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Abstract
We develop a quantitative single cell-based mathematical model for multi-cellular tumor

spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, grow-

ing under various nutrient conditions: we confront the simulations performed with this model

with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellu-

lar matrix (ECM), cell distribution and cell death. We start with a simple model capturing part

of the experimental observations. We then show, by performing a sensitivity analysis at

each development stage of the model that its complexity needs to be stepwise increased to

account for further experimental growth conditions. We thus ultimately arrive at a model that

mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final

model, is a minimal model capable of explaining all data simultaneously in the sense, that

the number of mechanisms it contains is sufficient to explain the data and missing out any of

its mechanisms did not permit fit between all data and the model within physiological param-

eter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a

wide range of mechanisms discussed in biological literature. In this model, the cells lacking

oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentra-

tions of lactate or too low concentrations of ATP promote cell death. Only if the extracellular

matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying

cells produce a diffusive growth inhibitor. Missing out the spatial information would not per-

mit to infer the mechanisms at work. Our findings suggest that this iterative data integration

together with intermediate model sensitivity analysis at each model development stage, pro-

vide a promising strategy to infer predictive yet minimal (in the above sense) quantitative

models of tumor growth, as prospectively of other tissue organization processes. Impor-

tantly, calibrating the model with two nutriment-rich growth conditions, the outcome for two

nutriment-poor growth conditions could be predicted. As the final model is however quite

complex, incorporating many mechanisms, space, time, and stochastic processes,
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parameter identification is a challenge. This calls for more efficient strategies of imaging and

image analysis, as well as of parameter identification in stochastic agent-based simulations.

Author Summary

We here present how to parameterize a mathematical agent-based model of growing
MCTS almost completely from experimental data. MCTS show a similar establishment of
pathophysiological gradients and concentric arrangement of heterogeneous cell popula-
tions as found in avascular tumor nodules. We build a process chain of imaging, image
processing and analysis, and mathematical modeling. In this model, each individual cell is
represented by an agent populating one site of a three dimensional un-structured lattice.
The spatio-temporal multi-cellular behavior, including migration, growth, division, death
of each cell, is considered by a stochastic process, simulated numerically by the Gillespie
algorithm. Processes on the molecular scale are described by deterministic partial differen-
tial equations for molecular concentrations, coupled to intracellular and cellular decision
processes. The parameters of the multi-scale model are inferred from comparisons to the
growth kinetics and from image analysis of spheroid cryosections stained for cell death,
proliferation and collagen IV. Our final model assumes ATP to be the critical resource
that cells try to keep constant over a wide range of oxygen and glucose medium concentra-
tions, by switching between aerobic and anaerobic metabolism. Besides ATP, lactate is
shown to be a possible explanation for the control of the necrotic core size. Direct confron-
tation of the model simulation results with image data on the spatial profiles of cell prolif-
eration, ECM distribution and cell death, indicates that in addition, the effects of ECM
and waste factors have to be added to explain the data. Hence the model is a tool to identify
likely mechanisms at work that may subsequently be studied experimentally, proposing a
model-guided experimental strategy.

Introduction
In early development, tumors grow up to 1–2mm in diameter, nourished by the nutrients and
oxygen provided by the existing vasculature. Either 2D or 3D cell culture systems are utilized
as biological models to study that phase, or aspects usually occurring in later phases of tumor
growth and development. Current 2D cell culture approaches are only of limited use to investi-
gate tumor progression in these stages, as they neglect crucial histo-morphological and func-
tional features of these avascular micro-metastases or inter-capillary micro-regions of solid in
vivo tumors. During the last decades, great effort has been undertaken to generate biological
3D models that describe the early phases of tumor development in a tissue context more accu-
rately. They can thus serve as intermediate systems between traditional 2D cell culture and
complex in vivo models ([3, 4]). Of these approaches, Multicellular Tumor Spheroids (MCTS)
offer easy handling and fast generation, even for larger batches, and automation ([5, 6]). MCTS
as a model system can be well characterized and have been shown to reproduce the spatial
organization and micro-environmental factors of in vivo micro tumors, such as relevant gradi-
ents of nutrients and other molecular agents and deposition of Extracellular Matrix (ECM)
(see Fig 1) ([7, 8]). Furthermore, gene expression studies revealed substantial differences in
both the baseline profiles and profiles after stimulation between 2D and MCTS cultures. The
latter is decisively closer to patients profile gene expression ([9–11]). Consequently, MCTS
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have now been established as experimental systems for both basic research and high through-
put screening of clinically relevant drugs (reviewed by: [12, 13]). As already explained in [14]
the organization of the different cell phenotypes within a MCTS (growing, quiescent and dead)
is supposed to be radial, and to be controlled by different factors: growth promoters (GP), via-
bility promoters (VP), growth inhibitors (GI) and viability inhibitors (VI). In the case of spher-
oids the promoters are mainly delivered from the growth medium surrounding the tumor
(with exception of ECM) while inhibitors are generally assumed to be produced by the tumor
itself. As a consequence, the local composition and interplay of those factors favor different
transitions between cell phenotypes at different distances from the tumor border.

To understand the dynamics of avascular tumor growth, several mathematical models were
proposed linking the growth kinetics on the multi-cellular level (radius/volume in time) with
mechanisms on cell or subcellular scales (cell growth, contact-inhibition, nutrient limitation
etc.). They can be classified in two main approaches: (1) continuum models of the different
components densities that evolve in time and space following PDEs (see e.g. [15–18]), (2)
agent-based models that describe each cell individually and how it grows, divides, moves and
dies (see e.g. [19–21]). When cells are modeled as agents, oxygen, nutrients and/or growth fac-
tors or inhibitors are often modeled by continuum models [1, 2, 22–31] or with simplified
assumed profiles [32, 33]. Hybrid models on the other hand combine within the same frame-
work the two model types for the cells, depending on the tumor zone (e.g. [26]).

Fig 1. Radial organization of spheroids. Combination of images of a cross-section of a tumor simulated
with the model presented in this article depicting the spatial organization of cellular phenotypes (proliferating,
dying) and the molecular agents considered by the proposed model as main resources (oxygen, glucose),
growth/viability promotors (GP/VP) or growth/viability inhibitors (GI/VI). The arrows point into the direction
from high to low concentrations. The image shall be compared with the corresponding scheme in ref. [8],
which shows a combination of images of spheroid median sections studied with different technologies:
autoradiography, TUNEL assay, bioluminescence imaging, and probing with oxygen micro-electrodes.

doi:10.1371/journal.pcbi.1004412.g001
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Despite the large variety of models, identification of a plausible mechanistic model and its
quantitative parameterization able to quantitatively explain a large set of data and predict the
outcome of experiments that were not used to calibrate the model remains a difficult task.
Issues are the large number of parameters and the lack of validation of the underlying mecha-
nisms. Different models have successfully been fitted to the growth dynamics of cell popula-
tions (e.g. [2, 22] consider only the population size but not the diameter, [1, 34] consider both)
relying on different mechanisms but leading to the same growth curves. For example the transi-
tion from exponential to linear radius growth phase can be due to contact-inhibition or nutri-
ent-limitation. Based on the growth curves alone, model selection could not be made,
indicating that development of a mathematical model only relying on growth curves is insuffi-
cient. In this paper we pursue a quantitative image-based approach based on bright field micro-
graphs. This is in-line with a recent trend in large-scale simulations of brain tumors based on
magnetic resonance imaging (MRI) [35, 36] following inspiring work by Swanson and co-
workers [37]. Histological information has been used recently by Frieboes et. al. [38], who
included histological staining measurements in a partial-differential-equation tissue model of
Non-Hodgkin lymphoma growth, and by Macklin et. al. [39–41] who developed a multiscale
model, mimicking cells as individual agents subject to forces, to predict ductal carcinoma
growth in individual patients, including histological information.

