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Abstract We study the coupling of non-linear supersym-
metry to supergravity. The goldstino nilpotent superfield of
global supersymmetry coupled to supergravity is described
by a geometric action of the chiral curvature superfield R
subject to the constraint (R − λ)2 = 0 with an appropriate
constant λ. This constraint can be found as the decoupling
limit of the scalar partner of the goldstino in a class of f (R)

supergravity theories.

1 Introduction

Studies of non-linear supersymmetric actions have been
revived recently due to potential interesting applications in
particle physics [1] and cosmology [2–4] and their realization
in particular string compactifications [5,6]. Indeed, effec-
tive actions with non-linear supersymmetry parametrize in a
model independent way the effects of supersymmetry break-
ing at low energies compared to the mass of the sgoldstino
(supersymmetric partner of the goldstino) which is in general
of the order of the supersymmetry breaking scale at the ‘hid-
den’ sector. The goldstino on the other hand, although part
of the massive gravitino providing its longitudinal degrees
of freedom, is always in the low-energy spectrum since it
becomes massless in the absence of gravity and interacts with
a strength fixed by the supersymmetry breaking scale, in con-
trast to the transverse gravitino components, which become
free and decouple. In the string theory context, non-linear
supersymmetry appears naturally on the world-volume of D-
branes realizing the broken supersymmetries of the bulk. It
can then even remain an exact symmetry of certain vacua, if
for instance the orientifold projection respects it [5,7].

At the global level, a convenient way to write off-shell non-
linear supersymmetric actions is by utilizing a nilpotent chi-
ral superfield [8–11]. In analogy to ordinary non-linear sigma
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models, the constraint eliminates the sgolsdtino component,
playing the role of the radial Higgs mode, and replaces it by
a goldstino bilinear. In the absence of matter fields, the low-
energy action (i.e. without higher order super-derivatives) is
completely determined in terms of the goldstino decay con-
stant (or equivalently the supersymmetry breaking scale), and
reproduces [11,12] the Volkov–Akulov action [13] on-shell.
Indeed, the most general Kähler potential is canonical and the
superpotenial is linear in the nilpotent goldstino superfield.
In the presence of matter, the simple nilpotent constraint may
change if some matter fields have superheavy superpartners
(of the order of the sgoldstino mass) [14], but it remains valid
if all other extra fields belong to ordinary linear supermulti-
plets [1].

The coupling to supergravity is straightforward since the
constraint does not involve any derivatives [2]. The superpo-
tential now admits also a constant piece, allowing for an arbi-
trary cosmological constant of any sign and space-time to be
anti-de Sitter, de Sitter or flat. In flat space, the gravitino mass
is given by the usual relation in terms of the supersymmetry
breaking scale and the Planck mass. In the unitary gauge, the
action is reduced to the ordinary N = 1 supergravity with
a mass term for the gravitino that has absorbed the gold-
stino. The theory has an alternative geometric formulation
in terms of the chiral curvature superfield R, which obeys
an appropriate quadratic constraint (R − λ)2 = 0 with λ a
constant [2,15,16].

In this work, we first show the equivalence of the two
formulations of non-linear supersymmetry coupled to super-
gravity by computing explicitly the two actions in compo-
nents. An alternative way to obtain the constraint is to add
it in the action with an independent coupling-coefficient ρ

and take the limit ρ → ∞. The resulting R2 supergravity
contains besides the graviton and the gravitino the degrees
of freedom of a chiral multiplet that should play the role of
the goldstino multiplet. It turns out, however, that this theory
does not have a minimum in flat space for finite ρ, while,
starting from a de Sitter minimum, the decoupling limit of
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the sgoldstino, and thus of non-linear supersymmetry, does
not exist. We then study a general class of f (R) N = 1
supergravity theories [17,18] that satisfy the required limit
in flat space; the mass of the extra complex scalar goes to
infinity in a Minkowski minimum of the scalar potential and
the geometric constraint for the chiral curvature is recovered.

The structure of the paper is as follows. In Sect. 2, we
show the equivalence between the two formulations of non-
linear supersymmetry coupled to N = 1 supergravity using
first a formal argument with superfields and then by com-
paring the two effective actions in components. We find two
possible values for the constant λ entering the geometric con-
straint: λ = 0 and λ = 6W0 with W0 a constant superpoten-
tial. In Sect. 3, we recover this constraint in the sgoldstino
decoupling limit of a particular class of f (R) supergrav-
ity theory that we construct as a Taylor series expansion
around a flat space minimum of the corresponding scalar
potential. Finally, in “Appendix A” we give some details for
the derivation of the solution of the geometric constraint,
while in “Appendix B” we show why an R2 supergravity
does not have a stable supersymmetry breaking vacuum that
reproduces the constraint in a suitable limit.

