxation

approach preserves the equilibrium solutions of the original coupled problem (2.5) (see
definition 3.1). The following proposition gives this weight.
Proposition 3.2. Let uL and uR be two subsonic constant states belonging to Ω
and a weight M= (Mρ,Mρu,MρE)T such that the relation (3.15) holds true. Let us
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define the mass flows through the interface me
±=me

±(uL,uR,Mρ,Mρu) as

me
+ :=

Mρu+2au∗+(aτ∗L−u∗)Mρ

a(τ∗L+τ∗R)
, (3.30)

me
− :=me

+−Mρ, (3.31)

together with the weight Me
ρπ =Me

ρπ (uL,uR,Mρ,Mρu) , given by

Me
ρπ :=PRm

e
+−PLm

e
−, (3.32)

where Pα=pα(τα,εα)+a2τα, with α=L,R. Then, the relaxation method in Propo-

sition 3.1 with the weight M̃
e

= (Mρ,Mρu,MρE ,Me
ρπ)T preserves the equilibrium

solutions of the coupled problem (2.5).
Proof. Let uL,uR in Ω be such that the relation (3.15) holds true and assume

that me
+,m

e
−,PR,PL,, and Me

ρπ satisfy relations (3.30) to (3.32). Let us show that

W
(x
t

;UL,UR,M̃
e
)

=

{
UL, x<0,

UR, x>0,
(3.33)

where Uα= (uα,ραpα) ,α=L,R and where W is the solution to the Riemann problem
(3.16) solved explicitly in Proposition 3.1. Therefore, we must prove that{

U−=U1 =UL and U+ =UR if M̃
e
∈D−adm,

U+ =U3 =UR and U−=UL if M̃
e
∈D+

adm.

Here we present only the evaluation of the trace state U+ since the approach is similar
for the other states.

By Proposition 3.1, note that the mass flows me
± are identical for the two consid-

ered wave structures. Let mα=ραuα, α=L,R. From (3.15), we have:

Mρ=mR−mL, (3.34a)

Mρu=mRuR+pR−mLuL−pL, (3.34b)

MρE =mRER+pRuR−mLEL−pLuL. (3.34c)

By plugging the weightsMρ andMρu into (3.30), and using the relations aτ∗L−u∗=
aτL−uL and πα=pα with α=L,R, we obtain

me
+ =

mR (a(τL+τR)+uR−uL)

a(τ∗L+τ∗R)
.

From the definition of the intermediate states τ∗L and τ∗R, we have:

a(τ∗L+τ∗R) =λ3 (UR)−λ1 (UL) =a(τL+τR)+uR−uL,

and

me
+ =mR. (3.35)

Using relation (3.34a), it follows that

me
−=me

+−Mρ=mR−(mR−mL) =mL. (3.36)
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Let us consider now the state u+. From Proposition 3.1, the equalities πα=pα with
α=L,R, the definitions of the intermediate state u∗ and the weight Me

ρπ (3.32),
together with the relations (3.34a), (3.34b), (3.35) and (3.36), we get

u+ =u∗+
aMρu+Me

ρπ−(πL+auL)Mρ

2a(a+me
+)

=
uR+uL

2
+
pL−pR

2a
+
a(mRuR+pR−mLuL−pL)+(pR+a2τR)mR

2a(a+mR)

− (pL+a2τL)mL

2a(a+mR)
− (pL+auL)(mR−mL)

2a(a+mR)

=
uR+uL

2
+
pL−pR

2a
+
auR(mR+a)+pR(a+mR)−(pL+auL)(a+mR)

2a(a+mR)

=uR,

and it follows immediately that ρ+ =me
+/u+ =mR/uR=ρR. Next, using similar ar-

guments together with the definition of the state π∗, we obtain

π+ =π∗+
aMρu+Me

ρπ−(πL+auL)Mρ

2(a+me
+)

=
πL+πR

2
+
a(uL−uR)

2
+

(a+mR)(auR+pR−pL−auL)

2(a+mR)

=
pL+pR

2
+
a(uL−uR)

2
+
pR−pL+a(uR−uL)

2
=pR.

Now, for the evaluation of E+, two cases must be considered. If M̃
e
∈D−adm, we

use the Proposition 3.1 and the equality π+u+ =πRuR, and immediately get

E+ =
aER+π+u+−πRuR

a
=ER.

On the other hand, if M̃
e
∈D+

adm, the energy is given by:

E+ =
m−E−+π−u−−π+u+ +MρE

m+
.