In this paper we study mathematical model development and model parameterization by
comparison with experimental data for different oxygen and glucose concentrations in the
medium for the non-small cell lung cancer (NSCLC) cell line SK-MES-1. These data consist in
the growth kinetics and the corresponding spatial staining patterns for nuclei, different cell
states and cell environment, namely, HOECHST for cell nuclei, KI67 for proliferation, TUNEL
for dead cells, collagen IV for ECM. We study in how far mechanisms that have not been
directly assessed can be inferred by simultaneous matching of simulation results with experi-
mental results on many experimental observables. Our strategy is stepwise: we first develop a
model for one growth condition only, and then expand the model to capture additional growth
conditions after verifying that the previous (simpler) model stage was incapable of explaining
the added growth data. For this, we perform many computer simulations with the “previous”
model varying each model parameter within its physiological range. Finally we arrive at a
model that can almost completely be projected to the experimentally derived scheme on spher-
oid growth (compare Fig 1 to reference [8]). By such a stepwise strategy involving experiments,
imaging, image analysis and modeling, an order mechanism during liver regeneration could be
identified [42], indicating that such a strategy may be powerful in unveiling interplaying mech-
anisms in multi-cellular organization.

Results

Experiments and Image Processing
In order to study the influence of environmental conditions on the growth dynamics of tumor
spheroids (Fig 2), SK-MES-1 cells were cultivated in-vitro as multi-cellular tumor spheroids
under different nutriment conditions, with the hanging drop method. Then, at different points
in time, spheroid size was determined with bright field microscopy and some of the spheroids
were frozen, cryosectioned, stained and imaged with fluorescence microscopy (Fig 3). For a
detailed description see the Materials and Methods section.

Growth curves. Fig 2 shows the temporal growth curves for the spheroid radius for four
different culture conditions (see Table 1). The figure suggests the existence of different growth
phases. The growth phase in the first two days cannot clearly be characterized but concluding
from earlier work ([1, 43]) it may emerge from a transition of an exponential to a sub-
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exponential growth phase. Between days 2–21, growth is over all approximately linear, fol-
lowed by saturation or even shrinkage of the spheroid. The crossover points between the
growth phases depend on the oxygen and glucose medium concentrations. Hence there must
be an inflection point between the initial convex and the final concave (saturation) phase
where the 2nd derivative of the radius with respect to time changes from positive to negative
values. For [G] = 5mM, 25mM, [O] = 0.28mM, the growth behavior is very similar. Lowering
glucose to [G] = 1mM or oxygen to [O] = 0.07mM leads to significantly slower growth. At
about 24 days the radius is saturating or even shrinking.

Radial profiles of histological quantification. In order to obtain spatial information on
the distribution of cells, proliferating cells, dead cells and extracellular matrix (ECM), several
multi-cellular spheroids were stained and imaged. Fig 3 shows typical images stained with
HOECHEST, Ki67, TUNEL and Collagen IV for cell nuclei, proliferating cells, dying cells and
extra-cellular matrix (ECM), respectively for [G] = 5mM and [G] = 25mM. The images were
segmented and cells classified into being proliferating (if the nucleus was Ki67—positive), dying
(if TUNEL—positive) or quiescent (if neither Ki67 nor TUNEL positive) (Fig 4, details see in
Materials and Methods). From the segmented images the spatial profiles for proliferating, quies-
cent and dead cells were investigated, from the border to the interior (for details see section
Quantitative Image Analysis). Starting the investigation of spatial profiles from the border (as
opposed to from the center of mass) ensured that the profiles at the border were correctly cap-
tured even if the MCTS had an ellipsoidal instead of a spherical shape, which was often the case
(see for example, Fig 4A and 4E). The disadvantage of this choice was that the number of events
(Ki67 positive nuclei, ECM density etc.) inside the tumor was usually very rare so that the data
points with distance of more than 200 micro-meters from the border have to be considered with
great caution (far inside the tumor the number of events is very small and the fraction depends
on the bin-size, see Fig S13 in S1 Document). The fraction of proliferating cells decreases the far-
ther the proliferating cells are inside the spheroid (Fig 3). The proliferation profiles do (almost)

Fig 2. Growth curves of MCTS cultivated under different nutrient conditions. The arrows and boxes
indicate the time points where histological images were taken.

doi:10.1371/journal.pcbi.1004412.g002
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not change over time and are very similar for [G] = 5mM and [G] = 25mM in the growth
medium. Cell death increases from the spheroid border to its interior. There is a marked differ-
ence in the cell death profile between both nutrient conditions in that for 5mM the necrotic core
emerges earlier (already at day 17, while for 25mM not until day 24). Interestingly after 24 days,

Fig 3. Quantification of proliferating (top) and dying (bottom) cell nuclei as well as of extra-cellular
matrix density (center). The images (top) depict cross-sections taken at different time points (T3 = 17d,
T4 = 24d) of spheroids grown under different nutrient conditions ([G], [O2]). The colors indicate cell nuclei
(blue), extra-cellular matrix (EMC) (green) and proliferation (red, left) or cell death (red, right). The curves
(bottom) represent the radial profiles of the fraction of proliferating and dying cells, and the ECM density
(intensity of ColIagen IV staining), inferred from averages over images from several spheroids growing under
the same conditions. Bars indicate the standard deviation. With ECM density we denote the fluorescence
value of Collagen IV, which varied in the interval [0, 1].

doi:10.1371/journal.pcbi.1004412.g003
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cell death seems to occur at smaller penetration depth for [G] = 25mM than for [G] = 5mM.
The TUNEL assay does not permit distinguishing between necrotic and apoptotic cells ([44]).
For this reason we also did some pilot experiments selectively staining samples with Caspase 3.
In these samples we could see activation of Caspase 3 in the peripheral parts of what we would
identify as the “necrotic core”, although this may also not yield a definite distinction between
apoptosis and necrosis, as Caspase 3 activation has been shown to be involved in both ([45, 46]).
Thus we could not discriminate between different forms of cell deaths in the experiments within
this paper. Indeed, as this cell culture system does not include macrophages, removal of apopto-
tic cell bodies is very slow so that distinguishing between necrotic and apoptotic cells seemed
dispensable. This assumption was self-consistently confirmed as very small apoptosis and lysis
rates had to be assumed in the model to explain the experimental findings so that apoptosis did
not have to be taken explicitly into account.

The amount of extra-cellular matrix (ECM) increases with the penetration depth until 100–
200μm. For larger penetration depths it seems to decrease again, but the data is too noisy to
infer a clear course. Counterintuitively, cells at the spheroid surface have a significantly lower
proliferative activity than those a few layers inside.