2 Two equivalent Lagrangians

In the constrained superfield formalism of non-linear super-
symmetry, the goldstino is described by the fermionic com-
ponent of a chiral superfield, X , that satisfies the nilpotent
constraint X2 = 0 [8–11]. The scalar component (sgoldstino)
is then eliminated by the constraint and is replaced by a gold-
stino bilinear. The most general low-energy (without super-
derivatives) Lagrangian, invariant (upon space-time integra-
tion) under global supersymmetry, is then given by

LVA = [X X̄ ]D + ([ f X ]F + h.c.), (2.1)

where f �= 0 is a complex parameter. The subscripts D and F
denote D- and F-term densities, integrated over the full or the
chiral superspace, respectively, and correspond to the Kähler
potential and superpotential of N = 1 supersymmetry. It
can be shown [11,12] that LVA is equivalent to the Volkov–
Akulov Lagrangian [13] on-shell.

The coupling to supergravity in the superconformal con-
text [19,20], (2.1), takes the form

L = − [
(1 − X X̄)S0 S̄0

]
D

+
([(

f X + W0 + 1

2
T X2

)
S3

0

]

F
+ h.c.

)
, (2.2)

where we have used the superconformal tensor calculus [21],
[22] with S0 being the superconformal compensator super-
field. We have also used a Lagrange multiplier T in order
to impose the constraint X2 = 0 explicitly in L , while the

factor 1
2 is put merely for convenience. W0 is a complex con-

stant parameter whose importance will appear shortly. The
Kähler potential corresponding to (2.2) is given by

K (X, X̄) = −3 ln(1 − X X̄)

= −3

[
−X X̄ − (−X X̄)2

2
+ · · ·

]
= 3X X̄ . (2.3)

We would now like to find a geometrical formulation
of (2.2), that is, to eliminate X and write an equivalent
Lagrangian that contains only superfields describing the
geometry of spacetime, such as the superspace chiral curva-
ture R [2,15,16]. To this aim, we observe that the following
Kähler potential K ′:

K ′ = −3 ln(1 + X+ X̄)=−3

(
X + X̄− (X+ X̄)2

2
+ · · ·

)

= 3X X̄ − 3(X + X̄), (2.4)

is related to the Kähler potential K via a Kähler transforma-
tion of the type

K → K ′ = K − 3(X + X̄)

W → W ′ = e3XW. (2.5)

This tells us that L is equivalent to L ′, where

L ′ = − [
(1 + X + X̄)S0 S̄0

]
D

+
([(

f X + W0 + 1

2
T X2

)
e3X S3

0

]

F
+ h.c.

)
.

(2.6)

Using the constraint X2 = 0, we have

L ′ = − [
(1 + X + X̄)S0 S̄0

]
D

+
([(

f X + W0(1 + 3X) + 1

2
T X2

)
S3

0

]

F
+ h.c.

)

= −[S0 S̄0]D+
([(

λX + W0−X
R

S0
+ 1

2
T X2

)
S3

0

]

F
+h.c.

)
,

(2.7)

where we have set λ = f +3W0 and we have used the identity
[22]

[X · R · S2
0 ]F = [

S0 S̄0(X + X̄)
]
D + total derivatives.

(2.8)

In (2.7), X enters only in F-terms without derivatives and
can be thus integrated out. Solving the equation of motion
for X , we have

λ − R

S0
+ T X = 0 ⇒ X =

R
S0

− λ

T
, (2.9)
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and substituting it back into (2.7), we get

L ′ = −[S0 S̄0]D +
([(

− 1

2T

(
R

S0
− λ

)2

+ W0

)

S3
0

]

F

+ h.c.

)

=
[(

−1

2

R

S0
+ W0 − 1

2T

(
R

S0
− λ

)2
)

S3
0

]

F

+ h.c., (2.10)

where we have used again the identity (2.8). We can now
view 1

T as a Lagrange multiplier that imposes the constraint

(
R

S0
− λ

)2

= 0. (2.11)

Consequently, we have established an equivalence between
the constrained Lagrangians (2.2) and (2.10); they both
describe the coupling of non-linear supersymmetry to super-
gravity, with L ′ providing its geometric formulation with
the use of a constraint imposed on R instead of X . This con-
straint was proposed in [2] for λ = 0. In what follows we
will confirm the equivalence by writing these Lagrangians in
terms of component fields.