Moreover, a computation similar to those made for the states u+ and π+ gives π−u−=
πLuL so that E−=EL (cf. Proposition 3.1). Using these two last relations with
equation (3.34c), we finally obtain

E+ =
mLEL+pLuL−pRuR+mRER+pRuR−mLEL−pLuL

mR
=ER,

which ends the proof.

3.8. Choices of the measure source terms
The measure source terms can be determined in a dynamic way, at each time step

of a discrete time algorithm. We present different choices according to the chosen
objective.
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3.8.1. Flux coupling and state coupling. In model adaptation, one couples
two different models at an interface which is fixed during a time interval of length the
time step, but may vary at each time step. The position of the interface is optimized
in such a way that in the region where one computes the coarse model, the model
error between the fine and coarse models (evaluated by some indicator) is less than
some given tolerance. Then, the coupling condition should not have a great impact,
and one chooses at each time step the same, either a conservative (flux coupling) or
a non conservative (state coupling) approach [56].

At time t(n), the coupling condition (2.7) at the discrete level reads

M(n) = (gR)n0 −(gL)n0 . (3.37)

The choice of a flux coupling leads to M(n) =0 for all n in N. In order to ensure
the state coupling we use an approach based on the introduction of reconstructed
states. This procedure was proposed in [6], formalized in [8] and then adapted in the
context of coupling with source terms [34]. The method allows to impose continuity
(at the coupling interface) of a given set of variables. This can be related to other
non-conservative approaches as the single fluid algorithm introduced in [1] and also
to well balanced schemes in the spirit of [48, 44], see [47].

The numerical fluxes (gL)n0 and (gR)n0 are given by:

(gL)n0 =gL

(
u

(n)

− 1
2

,u
(n)

+ 1
2

)
, (gR)n0 =gR

(
u

(n)

− 1
2

,u
(n)

+ 1
2

)
,

where (using the notations introduced in section 2.2), the reconstructed states u
(n)

− 1
2

and u
(n)

+ 1
2

are defined as

u
(n)

− 1
2

:=ϕ−1
R ◦ϕL

(
u

(n)

− 1
2

)
, u

(n)

+ 1
2

:=ϕ−1
L ◦ϕR

(
u

(n)

+ 1
2

)
.

We refer the reader to [6, 34] for examples of changes of variables.

3.8.2. Dynamic evaluation: constrained optimization problems. The
aim of this section is the evaluation of an optimal source term relative to some cost
function. At each time step, given a convex cost function J and a non-empty convex

subset D⊂Dadm, the problem consists in finding an optimal mass M̃
e

opt in D such
that

J (M̃
e

opt)≤J (M̃
e
), ∀M̃

e
∈D. (3.38)

The objective function and the space of constraints are defined by physical motiva-
tions, for instance in order to impose a mass flow on one side of the interface, or else to
impose a cooling; the cost function is then constructed in relation with the objective
(see §4.2 for several examples). At each time step, when this optimization problem is

solved, we set M(n) = ΠM̃
e

opt, where Π is the projection operator introduced in §3.6.

4. Numerical experiments.
We use a computational domain (−0.5,0.5) with 200 elements. The coupling

interface is at x= 0. Moreover, the final time of the simulation is T = 0.12 and the
ratios of specific heats are γL= 1.4 and γR= 1.28. In order to preserve equilibrium
solutions of the problem, we impose Mρπ =Me

ρπ, where Me
ρπ is defined by (3.32).

The following test cases are based on Riemann problems where the discontinuity
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is located at x= 0 and the different initial data are given in table 4.1. Numerical
experiments using state coupling are based on the continuity of primitive variables
ϕα(u) = (ρ,u,pα), α=L,R.

Test case ρL uL pL ρR uR pR
1 1.6 0.4 2.35 1.6 0.4 2.35

2,3,4,5 1.6 0.4 2.35 1.4 0.4 1.9

Table 4.1. Initial conditions for different test cases.

4.1. Flux coupling vs. state coupling
Test case 1. In this first test case, we consider uniform initial data given in

table 4.1. The density, velocity, pressure and internal energy profiles are displayed
in figure 4.1 when applying flux coupling and state coupling in primitive variables
(ρ,u,p). Figure 4.2 displays the relative conservation losses in mass, momentum and
total energy, obtained by integrating the conservation laws over space and time.

Results show that the uniform profile is not respected for the flux coupling. Never-
theless, the method is strictly conservative with zero conservation losses. In contrast,
the uniform profiles of ρ, u and p are preserved when using state coupling as ex-
pected. Note also that the total energy is not conserved [10, 34]. Finally, we remark
that the internal energy ε is necessarily discontinuous at the coupling interface due
to the different pressure laws (see equation (2.2)).