Mathematical Modeling: Main Components Needed
Our objective is to explain the experimentally observed growth pattern for different glucose
and oxygen medium concentrations within one mathematical model. For this purpose we first
searched for a minimal model (in the sense specified in the abstract) explaining the experimen-
tal tumor growth observations for medium concentrations of [G] = 25mM and [O] = 0.28mM,
and then stepwise extended this model to capture the other growth conditions (for illustration
of the stepwise model development strategy, see Fig S3 in S1 Document). We based our choice
of possible control mechanisms upon prior knowledge guided by published information and
own experiments. We have chosen the condition of maximum glucose and oxygen medium
concentration as the similarity of the growth kinetics for [G] = 25mM and [O] = 28mM versus
[G] = 5mM and [O] = 28mM suggests that for the former condition neither glucose nor oxygen
may be limiting (see also Discussion below). This line of argument is supported by findings of
Freyer and Sutherland for another cell type at almost the same oxygen and glucose medium
conditions (compare with [1]). We fit at each model development step all parameters again. So
the fits shown in this article were the best we could obtain for the respective model. However,
due to the large search space and duration of simulation of at least one day (reference com-
puter: Intel(R) Xeon(R) processor X5680 3.33GHz 12M cache 6-core and 144 GB DDR3-RAM
1333 MHz) it cannot completely be excluded that further parameter searches could give addi-
tional slight improvements. In order to promote readability, we enumerate the model at each
development level.

Usually we performed for each parameter set only a single simulation i.e., a single realization
of the stochastic growth process. This can be justified by observing that the growth process,
that starts with about 10000 cells as in the experiment, is self-averaging such that the variations

Table 1. Nutrient conditions.

Condition [G] [O2] Note

I 1mM 0.28mM hyponourished

II 5mM 0.28mM physiological

III 25mM 0.28mM hypernourished

IV 25mM 0.07mM hypoxic

doi:10.1371/journal.pcbi.1004412.t001
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Fig 4. Image smoothing and segmentation. (A) The micrograph shows a cryosection of a spheroid stained with HOECHST (red), Ki67 (blue) and Collagen
IV (green). The original image was smoothed with a median filter. For a zoomed-in section of the image (B), the original (C) and smoothed version (D) of the
image are visualized as landscapes of the inverted blue color channel intensities, 1 − Iblue. (E) The cell nuclei were segmented from the blue color channel
and differentiated between Ki67 positive (red) and negative (blue) nuclei by means of the red channel. The spheroid lumen (green) is approximated by
inflated nuclei.

doi:10.1371/journal.pcbi.1004412.g004
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for different realizations of the growth process for the same parameters are negligible (Fig S11
in S1 Document).

Our basic model considers each cell individually within an agent-based model i.e. each indi-
vidual cell is represented by an agent. Molecules, which finally are glucose, oxygen and lactate,
as well as extra-cellular matrix and “waste”material released by dying cells, are represented by
their local concentrations. We use the term “molecules” in what follows to generically describe
these environmental factors that affect the cells. The model is three-dimensional. In the follow-
ing sections we will introduce briefly the main model components. A detailed description of
the model as well as the biological processes mimicked can be found in the material and
method section and in the supporting information (S1 Document).

Cells. The cells were modeled as individual objects populating the sites of an unstructured
lattice (see supplement, [25, 47]) with no more than one cell on a lattice site. The cells could be
in either of three states: proliferating, quiescent or dying. Depending on their state and their
local environment they were able to progress in or reenter (from G0) into the cell cycle, grow,
migrate, die or undergo lysis (Fig 5). Each of these processes required a set of necessary condi-
tions, and was executed with a certain rate. Both, processes and rates depended on the cellular
neighborhood and the local molecular concentrations (see below). The temporal dynamics of
the cells was described by a “master equation”mimicking the time evolution of the probability

Fig 5. Scheme of cell states and the biological processes a cell can undergo: cell cycle (including cell growth and division), migration, cell death
(apoptosis and necrosis) and lysis. Left panel: A cycling cell grows by occupying two neighboring lattice sites after a fraction of transitions in the cell cycle.
Growing cells can push a certain number of cells aside. Cells can migrate by hopping from one lattice site to its neighbor lattice site. A cell dies with rate kneck
and is consequently lysed with rate klys. (The schemes in the left panel are 2D for clarity; the simulations however were all in 3D). Right: All processes are
modeled as Poisson processes. A cell in the cell cycle undergoesmd transitions until splitting into two daughter cells. Composed ofmd sub-processes the cell
cycle time ends up following an Erlang distribution. Increasingmdwill lead to sharper cell cycle distributions. A cell transitions from one cell cycle state (CCS)
to the next with rate kdiv,m. If a cell is in state mg it will grow. If it is in statemd it will divide into 2 daughter cells during the next transition. Furthermore, the 2
daughter cells will either enter the first CCS proportional to probability pdiv or become quiescent (G0) proportional to probability 1 − pdiv. A cell in quiescence
can reenter the cell cycle with rate kre and probability pre. Table 2 indicates how all transition rates and probabilities are calculated for models 1–4.

doi:10.1371/journal.pcbi.1004412.g005
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of a certain multicellular configuration. This equation was numerically simulated with the Gil-
lespie algorithm (see S1 Document).

Molecules. For each molecule type a continuum representation of its concentration was
chosen. Its spatial-temporal dynamics was modeled by a partial differential equation (PDE).
For each molecule the equation could be casted into the form of a reaction diffusion equation

@tu ¼ r � ðDuðsÞruÞ þ ruðs; uÞ; ð1Þ
where t is the time, u 2 {G, O, L, ECM,W} is the concentration of either glucose, oxygen, lac-
tate, extra-cellular matrix or waste, Du is the respective diffusion coefficient, and ru a rate func-
tion representing the reactions involving u(= u(r, t)). r denotes the position in space. The
diffusion coefficients as well as the reaction functions depended on the local cell density σ(r, t)
= ∑k δ(r − rk), rk(t) being the position of cell k at time t. The reactions were specific to each
component (molecules or ECM): cells consumed glucose and oxygen with −rG and −rO, lactate
was produced by under-oxygenated cells with rL, ECM was produced by cells and disintegrated
with a certain rate, and waste was released by dying cells.

Mathematical Modeling: Coupling of Scales and Comparison with Data
A number of parameters related uniquely to cells or molecules were either taken or estimated
from literature (e.g. molecular diffusion coefficients, consumption rates, cell cycle time distri-
bution). Others could be inferred from the data presented in this article either directly (e.g. ini-
tial conditions, cell size) or by sensitivity analysis (e.g. cellular division, cell death and lysis
rates) (see Table S1 in S1 Document). The identification of the main mechanisms coupling the
cellular and molecular kinetics and their parameterization (see Fig 5) was subject to the model
comparison with data explained below.

The labeling patterns in Figs 3 and 4 confirm a border distance-dependent “zonation” as
discussed in the introduction (compare also [8] and Fig 1). In the following we will study the
influence of cell-cell-contacts, extra-cellular matrix and metabolic compounds (nutrients/
metabolites) to infer the corresponding model mechanisms. For the latter (metabolism) we will
compare four different hypotheses (model 1–4). A summary of the equations used to calculate
the transition rates and probabilities depicted in Fig 5 for all models studied in the following
sections can be found in Table 2.

Table 2. Transition rates and probabilities of models 1–4. All models have pre kre = 0, kapt = const. and klys = const. in common. The transition rates kdiv,m
between individual cell cycle steps is given by kdiv,m =md kdiv. All parameter values can be found in Table S1 in S1 Document.