2.1 Constraining a chiral superfield X

In the following we use the method and conventions of [23]
except from a factor of 1/6 which we omit in the expression
of R but introduce at the Lagrangian level. We also set the
gravitational coupling κ2 = 8πGN (given here in natural
units) to be equal to one, in accordance with the usual con-
vention. After gauge-fixing the superconformal symmetry by
using the convenient gauge S0 = 1, the Lagrangian (2.2) can
be written as follows:

L =
∫

d2�2E

{
3

8

(
D̄D̄ − 8

6
R

)
e−K/3 + W

}
+ h.c.

with W (X) = f X + W0 and X2 = 0, (2.12)

where D is the super-covariant derivative and E the chiral
superfield density that is constructed from the vielbein ema :

E = 1

2
e{1 + i�σ aψ̄a − ��[M̄ + ψ̄a σ̄

abψ̄b]}. (2.13)

Here ψa is the gravitino, � the fermionic coordinates of the
curved superspace and σ a = (−1, σ ), σ abβ

α = 1
4 (σ a

αα̇σ̄ bα̇β −
σ b

αα̇σ̄ aα̇β) with σ the Pauli matrices. Note that the Lagrange
multiplier T in (2.2) has been used to impose the constraint
X2 = 0, which can be solved, fixing the scalar component
(sgoldstino) in terms of the goldstino G and the auxiliary
field F of X [11].

We now substitute X , E and R with their respective
expressions in component fields:

X = G2

2F
+ √

2�G + (��)F ≡ A + √
2�G + (��)F

R ≡ −M − �B − (��)C

� ≡
(
D̄D̄ − 8

6
R

)
X̄ ≡ −4F̄ + 4

3
M Ā + �D + (��)E .

(2.14)

The exact components of R and � are computed, for exam-
ple, in [23] (our convention for R differs by 1/6 with respect
to [23]). M and ba are the auxiliary fields of the N = 1
supergravity multiplet in the old-minimal formulation. Then

−3

4

[
E

(
D̄D̄ − 8

6
R

)
X̄ X

]

F

= −3

8
[2E�X ]F =−3

8
e

(

E A − 4F F̄+ 4

3
MF Ā−

√
2

2
(DG)

)

+ 3

16
ie(yσ aψ̄a)+ 3

8
e
[
M̄+ψ̄a σ̄

abψ̄b

] [
−4AF̄+ 4

3
MAĀ

]
,

(2.15)

where

y = √
2G

(
−4F̄ + 4

3
M Ā

)
+ DA. (2.16)

This expression is simplified significantly if we choose to use
the unitary gauge, setting G = 0 and thus A = y = 0:

−3

4

[
E

(
D̄D̄ − 8

6
R

)
X̄ X

]

F
= 3

2
eF F̄ . (2.17)

Moreover, also in the unitary gauge, one can compute

[2E ( f X + W0)]F = e f F − e[M̄ + ψ̄a σ̄
abψ̄b]W0. (2.18)

Now, using the property

(ψ̄a σ̄
abψ̄b)

† = 1

4

[
ψ̄a(σ̄

aσ b − σ̄ bσ a)ψ̄b

]†

= 1

4

[
ψb(σ

bσ̄ a − σ a σ̄ b)ψa

]
= ψaσ

abψb,

(2.19)

the Lagrangian (2.12) in terms of the component fields
becomes

L = −1

2
eR − 1

3
eMM̄ + 1

3
ebaba

+1

2
eεabcd(ψ̄a σ̄bD̃cψd − ψaσbD̃cψ̄d)

+e f F − eW0[M̄ + ψ̄a σ̄
abψ̄b]

+e f̄ F̄ − eW̄0[M + ψaσ
abψb] + 3eF F̄, (2.20)

123
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where R is the Ricci scalar. The equations of motion for the
auxiliary fields ba , M , F are then

ba = 0,

M = −3W0, M̄ = −3W̄0,

F = − f̄

3
, F̄ = − f

3
. (2.21)

Substituting it back into (2.20) we get

L = −1

2
eR + 1

2
eεabcd(ψ̄a σ̄bD̃cψd − ψaσbD̃cψ̄d)

− eW0ψ̄a σ̄
abψ̄b−eW̄0ψaσ

abψb+3e|W0|2− 1

3
e| f |2.
(2.22)

In this form, it is obvious that the Lagrangian reduces to the
usual N = 1 supergravity, together with a gravitino mass
term:

m3/2 = |W0| . (2.23)

Imposing that the cosmological constant (i.e. the vacuum
expectation value of the scalar potential) vanishes, one finds