Test case 2. In the second test case, we still compare the various profiles based
on conservative coupling or state coupling in primitive variables for a shock tube
problem (see table 4.1). The density, velocity, pressure, internal energy and mass flow
rates are shown in figure 4.3, while figure 4.4 displays the relative conservation losses.

Results are similar to test case 1: the flux coupling method is strictly conservative
and the state coupling method ensures continuity of primitive variables through the
coupling interface.

4.2. Optimal source terms
Hereafter, mref ∈R∗ and εref >0 will denote target values. At each time t(n),

n∈N, we consider the discrete states UL=U
(n)

− 1
2

, and UR=U
(n)

+ 1
2

at the coupling

interface to define objective functions.
For the numerical resolution of constrained optimization problems (3.38), we use

the gradient projection algorithm defined by the sequenceM̃
e

0 given

M̃
e

k+1 =PD
(
M̃

e

k−µJ∇J (M̃
e

k)
)
, k∈N,

(4.1)

where PD is the projection operator onto the set of constraints D. In our numerical
examples, PD is known explicitly and thus motivates the use of this algorithm. For

a given tolerance η>0, the stopping condition of the algorithm will be ||M̃
e

k+1−
M̃

e

k ||<η ||M̃
e

0 ||, where || · || denotes the usual Euclidean norm and η= 10−12.

Test case 3. In this test case, we focus on an optimization problem that im-
poses the mass flow at the right hand side of the coupling interface, while controlling
the conservation losses in mass and momentum. The applications we have in mind
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Fig. 4.1. Conservative coupling vs. state coupling for test case 1: profiles of primitive variables
(ρ,u,p) and internal energy.

here concern unsteady flow control techniques. Among the most widely used tech-
niques, one can quote the experimental methods of fluid blowing or suction which
have a strong influence on the flow features such as lift improvement, drag reduction,
vortex breakdown delay, flow separation control [33, 32, 57]. In the experimental
studies, a typical objective may be to optimize the blowing position for maximizing
control and minimizing the blowing mass flow rate. A simplified representation of
these flow control problems would consider the minimization of the objective function
(Mρ,Mρu)∈R2 7→J1(Mρ,Mρu)∈R defined by

J1(Mρ,Mρu) :=

(
me

+(uL,uR,Mρ,Mρu)−mref

mref

)2

+κ2

[(
Mρu

a2τR

)2

+

(
Mρ

a

)2
]
,

(4.2)
over the set D1 = [−0.5,0.5]2, J1 is strictly convex (see the Appendix A). We further

assumeM(n)
ρE = 0, for all n in N. The parameter κ>0 quantifies the cost of the control.
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Fig. 4.2. Relative conservation losses for test case 1.

Minimizing J1 over R2 with κ= 0 imposes me
+ =mref , while conservation losses Mρ

andMρu are set to zero when κ tends to infinity. In this example, we take mref = 0.75.

Figure 4.5 represents the density, velocity, pressure, internal energy and mass
flow profiles for three values of the control parameter: κ= 0.01, κ= 1 and κ= 100
with respective parameter value µJ = 0.1, 10−2 and 10−4 in algorithm (4.1). These
parameters were chosen experimentally to obtain a good convergence of the algorithm.
Figure 4.6 displays the relative conservation losses in mass, momentum and total
energy.

The total energy is conserved for all values of κ as expected. Comparing figures
4.3 and 4.5, we observe that the profiles of density, velocity, pressure, internal energy
and mass flow obtained from the minimization of the cost function J1 with κ= 100 are
similar to those obtained by the flux coupling method. In contrast, the right trace of
the mass flow tends to the value imposed mref = 0.75 when κ tends to zero. Finally,
we observe that the amplitudes of the conservation losses in mass and momentum
increase when the control parameter κ decreases.
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Fig. 4.3. Conservative coupling vs. state coupling for test case 2: profiles of primitive variables
(ρ,u,p), mass flow and internal energy.
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Fig. 4.4. Relative conservation losses for test case 2.