Model pdiv = kdiv = knec =

1 e−L/ΔL kmax
div kmax

nec

�H([ECM] − [ECM]min) �H([G][O] − poxyglc) �H(poxyglc−[G][O])

2 e−L/ΔL kmax
div kmax

nec

�H([ECM] − [ECM]min) �HðpATP � pmin
ATPÞ �Hðpmin

ATP � pATPÞ
3 e−L/ΔL kmax

div kmax
nec

�H([ECM] − [ECM]min) �HðpATP � pmin
ATPÞ �Hðpmin

ATP � pATPÞ
� ½L�n
ð½L�maxÞn�½L�n

4 e−L/ΔL kmax
div kmax

nec

�H([ECM] − [ECM]min) �HðpATP � pmin
ATPÞ �Hðpmin

ATP � pATPÞ
�Hðnmax

exp � nexpÞ �H(1 − 0.5([W] − [W]max)) � ½L�n
ð½L�maxÞn�½L�n

�H(1 − 0.5([O]min
− [O]))

doi:10.1371/journal.pcbi.1004412.t002
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Mechanical growth-inhibition: Probabilistic cell decision. The growth curves and prolif-
eration profiles for [G] = 25mM and [G] = 5mM look quite similar while the necrotic core
sizes at 17 days look very different for [G] = 25mM and [G] = 5mM (Figs 2 and 3). An equiva-
lent observation has been made for data on EMT6/Ro cells [14] and could be shown by model
simulations to strongly indicate that proliferation is not controled by non-glucose-related fac-
tors but by a mechanical form of contact inhibition [1]. Otherwise, the proliferating rim and
the size of the necrotic zone should both be affected. Model simulations with our lattice model
confirmed this finding.

In previous articles a biomechanical form of contact-inhibition was assumed to be a deter-
ministic decision depending on the local pressure or deformation in growing cell populations
([1, 2, 48–50]). Nevertheless, as can be seen from model studies of growing multi-cellular
spheroids in an off-lattice model in [24] and [34], a deterministic criterion based on a deforma-
tion threshold is able to yield a gradual change of the fraction of dividing cells as a consequence
of local stochastic events such as cell micro-motility or randomness in the cell cycle duration,
which both introduce stochastic fluctuations in deformation and mechanical stress. As demon-
strated in refs. ([25, 43]) an extended proliferating rim can be qualitatively captured within a
lattice model (as the one chosen in this article) by introducing a maximum distance, ΔL, over
which a cell is able to push other cells away in order to grow. This probability that a cell enters
the cell cycle can then be defined as follows

pdiv :¼ HðL� DLÞ; ð2Þ

whereH is the Heaviside function, H(x) = if x< 0,H(x) = 1 if x� 0, and L is the distance to
the closest free lattice site.

However, as illustrated in Fig 6 (left panel) the introduction of such a sharp cut-off leads to
a relatively sharp transition between outer proliferating and inner quiescent rim while the
experimental profiles display a wide transition zone with gradual change of the frequency of

Fig 6. Experimental andmodel-predicted fraction of Ki67 positive cells (left) and Collagen IV (ECM) density (right) for [G] = 25mM, [O] = 0.28mM at
day 17 (red) and day 24 (green) vs. distance from the spheroid surface. A deterministic cell cycle progression depending on the distance of a cell from
the surface, generates sharp transitions that are experimentally not observed (left, dotted line), while a probabilistic transition generates a smooth
monotonically decreasing function of Ki67 positive cells in the simulations (left, dashed). If in addition cells can progress in the cell cycle only if the local
concentration of ECM overcomes a threshold value [ECM]min, the experimentally found Ki67 profile is recovered (left, full line). Right full line: ECM
concentration in the computer simulation.

doi:10.1371/journal.pcbi.1004412.g006
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cells in the cell cycle.The smooth experimentally observed transition could be obtained within
a lattice model by choosing a probabilistic approach instead, with cells entering the cell cycle
with a probability exponentially decreasing with ΔL (Fig 6, left panel):

pdiv :¼ e�L=DL: ð3Þ

Hence the decision of a cell entering the cell cycle is stochastic, meaning that neighbor cells
with the same distance to the border may behave differently. This generates local inhomoge-
neous cell behavior. The cell cycle progression probability (3) generates a profile with the high-
est Ki67 positive cell fraction at the outermost border. This tendency is a robust phenomenon
and is also found in off-lattice models of growing cell population where the cell cycle progres-
sion is controlled by a deformation or a pressure threshold ([48, 51]). Hence we conclude that
biomechanical control of cell cycle progression by a deformation or pressure threshold alone
cannot explain a drop of proliferation at the margin of the multicellular spheroid.

Extra-cellular matrix. The experimental data exhibit that border cells have a lower prolif-
erating activity than interior cells (Fig 6, left panel) while at the same time collagen IV staining
display a lower ECM concentration close to the spheroid border (Fig 6; right panel). This sug-
gests that the known control function of ECM in the cell cycle progression [50] may be respon-
sible for the lower fraction of proliferating cells at the spheroid border. This assumption is
supported by the observation that ECM binding and connected integrin signaling is an impor-
tant part of proliferative signaling ([52, 53]).

Accordingly we assume that a minimal density of extra-cellular matrix, is required for cells
to enter the cell cycle by replacing Eq 3 by

pdiv :¼ e�L=DL � Hð½ECM� � ½ECM�minÞ; ð4Þ

where [ECM] reflects the local concentration of ECM, and [ECM]min is a threshold value (the
values do not have a dimension as we directly work with the fluorescence intensity defined in
the interval [0, 1]). Extra-cellular matrix is secreted by each cell, and decreases with a certain
rate. Choosing [ECM]min = 0.003, the extracellular matrix concentration behaves as experimen-
tally observed (Fig 6), and the simulated proliferation profile shows good agreement with the
experimental profile.

Eq 4 determines the probability of cell cycle entrance of each daughter cell directly after
division. For most of the paper we assumed that this decision is irreversible (pre = 0 in Fig 5)
but we also considered the consequence of exit from G0 (pre > 0 in Fig 5). For the latter we
tested different alternative rules (see Fig S4 and S5 in S1 Document) that may be subsumed by
the equation for the exit rate, r(L) = kre pre(L). This equation assumes that the cell probes with
rate kre exit of G0 occurring with probability pre(L). The probability that the entrance occurs
within time interval [t, t + Δt) at depth L(t) is then

pðre� entrance in ½t; t þ DtÞÞ ¼ krepree
�
R tþDt

t
prekredt

0
Dt. In case pre has the functional form

as pdiv in Eq 4, the rate kre must be very small in order to achieve agreement between data and
model (Fig S4 in S1 Document). We found kre = 0.001/2.4h (Fig S4 in S1 Document; given by
Eq 4). I.e., only in 100/pre days on the average a specific cell exits G0.