3|W0|2 − 1

3
| f |2 = 0 ⇒ | f |2 = 9|W0|2 . (2.24)

This means that W0 �= 0, which justifies the use of the con-
stant piece W0 in the superpotential inL . Then the final form
of L is

L = −1

2
eR + 1

2
eεabcd(ψ̄a σ̄bD̃cψd − ψaσbD̃cψ̄d)

− eW0ψ̄a σ̄
abψ̄b − eW̄0ψaσ

abψb. (2.25)

It is important to notice that the use of the constrained super-
field X is what has generated the gravitino mass term: the
final form of the Lagrangian in flat space is just the pure
N = 1 supergravity, but with a massive gravitino. The use
of the unitary gauge G = 0 results in the gravitino absorb-
ing the goldstino and becoming massive, in analogy with the
well-known Brout–Englert–Higgs mechanism.

2.2 Constraining the superspace curvature superfield R

After gauge-fixing the superconformal symmetry by impos-
ing S0 = 1, the Lagrangian (2.10) can be written as follows:

L ′ = −
∫

d2�E (R − 2W0) + h.c.,

(R − λ)2 = 0. (2.26)

L ′ then yields

L ′ = −1

2
eR − 1

3
eMM̄ + 1

3
ebaba

+ 1

2
eεabcd(ψ̄a σ̄bD̃cψd − ψaσbD̃cψ̄d)

− eW0[M̄ + ψ̄a σ̄
abψ̄b] − eW̄0[M + ψaσ

abψb].
(2.27)

Now let us solve the constraint which is the second of Eq.
(2.26). To this aim, we substitute the second of Eq. (2.14) into
the constraint and find the set of the following equations:

(M + λ)2 = 0,

(M + λ)Bα = 0,

4(M + λ)C = (BB), (2.28)

where

Bα = σ a
αα̇σ̄ bα̇βψabβ − iσ a

αα̇ψ̄ α̇
a M + iψaαb

a

with ψab ≡ D̃aψb − D̃bψa

C = −1

2
R + O{M, ba, ψa} �= 0. (2.29)

Equation (2.28) yield

M = −λ and ba = 0. (2.30)

Indeed, B in this case depends only on the gamma-trace or the
divergence of the gravitino, σ̄ aψa and D̃aψa (using the Clif-
ford algebra property of sigma-matrices (σ a σ̄ b +σ bσ̄ a)

β
α =

−2ηabδ
β
α ), which can be put to zero by an appropriate gauge

choice. Alternatively, one can show that B vanishes on-shell
(see “Appendix A”).

Using (2.30), Eq. (2.27) becomes

L ′ = −1

2
eR − 1

3
e|λ|2 + 1

2
eεabcd (ψ̄a σ̄bD̃cψd − ψaσbD̃cψ̄d )

+ eW0λ̄ + eW̄0λ − eW0ψ̄a σ̄
abψ̄b − eW̄0ψaσ

abψb.

(2.31)

Substituting now λ = f +3W0, one finds that the cosmologi-
cal constant is given by 3e|W0|2− 1

3e| f |2 and the Lagrangian
(2.31) is identical to (2.22). Note that the vanishing of the
cosmological constant

−1

3
e|λ|2 + eW0λ̄ + eW̄0λ = 0 (2.32)

gives two possible solutions for λ:

λ = 6W0 and λ = 0 , (2.33)

corresponding to f = ±3W0, which solves the condition
(2.24).
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3 Without imposing direct constraints

In this section, we would like to start with a regular R2

supergravity and recover the constraint in an appropriate
limit where the additional (complex) scalar arising from R2

becomes superheavy and decouples from the low-energy
spectrum. Indeed, by analogy with ordinary General Rela-
tivity in the presence of an R2-term (with R the scalar cur-
vature), an R2 supergravity can be re-written as an ordinary
Einstein N = 1 supergravity coupled to an extra chiral mul-
tiplet.1 Let us then consider the Lagrangian

L̄ =
[(

−1

2

R

S0
+ W0 + 1

2
ρ(

R

S0
− λ)2

)
S3

0

]

F
+h.c., (3.1)

where ρ is a real parameter. In the limit |ρ| → ∞, one would
naively expect to recover the constraint (R − λ)2 → 0, and
thus (3.1) should be reduced to (2.10). In principle, one could
linearize (3.1) with the use of a chiral superfield S and then
demonstrate that in the limit |ρ| → ∞, L , L ′ and L̄ are
all equivalent. If this were true, one would expect that S cor-
responds to the goldstino superfield and that supersymmetry
is non-linearly realized (in the limit |ρ| → ∞), as is the
case for the chiral nilpotent superfield X . In other words, the
mass of the scalar component of S would approach infinity as
|ρ| → ∞ and would, therefore, decouple from the spectrum.
However, upon computing the scalar potential and the scalar
mass matrix corresponding to (3.1), we found that this is not
the case. This means that the parameter space (λ,W0, ρ) does
not allow for a supersymmetry breaking minimum that real-
izes the sgoldstino decoupling and the equivalence between
L̄ with L and L ′. The detailed analysis can be found in
“Appendix B”.