Test case 4. Now, for this test case, we set M(n)
ρ =M(n)

ρu = 0 at each time step
and try to minimize the function MρE ∈R 7→J2(MρE)∈R defined by

J2(MρE) :=

(
ε+−εref
εref

)2

+κ2

(
MρE

a3τ2
R

)2

, (4.3)

with εref = 3.5 over the set D2 = [−1.5,1.5]. This function is a strictly convex function
of its argument (see the Appendix A). It allows to impose the temperature through the
value of ε+ and thus imposes cooling (MρE<0) or heating (MρE>0) at the right of
the interface x= 0, while controlling the conservative losses. Film cooling constitutes
an example of such minimization problem. The efficiency of gas turbines may be
improved and fuel consumption reduced with higher combustor exit flow temperatures.
However, higher temperatures may induce turbine components damages. To insure
their thermal protection, a protective coat of cool air separates the turbine wall from
the hot gases [31]. The boundary between the film and the gases can be modelled as
an interface through which the intake air mass and energy losses must be considered.
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In figure 4.7, we present the density, velocity, pressure, internal energy and mass flow
profiles for different values of the control parameter. Figure 4.8 displays the relative
conservation losses for these values of κ. Here again, the conclusions are similar to
those of the previous test case.

Test case 5. Finally, in this last test case, we assume that M(n)
ρu = 0 for all n in

N and minimize the function (Mρ,MρE)∈R2 7→J3(Mρ,MρE)∈R defined by

J3(Mρ,MρE) :=

(
ε+−εref
εref

)2

+κ2

[(
Mρ

a

)2

+

(
MρE

a3τ2
R

)2
]
,

over the set D3 = [0,0.5]× [−0.5,0]. We set εref = 3.5, this function imposes the tem-
perature while controlling the conservative losses. The main difference consists in
film cooling by injection of mass (Mρ>0) and loss of energy (MρE<0). Figure
4.9 presents the density, velocity, pressure, internal energy and mass flow profiles as
a function of the control parameter. Figure 4.10 displays the relative conservation
losses for these three values of κ. Here again, the conclusions are similar to the other
optimization problems.
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(a) (b)

(c) (d)

(e)

Fig. 4.5. Constrained optimization for test case 3: profiles of primitive variables (ρ,u,p), mass
flow and internal energy.



26 INTERFACE COUPLING WITH MEASURE SOURCE TERM

physical time

lo
s

s
e

s

0 0.02 0.04 0.06 0.08 0.1 0.12
­0.006

­0.004

­0.002

0

0.002

0.004

0.006

(a) relative mass conservation losses

physical time

lo
s

s
e

s

0 0.02 0.04 0.06 0.08 0.1 0.12
­0.025

­0.02

­0.015

­0.01

­0.005

0

0.005

(b) relative momentum conservation losses

physical time

lo
s

s
e

s

0 0.02 0.04 0.06 0.08 0.1 0.12
­0.01

­0.005

0

0.005

0.01

0.015

0.02

0.025

(c) relative energy conservation losses

Fig. 4.6. Relative conservation losses for test case 3.
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(a) (b)

(c) (d)

(e)

Fig. 4.7. Constrained optimization for test case 4: profiles of primitive variables (ρ,u,p), mass
flow and internal energy.
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Fig. 4.8. Relative conservation losses for test case 4.
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Fig. 4.9. Constrained optimization for test case 5: profiles of primitive variables (ρ,u,p), mass
flow and internal energy.
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Fig. 4.10. Relative conservation losses for test case 5.

5. Concluding remarks

We have extended the study of interface coupling with local measure source term
[4, 34, 5] to the general case where all the source terms are non zero. An approximate
Riemann solver preserving equilibrium solutions has been proposed for the numerical
approximation of the coupled model in the context of the gas dynamics equations with
different closure laws for the pressure, as a model example. The construction of this
solver relies on a relaxation approximation where the associated Riemann problem
has been solved analytically. This relaxation method has been used for the evaluation
of optimal source terms satisfying physical criteria at the coupling interface. In the
context of constrained optimization problems, numerical experiments have shown that
it is possible to impose physical quantities such as mass flow or temperature at the
coupling interface while controlling conservation losses. Future investigations should
include an extension to several space dimensions and adaptive procedures, together
with the coupling of more realistic models (even if we cannot expect explicit theoretical
results for general models, at least it is interesting to extend the numerical approach
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to less academic cases).

Appendix A. Mathematical properties of the cost functions J1 and J2.
First, recall that the sequence of the gradient projection algorithm converges to the
optimum if the objective function J is αJ -convex differentiable and ∇J is C∇J -
Lipschitz continuous. More precisely, if the algorithm parameter µJ is chosen such
that the following inequality holds

0<µJ <
2αJ
C2
∇J

,

then the algorithm converges.

Here, we give some properties of the cost functions J1 and J2 respectively defined
in (4.2) and (4.3).