We furthermore tested the hypothesis that cells become quiescent with probability 1 − pdiv
(as in Eq 4) and can only exit quiescence if their neighbor site becomes free (Fig S5 in S1 Docu-
ment) which may occur if a cell is able to sense free space. In this case we can also obtain a
good fit to the growth data if the threshold ECM concentration at which re-entrance can occur,
is elevated. We note, that very few cell cycle reentrances from G0 could be observed during
simulations, and that the simulation results were not sensitive at all to changes in the
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reentrance rates (see S1 Document). We concluded that the presence of cell—cycle re-entrance
by exit of the quiescent state is not a critical parameter for MCS growth of SK-MES-1 cells.
However, in case of drug therapy, where a drug may kill the outermost cells, cell-cycle re-
entrance is expected to modify growth and survival of the treated cell population, and would
then become a critical parameter.

In conclusion the cell-cycle re-entrance must be a very rare (negligibly rare) event in order
to explain the data which is why we throughout the following neglect cell cycle re-entrance (for
more details, see S1 Document).

Model 1: Glucose- and oxygen-limited growth and survival. We assumed deprivation
from glucose and oxygen to be responsible for cell death. Schaller and Meyer-Hermann [2]
proposed that cell survival is possible only if the product of glucose and oxygen overcomes a
threshold poxgluc while below this threshold cells undergo cell death:

kdiv ¼ kmax
div Hð½G�½O� � poxglucÞ; ð5Þ

knec ¼ kmax
nec Hðpoxgluc � ½G�½O�Þ; ð6Þ

whereH is the Heaviside function, kmax
div and kmax

nec are the maximal and kdiv and kdiv are the actual
division and cell death rates, respectively. As no experimental measurements of glucose and
oxygen consumption rates for SK-MES-1 cells were accessible, we assumed the rates to obey
the same functional relationship as the oxygen and glucose consumption rates measured for
EMT6/Ro cells (see Materials and Methods), permitting only the parameters to be different for
SK-MES-1 cells than for EMT6/Ro cells.

Fig 7 shows that for this assumption (dashed lines) and nutrient medium condition III ([G]
= 25mM, [O] = 0.28mM) the simulation results are in good agreement with the experimental
growth curves and the radial profiles for ECM, proliferation and cell death, but completely fail
for condition II ([G] = 5mM, [O] = 0.28mM). The size of the necrotic core and the growth-lim-
itation are over-estimated.

Model 2: ATP-limited growth and survival. In a next step we considered cell cycle pro-
gression and death to depend on the yield of adenosine triphosphate (ATP), the main energy
currency of a cell [54] a cell can produce from the consumed glucose and oxygen, instead of the
local product of oxygen and glucose concentration:

kdiv ¼ kmax
div HðpATP � pmin

ATPÞ; ð7Þ

knec ¼ kmax
nec Hðpmin

ATP � pATPÞ; ð8Þ

where pATP is the production rate of ATP (see Eq 28), pmin
ATP ¼ 900mM=h a threshold value

demarcating the border between proliferating and dead states. We note that cells which are suf-
ficiently supplied with both, oxygen and glucose, produce ATP at a rate of about 1100mM/h
(see Fig 8 which seems to optimally fulfill the cells energy requirement. Interestingly, cells that
moderately lack either glucose or oxygen will increase their ATP production up to 1700mM/h.

Fig 7 shows that ATP-limited growth (solid lines) is in good agreement with the tumor
growth kinetics for both conditions, II and III.

The view of an important growth regulating function of ATP is supported by the observa-
tions that ATP has been shown to control the cell cycle in developing retinas of chick and
mouse [55], and that the most successful drugs targeting the cell cycle inhibit ATP binding to
Cyclin Dependent Kinases—Enzymes (CDKs) essential for cell cycle progression ([56, 57]).
Moreover, ATP has been found to upregulate proliferation of human cardiac fibroblasts ([58]).
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Nevertheless, in the case of 5mM of glucose (condition II) the model predicts a much larger
necrotic core than for 25mM of glucose (condition III) while the experimental curves suggest a
rather comparable size. Moreover, the fraction of dying cells for condition II is much smaller
than experimentally found. The size of the necrotic core changes with the diffusion coefficients
of glucose and oxygen as illustrated for another simulation example shown in Fig 7 (dashed
lines). Here we assumed the molecular diffusion in the medium to be 30-fold larger than in the
spheroids. In this scenario the model shows a better agreement with 5mM of glucose (condition
II), but rather underestimates the size of the necrotic core for 25mM of glucose (condition III).
Although the size of the necrotic core predicted by model 2 changes with the medium concen-
tration of glucose and apparently the diffusion coefficients, the experimental curves suggest that
it is approximately the same for 5mM and 25mM of glucose (compare also day 24 in Fig 3).

Model 3: Lactate-induced cell death. Moreover, the experimental profiles for the dying
cell fraction (see Fig 3) reveal several differences between both conditions II and III. Firstly, for
5mM glucose the necrotic core starts at a depth of about 150 microns at 17 days as well as at 24

Fig 7. Growth kinetics (upper panel) and spatial profiles of TUNEL, Ki67, Collagen IV for [G] = 5mM, [O] = 0.28mM (condition II, upper right picture
andmiddle panel) and [G] = 25mM, [O] = 0.28mM (condition III, upper left picture and low panel.). The dotted curves show simulations where cell cycle
progression requires the product of local glucose and oxygen concentration to exceed a critical threshold, while below this threshold cells become quiescent
and die. If the product is replaced by the local concentration of ATP, the agreement improves significantly (solid lines). For dashed curves the diffusion
coefficient in medium was assumed to be Dmed = 30Dtum. The experimental growth curves are shown as boxplots (box: mean, lower & upper quartiles,
horizontal dashes: minimum &maximum), and the radial profiles as composition of mean (bold line) and standard deviation (thin line).

doi:10.1371/journal.pcbi.1004412.g007

Tumor Spheroid Growth Control Mechanisms from Data and Simulations

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004412 February 11, 2016 14 / 39



days, while for [G] = 25mM it emerges slowly: it is almost not present at day 17 and becomes
big at day 24. Secondly, the transition between necrotic and viable parts is much sharper for
[G] = 5mM than for [G] = 25mM. And third, after 24 days, counter intuitively, there are even
more dying cells found in the exterior parts (< 150μm) for 25mM of glucose compared to
5mM even though the latter is supposed to be more nutrient-limited.

This suggests that the cause of cell death may be different for the two conditions. Hence in a
third step we studied the consequence of the additional assumption that cell death may also be
triggered if the local lactate concentration overcomes a critical threshold (Fig 9). Cells being
sufficiently supplied by glucose, but lacking oxygen, produce lactate. We here test the assump-
tion that lactate might have a death-promoting effect by setting the death rate to

knec ¼ kmax
nec � Hðpmin

ATP � pATPÞ �
½L�n

ð½L�maxÞn � ½L�n ; ð9Þ

where [L]max = 20mM is the lactate concentration where the cell death rate is half its value, and
n is the Hill coefficient which determines the sharpness of the switch from no to full cell death
response. I.e. n = 1 leads to a smooth transition and n!1 to a Heaviside function. We have
chosen the Hill coefficient such that the best fit could be obtained (Fig S8 in S1 Document). A
linear dependency or a Heaviside function led to significantly worse agreement to the data than
a Hill function with n = 2. As lactate is a side-product of anaerobe metabolism Eq 9 will mainly
affect conditions with high glucose, but low oxygen supply (see Fig 8).