To solve this problem, we start with a more general class
of f (R) supergravity actions. More precisely, we modify L̄
with the addition of a suitable term that is suppressed by ρ

in the limit |ρ| → ∞2:

L ′′ =
[(

−1

2

R

S0
+ W0 + 1

2
ρ

(
R

S0
− λ

)2

+ 1

ρ

(
S
R

S0
− F(S)

))
S3

0

]

F
+ h.c., (3.2)

where S is a chiral superfield coupled to gravity and F(S) is
a holomorphic function of the superfield S. This extra term
has already been studied in the literature and is known as

1 Note that R2 supergravity is not the supersymmetrization of R2 grav-
ity which is described by a D-term RR̄, bringing about two chiral mul-
tiplets to be linearized [21,22].
2 In principle, we may replace 1/ρ by 1/ρ̂(ρ) with |ρ̂(ρ)| → ∞ when
ρ → ∞. One can show, however, that our results do not change and
thus we make the simple choice ρ̂ = ρ.

f (R) supergravity [17,18]. Indeed, S can be integrated out
by its equation of motion at finite ρ:

R = F ′S0, (3.3)

where F ′ = ∂F
∂S . This equation can be in principle solved to

give S as a function of R and replacing it back in (3.2) one
finds an f (R) theory.

We will now study the physical implications of L ′′ in the
limit ρ → ∞ so as to confirm the equivalence between L ,
L ′ and L ′′ (without loss of generality, we take ρ positive).
We first use Eq. (3.3) to replace R in terms of S in the third
term of (3.2), instead of doing the reverse as described above.
Using then the identity (2.8), we get

L ′′ = −
[(

1 − 1

ρ
(S + S̄)

)
S0 S̄0

]

D

+
{[(

W0 + 1

2
ρ(F ′ − λ)2 − 1

ρ
F

)
S3

0

]

F
+ h.c.

}
.

(3.4)

We now fix the gauge according to S0 = 1 and set φ to be
the lowest component of S. Then the Kähler potential and
the superpotential corresponding to L ′′ are given by

K = −3 ln

(
1 − 1

ρ
(φ + φ̄)

)

W = W0 + 1

2
ρ(F ′ − λ)2 − 1

ρ
F, (3.5)

where now F ′ = ∂F
∂φ

. (We use the same symbols K and W
as in Sect. 2 as there is no confusion.)

It follows that

exp(K ) = ρ3

(ρ − φ − φ̄)3
(3.6)

and

gφφ̄ = ∂

∂φ

∂

∂φ̄
K = 3

(ρ − φ − φ̄)2
, gφφ̄ = (ρ − φ − φ̄)2

3
.

(3.7)

Also

DφW = ∂φW + KφW = ρF ′′(F ′ − λ) − 1

ρ
F ′

+ 3

ρ − φ − φ̄

(
W0 + 1

2
ρ(F ′ − λ)2 − 1

ρ
F

)
.

(3.8)

Putting everything together, we find that the scalar potential
V is given by

V = exp(K )
[
gφφ̄(DφW )(D̄φ̄W̄ ) − 3W̄W

]
= ρ2

3(ρ − φ − φ̄)2
Ṽ ,

(3.9)
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where

Ṽ = ρ4|F ′′(F ′ − λ)|2 + ρ3

×
[
−(φ + φ̄)|F ′′(F ′ − λ)|2

+3

2
|F ′ − λ|2(F ′′(F̄ ′ − λ̄) + h.c.)

]

+ ρ2 [−F̄ ′F ′′(F ′ − λ) + 3W̄0F
′′ (F ′ − λ) + h.c.