Proposition A.1. For all control parameter κ>0, the functions J1 and J2 are
strictly convex. For each κ>0, set:

α1 =
1

2

[
Tr(Hess(J1))−

√
Tr(Hess(J1))2−4det(Hess(J1))

]
>0,

C∇J1
= rspec(Hess(J1))>0,

α2 =
2κ2

a6τ4
R

>0, C∇J2
=

2

(εrefm+)2
+α2>0,

where for a matrix A, Tr(A) denotes its trace, det(A) its determinant and rspec(A) its
spectral radius. Hess(J1) denotes the Hessian matrix of the cost function J1. Then,
for i= 1,2, there exists αJi strictly positive and strictly smaller than αi such that
the function Ji is αJi-convex differentiable and ∇Ji is C∇Ji-Lipschitz. Finally, for
i= 1,2, the gradient projection algorithm converges for all parameter µJi verifying:

0<µJi <
2αJi
C2
∇Ji

.

Proof. First of all, one can check that Tr(Hess(J1))>0 and det(Hess(J1))>0 for
all κ>0, since after easy calculations we get:

Tr(Hess(J1)) =
2(aτ∗L−u∗)2

[amref (τ∗L+τ∗R)]
2 +

2κ2

a2
+

2

[amref (τ∗L+τ∗R)]
2 +

2κ2

a4τ2
R

>0,

and

det(Hess(J1)) =
4κ2

a4

[
(aτ∗L−u∗)2

[amrefτR(τ∗L+τ∗R)]
2 +

1

[mref (τ∗L+τ∗R)]
2 +

κ2

a2τ2
R

]
>0.

This implies in particular the strict convexity of J1 since its Hessian matrix is positive
definite. Let

∆ = Tr(Hess(J1))2−4det(Hess(J1)). (1.1)
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First, remark that:

∆ =
[
∂2
M2

ρ
J1 +∂2

M2
ρu
J1

]2
−4

[
∂2
M2

ρ
J1∂

2
M2

ρu
J1−

(
∂2
Mρ,Mρu

J1

)2
]

=
[
∂2
M2

ρ
J1−∂2

M2
ρu
J1

]2
+4
(
∂2
Mρ,Mρu

J1

)2

>0,

since

∂2
Mρ,Mρu

J1 =
2(aτ∗L−u∗)

[amref (τ∗L+τ∗R)]
2 6= 0 (because λr1<0),

and then observe that:

∆−Tr(Hess(J1))2 =−4det(Hess(J1))<0.

From ∆>0, Tr(Hess(J1))>0 and the previous inequality, we deduce that the term α1

defined in the present proposition is strictly positive. So, there exists αJ1
such that

0<αJ1 <α1. Now, in order to show that J1 is αJ1 -convex, let us define the function

f1 : (Mρ,Mρu)∈R2 7−→J1 (Mρ,Mρu)− αJ1

2
|| (Mρ,Mρu) ||2∈R,

where || · || denotes the usual Euclidean norm on R2. After easy calculations, we obtain

Tr(Hess(f1)) = Tr(Hess(J1))−2αJ1 ,

and

det(Hess(f1)) = det(Hess(J1))−αJ1Tr(Hess(J1))+α2
J1
.

Since αJ1
<α1<Tr(Hess(J1))/2, it is clear that the trace of the Hessian matrix of

the function f1 is strictly positive. Moreover, considering the following polynomial of
degree 2 in X:

P(X) =X2−Tr(Hess(J1))X+det(Hess(J1)),

one can see that its discriminant is given by ∆>0 in (1.1) and α1 is its smallest root.
Since αJ1 <α1, the determinant of the Hessian matrix of the function f1 is strictly
positive and we deduce that f1 is in particular convex that is to say that J1 is αJ1-
convex. For all κ>0, the gradient ∇J1 of the function J1 is Lipschitz-continuous with
constant C∇J1

since the eigenvalues of the Hessian of J1 are bounded above by C∇J1
.

The constant C∇J1
is strictly positive because J1 is strictly convex and is independent

of the variables Mρ and Mρu because the Hessian is independent of these variables.
Now, let us introduce 0<αJ2 <α2 and the function

f2 : MρE ∈R 7−→J2 (MρE)− αJ2

2
M2

ρE ∈R.

Then, the second order derivative of J2 is given by

J ′′2 (MρE) =



2κ2

a6τ4
R

if MρE ∈D−adm,

2κ2

a6τ4
R

+
2

ε2
refm

2
+

if MρE ∈D+
adm,
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which implies f ′′2 (MρE) =J ′′2 (MρE)−αJ2
>0, that is to say that the function J2 is

αJ2
-convex. Moreover, given the above relations, we directly obtain

sup |J ′′2 (MρE) |≤C∇J2
,

and applying a corollary of the mean value theorem, we deduce that for all κ>0, the
gradient ∇J2 is Lipschitz-continuous with constant C∇J2

. This concludes the proof.
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