Fig 8. Nutrient-dependent metabolism. Production rates of ATP (top left) and lactate (top right). The threshold value of the minimal ATP requirement is
depicted by the black line. Percentage of anaerobically metabolized glucose (bottom left) and glycolytic ATP (bottom right).

doi:10.1371/journal.pcbi.1004412.g008
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Fig 9 shows how the combination of ATP-limited and lactate-induced cell death impacts
the growth curves for all four conditions and the radial profiles of condition II ([G] = 5mM,
[O] = 0.28mM) and III ([G = 25mM, [O] = 0.28mM). Now both, shapes and temporal evolu-
tions of the radial profiles of the proliferating and dying cell fractions are in much better agree-
ment with the data than before.

Moreover, and interestingly, the model, although only calibrated with [G] = 5mM, [G] =
25mM and [0] = 0.28mM, quantitatively predicts the growth phase for very poor glucose
medium concentration ([G] = 1mM, [O] = 0.28mM) and very poor oxygen medium

Fig 9. Adding lactate-induced cell death. If above a certain concentration of lactate produced during
glucogenesis, cell death occurs, population kinetics and spatial temporal profiles for conditions III ([G] =
25mM, [O] = 0.28mM), and II ([G] = 5mM, [O] = 0.28mM), as well as the growth phases of condition I ([G] =
1mM, [O] = 0.28mM) and condition IV ([G] = 25mM, [O] = 0.07mM) were correctly captured. The diffusion
coefficient in the medium was assumed to be Dmed = 30 Dtum. The experimental growth curves are shown as
boxplots (box: mean, lower & upper quartils, horizontal dashes: minimum &maximum), and the radial profiles
as composition of mean (line) and standard deviation (error bars).

doi:10.1371/journal.pcbi.1004412.g009
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concentration ([G] = 25mM, [O] = 0.07mM) without any additional parameter adjustment!
This indicates that the functional dependencies on the key factors determining the growth
phase of SK-MES-1 spheroids are captured.

It is interesting to notice that growth adverse effects of lactate have been observed in mouse
hybridoma ([59]). High concentrations of lactate (55mM) were found to inhibit cell growth,
with accompanying increase of death rates (even though the authors attribute the latter to
higher osmolality). However, the overall dependency of the death rate on lactate concentration
is very similar to those predicted by our model (Fig S7 in S1 Document). A similar finding has
been made in CHO (Chinese Hamster Cells; [60]), immortalized cells.

Model 4: Waste and under-oxygenation mediating quiescence. Finally, although the ini-
tial growth phases observed for all four conditions can be well explained by ATP and lactate
dependent cell dynamics, they fail to explain saturation, which occurs for all conditions after
about 20 days. As for small times for all growth conditions for which [O] = 0.28mM growth is
faster than linear, saturating at about 20–30 days (i.e., turning into a phase in which growth is
slower than linear), there must exist a point of inflection, above which the expansion speed
starts to decrease. However, as long as the nutrient concentration in the medium is maintained,
the outer cells are fed by nutrients and a decrease of the expansion speed cannot be nutrient
related. Hence the reduction in the expansion speed must emerge from growth inhibition origi-
nating from processes inside the tumor. Lactate can be excluded as a candidate for such a
growth inhibitor as it only appears in the cases of oxygen-deprivation (III & IV). Moreover,
mechanical stress can be excluded to be responsible for saturation as the environment of the
multi-cellular spheroid is liquid, not a medium that responds with higher resistance upon com-
pression ([48, 61, 62]).

We tested the hypothesis that the cytoplasmic waste material, released by lysing dying cells,
may act as growth inhibitor, by the assumption that cells being exposed to waste for longer
than a certain time span become quiescent:

nexp ¼
Z t

�1
1� Hð½W�max � ½W�ðr; tÞÞ � Hð½O�ðr; tÞ � ½O�minÞ� � � kdivdt � nmax

exp ; ð10Þ

whereH is the Heaviside function, nexp is the number of cell cycles a cell was either exposed to
waste material or deprived of oxygen, or both, nmax

exp is the number of cell cycles a cell can maxi-

mally stay under this condition without being growth inhibited, [W](r, τ) and [O](r, τ) the
local concentrations of waste and oxygen molecules, [W]max and [O]min the respective thresh-
old concentrations. I.e., a cell that has accumulated too much waste becomes quiescent, and
does not (re-)enter the cell cycle anymore. Notice, that this dynamics can also be expressed by
a stochastic dynamics and hence incorporated into the master equation by introducing an
internal state variable (counter) for each cell that increases with a certain constant rate when
the external local concentration of waste overcomes the threshold concentration, and assuming
cell cycle (re-)entrance to be inhibited when this state variable overcomes a critical value. If the
number of states and the rate of increasing the counter by one unit are both large, the emerging
waiting time until the threshold is reached is Erlang-distributed with very small standard devia-
tion (i.e. comes very close to the deterministic limit represented by Eq 10). Instead of counting
the number of cell cycles the cell is exposed to a critical concentration of waste or to insufficient
oxygen (or both) as in Eq 10, we tested alternatively the condition, that the exposure is inte-
grated over absolute time (instead of multiple of the cell cycle times). In this case, only the fit to
condition IV changes by that the deviation between experiment and simulation increases by
about 5%.
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In summary, the transitions between proliferating and quiescence for model 4 are deter-
mined by Eqs 4 and 10.

Moreover, it can be observed that the radius expansion slows down under all four condi-
tions after about 200. . .300 hours. Thus, we further assume that cells under waste exposure or
oxygen deprivation grow with a reduced speed of

kdiv ¼ kmax
div � HðpATP � pmin

ATPÞ � ð1� 0:5Hð½W� � ½W�maxÞÞ � ð1� 0:5Hð½O�min � ½O�ÞÞ; ð11Þ

where [O]min and [W]max are the critical concentrations of oxygen and waste, respectively. The
growth rate reduction for low oxygen supply was previously reported by Stolper et al. [63],
while the growth-inhibiting effect of waste originating from necrotic debris was already pro-
posed by Greenspan [64].

Fig 10 shows the simulation results with the extended model, including the lactate and
waste dependency for two different thresholds of the waste exposure time. Condition II and III
show a similar initial growth phase, followed by two linear regimes—the first dominated by
ATP-limitation and the second by waste-intoxication—and finally terminating in saturation.

On the other hand, conditions I and IV saturate almost immediately after a very short initial
growth phase driven by waste exposure (condition I) or oxygen deprivation (condition IV).
Note that saturation is only intermittent if cell quiescence is delayed by a sufficient number of
cell cycles under exposure. While for a larger delay of 8 cell cycles (Fig 10) the spheroids per-
manently stop to grow, for a 4 cell cycle delay (not shown) the spheroid expansion would only
temporarily slow down and then recover its initial pace. This is related to the larger amount of
waste, which can pile up and spread during longer delay times and thus affect all cells and not
only the ones closest to the necrotic core (for simulation snapshots of all conditions see Fig S14
in S1 Document).