)]

+ ρ[(φ + φ̄)F̄ ′F ′′(F ′ − λ) − 3F̄ F ′′(F ′ − λ)

− 3

2
F ′(F̄ ′ − λ̄)2 + h.c.] + ρ0[|F ′|2 − 3F ′W̄0 − 3F̄ ′W0]

+ ρ−1[−(φ + φ̄)|F ′|2 + 3F ′ F̄ + 3F̄ ′F]. (3.10)

For ρ → ∞, the leading behavior of V is given by

V = ρ4

3
|F ′′(F ′ − λ)|2. (3.11)

It is positive definite with a minimum at zero when F ′ = λ or
F ′′ = 0. In the following, we will analyze the case F ′ = λ;
its curvature defines the (canonically normalized) scalar mass
given by

mφ = ρ3

3
(F ′′)2 (3.12)

which goes to infinity at large ρ and φ decouples. At the
minimum F ′ = λ, the potential at large ρ becomes constant,
proportional to |λ|2 − 3λW̄0 − 3λ̄W0. This term vanishes
precisely if Eq. (2.32), or equivalently (2.24), holds. We con-
clude that in the model (3.2) the cosmological constant can
be tuned to zero (in the limit ρ → ∞) by using the same
condition as for the model (2.10). As shown in Sect. 2.2, this
is the case for two possible values of λ:

λ = 6W0 or λ = 0 . (3.13)

Now let us investigate the minimum of the potential at
finite but large ρ. We shall construct the solution as a power
series in 1/ρ around the asymptotic field value of the mini-
mum φ = φ0 that solves F ′ = λ. Simple inspection of the
potential (3.10) shows that it is sufficient to consider only
even powers in 1/ρ:

φ = φ0 + φ1

ρ2

F ′(φ) = F ′(φ0) + (φ − φ0)F
′′(φ0)

+ 1

2
(φ − φ0)

2F ′′′(φ0) + · · · (3.14)

or equivalently,

F ′(φ) = λ + c

ρ2 + d

ρ4 + · · · (3.15)

where

c = φ1F
′′
0 , d = 1

2
φ2

1 F
′′′
0 . (3.16)

We then compute the derivative of Ṽ with respect to φ and
keep only the terms that do not vanish in the limit ρ → ∞:

Ṽφ = ∂ Ṽ

∂φ
= ρ4(F̄ ′′F ′′′|F ′ − λ|2 + |F ′′|2F ′′(F̄ ′ − λ̄))

− ρ3(φ + φ̄)|F ′′|2F ′′(F̄ ′ − λ̄) + ρ2[F ′′2(3W̄0 − F̄ ′)
− |F ′′|2(F̄ ′ − λ̄) + F ′′′(F ′ − λ)(3W̄0 − F̄ ′)]
+ ρF ′′2[F̄ ′(φ + φ̄) − 3F̄] + ρ0F ′′[F̄ ′ − 3W̄0].

(3.17)

This expression vanishes if every coefficient at each order
vanishes.

We now substitute the expansion (3.14), (3.15) into Ṽφ

(ignoring orders that vanish as ρ−2 and higher) and impose
each coefficient to be set to zero so as to have an extremum.
Assuming for simplicity that W0, λ, φ0, c, d are real, we find
the following constraints on the function F :

cF ′′
0 = λ − 3W0,

F0 = 2W0φ0,

c2F ′′′
0 = 2

3
(λ − 3W0), (3.18)

which yield

F(φ) = 2φ0W0 + λ(φ − φ0) + λ − 3W0

2c
(φ − φ0)

2

+ 1

3!
2(λ − 3W0)

3c2 (φ − φ0)
3 + · · ·

= 2φ0W0 + λ(φ − φ0) ± 3W0

2c
(φ − φ0)

2

± 1

3!
2W0

c2 (φ − φ0)
3 + · · · , (3.19)

where in the second line above, we used the two possible
values of λ (3.13), λ = 6W0 for the + sign and λ = 0 for the
− sign, for which the potential vanishes at the minimum.

At the minimum, the F-auxiliary term of S, Fφ , is given
by

〈|Fφ |〉 =
〈∣∣
∣∣e

K/2
√
gφφ̄ D̄φ̄W̄

∣∣
∣∣

〉

ρ→∞−→ ρ2

√
3
〈|F ′′(F ′ − λ)|〉 + (subleading terms)

= 1√
3
〈|F ′′

0 c|〉 + O(1/ρ2) = 1√
3
|λ − 3W0|

= √
3|W0| �= 0, (3.20)

123
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where in the third line we used λ = 0 or λ = 6W0. We
conclude that supersymmetry is spontaneously broken in this
limit along the direction of φ, which can be identified with the
scalar superpartner of the goldstino that becomes superheavy
and decouples. The supersymmetry breaking scale remains
finite and is given by f = 3|W0|. Therefore, we identify the
fermionic component of S with the goldstino and φ with its
superpartner, the sgoldstino. According to (3.12), the latter
decouples from the spectrum in the limit ρ → ∞, which is
equivalent to imposing the nilpotent constraint for the gold-
stino superfield X2 = 0 on L . Finally, the gravitino mass is
given by

m3/2 = 〈|W |eK/2〉 → |W0| as ρ → ∞, (3.21)

which completes the proof of equivalence between L , L ′
and L ′′.
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Appendix A

Here, we derive the equation of motion for the gravitino from
(2.31):

1

2
εabcdσbD̃cψ̄d = −W̄0σ

abψb. (A.1)

Contracting (A.1) with D̃a , we obtain the following equation:

σ abD̃aψb = 0. (A.2)

Moreover, contracting the hermitian conjugate

1

2
εabcd σ̄bD̃cψd = W0σ̄

abψ̄b (A.3)

of (A.1) with σa , we have

εabcdσa σ̄bD̃cψd ∼ εabcdσabD̃cψd ∼ σ cdD̃cψd = 0, (A.4)

where we have used (A.2) and

εabcdσab = −2iσ cd . (A.5)

Consequently,

σa σ̄
abψ̄b = 0 ⇒ σ aψ̄a = 0, (A.6)

where we have used the identity

σ a σ̄ bσ c − σ cσ̄ bσ a = 2iεabcdσd . (A.7)

Now let us consider Bα of Eq. (2.29). Its last term iψaba

vanishes due to the equation of motion forba , while its second
term vanishes due to Eq. (A.6). Bα’s first term is

σ a σ̄ bψab = σ a σ̄ b(D̃aψb−D̃bψa) = (σ a σ̄ b − σ bσ̄ a)D̃aψb

= 4σ abD̃aψb = 0, (A.8)

where we have used the definition

σ ab ≡ 1

4
(σ a σ̄ b − σ bσ̄ a) (A.9)

and the relation (A.2). Consequently Bα = 0 on-shell, which
justifies the solution M = −λ and ba = 0 we chose in Sect.
2.2.

Appendix B

We will now demonstrate why the Lagrangian

L̄ =
[(

−1

2

R

S0
+ W0 + 1

2
ρ

(
R

S0
− λ

)2
)

S3
0

]

F

+ h.c.

(B.1)

does not reproduce (2.10) with the constraint (2.11) in the
limit ρ → ∞. We first set

a = W0 + 1

2
ρλ2,

b = 1 + 2ρλ, (B.2)

assuming again reality of all parameters for simplicity. We
then introduce a chiral superfield

S = A + √
2�χ + (��)F

(A and F are not the same as in the previous sections), such
that

123
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L̄ =
[(

a − 1

2
b
R

S0
+ 1

2
ρ
R2

S2
0

)

S3
0

]

F

+ h.c.

=
[(

a − 1

2
b
R

S0
+ S

S0

R

S0
− 1

2ρ

S2

S2
0

)

S3
0

]

F

+ h.c. (B.3)

It follows that b > 0 in order to have canonical gravity for
a metric tensor with signature (− + ++). It is obvious from
(B.3) that we have linearized our initial theory (B.1), which
now describes the coupling of supergravity to a chiral super-
field S that satisfies the equation of motion

S = ρR. (B.4)

Next, using the identity (2.8) and fixing the gauge at S0 =
1, we have

L̄ = −[b − S − S̄]D +
([

a − 1

2ρ
S2

]

F
+ h.c.

)
, (B.5)

and the corresponding Kähler potential and superpotential
are

K = −3 ln(b − A − Ā), W = a − 1

2ρ
A2. (B.6)

The scalar potential V is given by

V = eK
[
gAĀ(DAW )(D̄ĀW̄ ) − 3W̄W

]
. (B.7)

Note that positivity of the kinetic terms implies that b −
2AR > 0, where we have set A = AR + iAI . We now
compute

eK = 1

(b − A − Ā)3
, gAĀ = ∂

∂A

∂

∂ Ā
K

= 3

(b − A − Ā)2
, gAĀ = (b − A − Ā)2

3
, (B.8)

and

DAW = ∂AW+KAW = − A

ρ
+ 3

b − A − Ā

(
a − 1

2ρ
A2

)
.

(B.9)

Putting everything together, we get

V = AĀ

3ρ2(b − A − Ā)
− A

ρ(b − A − Ā)2

(
a − 1

2ρ
Ā2

)

− Ā

ρ(b − A − Ā)2

(
a − 1

2ρ
A2

)

= 1

ρ2(b − 2AR)2

{
1

3
(A2

R + A2
I )(b + AR) − 2aρAR

}
.