Discussion
In this paper we inferred a mathematical model of tumor spheroid growth for the non-small cell
lung cancer cell line SK-MES-1 from image data of growing tumor spheroids. Cell nuclei, prolif-
erating cells, extra-cellular matrix and dying cells (by either necrosis or apoptosis) were labeled
at different points in time and under different oxygen and glucose medium concentrations. The
model was built by an iterative procedure, which we propose as a general template for modeling
tissue organization processes. We started by developing a minimal model for one growth condi-
tion only, then stepwise extending this model by further mechanisms whenever the previous
simpler model turned out to be insufficient to reproduce the experimental observations for an
additional growth condition. Before adding a new mechanism to an existing model version we
verified by extensive computer simulations (usually hundreds of runs), that within the parame-
ter range for each parameter of the existing model no satisfying agreement between model and
data could be achieved. Minimal is here to be understood as sufficient to explain the data and
containing as least mechanisms as possible, whereby the building blocks of the model were cho-
sen from those mechanisms that have already been described somewhere for any cell popula-
tion. A similar iterative strategy was pursued for liver regeneration after drug induced damage
predicting a previously unrecognized and subsequently validated order mechanisms [65].

We studied four different combinations of glucose and oxygen in the medium. To explain
the growth kinetics, the proliferation, ECM, and cell death for the condition with high glucose
and high oxygen medium concentration ([G] = 25mM, [O] = 0.28mM), the second with inter-
mediate concentration of glucose and high oxygen concentration ([G] = 5mM, [O] =
0.28mM), we needed to assume that the cell cycle progression is possible only above a critical
local production rate of ATP (=mM/h). A second necessary condition was, that the local
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density of extra-cellular matrix had to be higher than a critical value (0.003). This is in accor-
dance to literature, where dependence of cancer progression on the ECM has been shown for
skin cancer [66], breast cancer [67] and NSCLC [68], where Collagen IV can regulate crucial
cell signaling. If both conditions (enough ATP and ECM) were fulfilled, cells could reenter the
cell cycle after a cell division. Here, cells, which were closer to the spheroid surface and thus
needed less energy in order to expand, had an increasing chance to continue proliferation and
not to become quiescent. Interestingly the decision whether a cell in a certain condition became

Fig 10. Waste & under-oxygenationmediating quiescence. If a cell was exposed to waste (cellular debris
from cellular lyses of dead cells) or deprived from oxygen for a certain number of cell cycles, nmax

exp , it will
become quiescent after its next division. The population kinetics of all conditions I-IV during all growth phases
including the saturation as well as the spatial temporal profiles for conditions III ([G] = 25mM, [O] = 0.28mM),
and II ([G] = 5mM, [O] = 0.28mM) were correctly captured. The graphs show a comparison between
experimental observation and model simulation. The experimental growth curves are either shown as
boxplots (box: mean, lower & upper quartiles, horizontal dashes: minimum &maximum), or as composition of
mean (line) and standard deviation (error bar) for the radial profiles. The simulation curves are shown as
black lines.

doi:10.1371/journal.pcbi.1004412.g010
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quiescent, had to be stochastic. This introduced some heterogeneity in subsets of cells in the
same conditions. A deterministic scenario could not have explained the smooth transition
from proliferating to quiescent zones.

The production rate of ATP depended on the local oxygen and glucose concentrations.
Thereby, the ratio between both dictates to which extent a cell is in the aerobic Krebs cycle or
the anaerobic lactate fermentation. Warburg stated in [69] that all cancer cells suffer from an
injured respiration and thus have an exclusively anaerobic metabolism. In opposition, Zu and
Guppy [70] disproved this hypothesis due to the lack of evidence and rather claimed the
metabolism in cancer cells to be functional, but mainly glycolytic due to hypoxia. Here we
come to a partially different conclusion: if cells are sufficiently supplied with glucose (indepen-
dent from the oxygen supply), the metabolism will remain glycolytic (90%), and only if the glu-
cose supply is getting short, the metabolism will favor the aerobic Krebs cycle (see Fig 8).
Besides lactate acidity (> 20mM), the depletion of carbon sources to maintain a critical ATP
production (= 900mM/h) and not hypoxia were the main reasons of death. The latter was also
recently suggested by Kasinskas et al. [71], while, in contrast to our assumptions, they excluded
lactate as source of acidity and instead assumed it to be an important secondary metabolic
resource. However, either growth adverse or death promoting effects were described for high
lactate concentrations [59]. So here further clarification of the dominating role of lactate would
be necessary. The functional forms of the oxygen and glucose consumption rates were inferred
from experimental findings of Freyer, Sutherland and co-workers in EMT6/Ro cells. The lac-
tate and ATP production rates were then directly derived from those rates by the single
assumption that cells transform the consumed glucose in an optimal way with respect to ATP
output. For wide ranges of glucose and oxygen concentrations the ATP production rates
remain stable between 80. . .130 × 10−17 mol/cell/s or 1000. . .1700mM/h respectively, assuming
a reference cell volume of 2700μm. In literature values can be found between 4.6. . .15.3 × 10−17

mol/cell/s ([72–75]). The difference could be either due to differences in energy needs between
different cell types, or to the model simplification that glucose in our model is exclusively used
for metabolism.

Interestingly and importantly, the model, despite only having been calibrated with two of
the four growth conditions, were subsequently able to correctly and quantitatively predict the
growth phase of the other two growth conditions ([G] = 1mM, [O] = 0.28mM and [G] =
25mM, [O] = 0.07mM, respectively). This indicates that the model did capture the functionali-
ties necessary to explain the data for different glucose and oxygen conditions. To further permit
independent validation of our model, we performed additional simulations for other glucose
and oxygen medium concentrations (Fig S12 in S1 Document).

However, all growth curves showed saturation and partially even shrinkage after some time.
The saturation phase could be largely captured by adding the potential effect of a waste pro-
duce being released in the extracellular space from cells undergoing lysis. Shrinkage could be
added if dying cells at the border detach and enter the growth medium; however, we did not
consider this process, as it was not observed in the experiments (for example, for A549 cells,
another NSLC cell line, a massive detachment of cells from the spheroid could be observed in
the experiments). Interestingly, model simulations with a lysis rate of 0.35/h, a typical value in-
vivo, turned out to be incompatible with the in-vitro data. A lysis rate of a few hours as
observed in-vivo would lead to a very fast removal of dying cells and thus almost no dead cells
in the tumor center, in sharp contast to the in-vitro experiments. We obtained a much smaller
value of about 0.01/h by comparison of model simulation results and the spatial cell death and
proliferation profiles i.e., only such a small lysis rate permits the occurrence of a “necrotic
core” as observed in the in-vitro experiments. For such a low lysis rate we found that the apo-
ptosis—if present—would need to be very slow, as it affects also cells in the viable rim in order
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to agree with the experimental observation of only very little dead cells in the viable rim. For
this reason, apoptosis could be neglected in explaining the experimental results in this paper.
The small value of the lysis rate, even though surprising on a first view, may be explained by
noticing that stromal cells (such as e.g. macrophages) digesting dead cells are not present in-
vitro. Hence lysis might be expected to be slower in-vitro than in-vivo.

Contact inhibition seems to be a crucial element. Suppressing contact inhibition with vary-
ing combinations of the other mechanisms in each case leads to complete failure of match
between data and model simulations (see Fig S6 in S1 Document, where the parameters of
model 4 has been used). This observation supports the view expressed previously in the paper
that a mechanical growth inhibition plays an important role in multicellular spheroids.

We moreover tested the possibility that cells may actively migrate towards the necrotic zone
by necrotaxis (Figs S9, S10 in S1 Document). As to keep a sufficiently large necrotic core as
experimentally observed the lysis rate had to be small, significant migration could not be
observed. On the other hand, if the lysis rate was chosen large, then significant migration of
cells could be observed but the necrotic core was too small, as cells in the center were too
quickly eliminated by lysis. In the latter case, the necrotic core with increasing migration rate
became smaller (Figs S9, S10 in S1 Document). We concluded that migration driven by mor-
phogens towards the central necrosis in SK-MES-1 cells is small.