(B.10)

The range of AR is given by

−b � AR <
b

2
, b > 0, (B.11)

so that the scalar potential is bounded from below.
To find the minimum of the potential, we demand that

〈
∂V

∂AR

〉
=

〈
∂V

∂AI

〉
= 0. (B.12)

The second of the equations above gives

〈AI (b + AR)〉 = 0. (B.13)

If 〈AR〉 = −b, then

〈
∂V

∂AR

〉
= 0 ⇒ 〈A2

I 〉 = −2aρ − b2 ρ→∞−→ −∞, (B.14)

so this case is rejected. Consequently 〈AI 〉 = 0. Then

〈
∂V

∂AR

〉
= 0 ⇒ 〈(b + 2AR)(A2

R − 2bAR + 6aρ)〉 = 0,

(B.15)

which yields three solutions whose compatibility with the
condition (B.11) is given in Table 1. Only the solutions
〈AR〉 = − b

2 and 〈AR〉 = b − √
b2 − 6aρ are compatible

with the range of AR . Now we would like to check whether
one of them is compatible with the condition

〈V 〉 = 0. (B.16)

Equation (B.16) has two solutions whose compatibility with
the condition (B.11) is given in Table 2.

Table 1 Possible values of 〈AR〉 for 〈AI 〉 = 0

〈AR〉 −b � AR < b
2 , b > 0

− b
2 True always

b + √
b2 − 6aρ, b2 − 6aρ ≥ 0 Never true

b − √
b2 − 6aρ, b2 − 6aρ ≥ 0 True if b2 > 8aρ and b2 ≥ −2aρ

Table 2 Possible values of 〈AR〉 for 〈V 〉 = 0 and 〈AI 〉 = 0

〈AR〉 −b � AR < b
2 , b > 0

0 True always

− b
2 +

√
b2+24aρ

2 , b2 + 24aρ ≥ 0 True if b2 > 8aρ

− b
2 −

√
b2+24aρ

2 , b2 + 24aρ ≥ 0 True if aρ ≤ 0

123
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Table 3 The (canonically normalized) scalar squared-mass matrix for
〈AR〉 = − b

2 , 〈AI 〉 = 0 and 〈V 〉 = 0

gAĀ ∂2V
∂φi ∂φ j

AR AI

AR − 1
ρ2

b
9 0

AI 0 1
ρ2

b
9

It is straightforward to see that the solution 〈AR〉 = b −√
b2 − 6aρ is compatible with (B.16) only if b2 = 8aρ (for

〈AR〉 �= 0) or if a = 0 (for 〈AR〉 = 0). The first case is
rejected, since then 〈AR〉 = b/2 and the metric gAĀ diverges.
The second case is rejected, because then 〈DAW 〉 = 0 and
there is thus no spontaneous supersymmetry breaking. On
the other hand, the solution 〈AR〉 = − b

2 is compatible with
(B.16) for b2 + 24aρ = 0. It can also lead to spontaneous
supersymmetry breaking, as

〈
eK/2

√
gAĀ D̄ĀW̄

〉
∼ ab−3/2 �= 0 for finite ρ. (B.17)

However, it is easy to see that the scalar squared-masses cor-
responding to AR and AI have opposite signs and thus the
point (〈AR〉 = − b

2 , 〈AI 〉 = 0) is a saddle point of the poten-
tial and not a minimum; see Table 3. Moreover, all the eigen-
values of the scalar mass matrix approach 0 as |ρ| → ∞ and
thus the extra scalar (sgoldstino) does not decouple. We con-
clude that neither of the two solutions for 〈AR〉 can be used
to tune the cosmological constant to zero for every value of
ρ, consistently with the decoupling of the extra scalar.

Instead, we can investigate what happens if the condition
(B.16) holds for the potential only in the limit ρ → ∞. For
both possible solutions

〈AI 〉=0, 〈AR〉=b −
√
b2 − 6aρ ≈ρλ−1+3

W0

λ
, λ �=0,

〈AI 〉 = 0, 〈AR〉 = −b

2
= −1

2
− ρλ, (B.18)

we find that V → 0 for ρ → ∞; however, none of the eigen-
values of the scalar mass matrix approaches ∞ at ρ → ∞
(they approach 0 instead), which is again incompatible with
the sgoldstino decoupling. We conclude that the parameter
space of the model (B.1) does not allow for the realization
of the non-linear supersymmetry coupled to gravity. Thus,
(B.1) has to be modified suitably, which is what we proposed
in Sect. 3.
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