Interestingly the final model emerging from this stepwise, image-guided inference strategy
closely resembles the hypothesis on growth control of MCTS by growth promoters (GP),
growth inhibitors (GI), viability promoters (VP) and inhibitors (VI) (Fig 11).

In order to permit validation of our model, we simulated a number of predictions (Fig S13
in S1 Document). We predicted the spatial temporal growth dynamics for [G] = 1mM, [G] =
3mM, O2 = [0.28mM], and [G] = 25mM, [O] = 0.07mM. In this context we would like to
remind that our model was able to predict the growth kinetics (L(t)) for [G] = 1mM, [O2] =
0.28mM, and [G] = 25mM, [O2] = 0.08mM correctly.

Fig 11. Spheroids show a radial organization of cell phenotypes: proliferating (green), quiescent
(blue) and dying cells (black). The thickness of those layers is controlled by different factors as growth
promoters (GP), growth inhibitors (GI), viability promoters (VP) and inhibitors (VI). The different control
molecular components can largely be mapped on the control molecules emerging in our final model.

doi:10.1371/journal.pcbi.1004412.g011
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In order to quantify the goodness of the fits shown in Figs 7, 9 and 10 we calculated the log-
likelihoods for subsets of curves (see Table 3A) as well as the ensemble of all curves (see
Table 3B). We assumed that the measurement error is additive, normally distributed as well as
independent and identically distributed (i.i.d.). Accordingly, the likelihood of the measured
data mean μ given the parameter θ and the corresponding model prediction x(θ) is given by

LðyÞ ¼Qi
1ffiffiffiffiffiffiffi
2ps2

i

p exp ðxðyÞi�miÞ2
2s2

i

� �
, where the index i runs over the data points. The uncertainty of

the data points is determined by the standard deviation, σ. Accordingly, points with large
uncertainties σ are weighted less. Despite some deviations in single profiles, the final model
considering ATP, lactate and waste is found to be the most likely to explain the experimental
data. On the other hand, an increase of the likelihood correlates with the increasing number of
model parameters and the risk of over-fitting. Especially model 2 and 3 have a small relative
difference in log-likelihood. As a measure for model quality accounting for the number of
parameters we used the Akaike information criterion (AIC) (see Table 3D), which also con-
firms the final model to be the best choice. We note that the number of parameters had no
influence on the ordering of the models as the absolute differences of their log-likelihoods ΔlnL
is many orders of magnitude larger than the difference in number of parameters Δk (see
Table 3B and 3C).

To conclude, we would like to stress the key message demonstrated in this paper: quantita-
tive comparison of spatial profiles observed from cells states in different experimental condi-
tions and time-points, generates information so rich that one may infer even molecular control
mechanisms and parameters of spatio-temporal growth and death patterns. Hence, careful
imaging, image processing and image analysis may serve as an important source of information
to infer mechanistic knowledge on tissue growth and organization processes. Such an approach
would gain to be more fully explored.

Our model is hybrid. It integrates as separate components the cell and molecules, and as
functional components a mechanical form of contact inhibition, a metabolic component com-
prising oxygen, glucose, ATP, lactate, and waste, several of the molecules acting as morpho-
gens. It would be interesting to see in how far the same model can capture the growth behavior
of other cell lines and of other cell types.

Table 3. Model comparison. The table shows the log likelihoods (A, B) and the Akaike information criterion (D) comparing three models to experimental
data. The growth curves of all nutrient conditions and the radial profiles of proliferation, death and ECM at a specific time were compared individually (A) as
well as a whole (B, D). We also calculated the values according to the Bayesian information criterion (BIC), which led to the same ordering (not shown). Notice
that the penalty terms in the AIC (2k) and BIC (k log(n), n: number of data points) play no role in the evaluation as the difference in the penalty terms are much
(4–5 orders of magnitude) smaller than ln L. (Δ AIC = AIC(Model row-index)—AIC(Model column-index).)

Log-likelihood (Model 2) (Model 3) (Model 4) #Data Points
ln L ATP ATP & Lactate ATP, Lactate & Waste n

A growth curves (all conditions) -8.61e+02 -7.42e+02 -1.72e+02 60

proliferation (conditions II & III, day 17) -1.83e+05 -1.60e+05 -1.83e+05 460

death (conditions II & III, day 17) -2.69e+03 -5.15e+03 -6.16e+03 532

ECM (conditions II & III, day 17) -1.23e+06 -1.23e+06 -8.66e+05 524

proliferation (conditions II & III, day 24) -1.97e+02 -1.40e+02 1.18e+02 532

death (conditions II & III, day 24) -7.47e+02 2.16e+01 -3.11e+02 616

ECM (conditions II & III, day 24) -1.82e+01 3.08e+01 3.26e+02 609

B total -1.42e+06 -1.39e+06 -1.06e+06 3333

C #model parameters k reference +2 +9

D (Model 2) 0.00E+00 -5.00E+04 -7.30E+05

ΔAIC = 2Δk − 2Δln L (Model 3) 5.00E+04 0.00E+00 -6.80E+05

(Model 4) 7.30E+05 6.80E+05 0.00E+00

doi:10.1371/journal.pcbi.1004412.t003
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We think that the possible imaging techniques and image analysis software in combination
with modeling could permit a screening of growth dynamics and subsequent quantitative clas-
sification of multicellular spheroids. For example, EMT6/Ro cells ([14]) show a very similar
but not equal growth phenotype as SK-MES-1 cells: (1) detachment of cells is rare (as opposed
to, for example, A549 cells, that reveal significant detachment in-vitro (and in-vivo)), (2) under
sufficient oxygen supply, the growth of the outer spheroid diameter remains unaffected (or
almost unaffected) by glucose, while (3) reduction of oxygen from 0.28mM to 0.07mM reduces
growth dramatically in SK-MES-1 cells even if glucose medium stays high, while in EMT6/Ro
cells no reduction is observed as long as nutrient medium concentration stays high: this demar-
cates a difference between the EMT6/Ro and SK-MES-1 cells. On the other hand, glucose
affects the size of the necrotic core. Reduction from 16.5mM glucose to 0.8mM glucose
medium concentration in EMT6/Ro cells (at 0.28mM oxygen) increases the necrotic core (as
one can infer from comparing the cell count with the diameter, see [34]), which can also be
observed in SK-MES-1 cells if glucose is reduced from 25mM to 5mM (at 0.28mM O2). How-
ever, in SK-MES-1 cells the necrotic core for richer glucose ([G] = 25mM vs. 5mM) occurs
later but at about 24 days is about the same size.

Models can provide a quantitative framework to test how far such differences can be attrib-
uted to parameters with the same model, or whether “another”model needs to be used by add-
ing or dropping mechanisms. For example in the first case, can the same model be used to
capture a wide range of cell lines with regard to their MCS growth behavior by only adjusting
its parameters—indicating only quantitative changes, or, in the 2nd case, does one need to
implement mechanisms for one cell type that are not observed within the physiological range
of parameters for another cell type? Given how much multicellular spheroids are still in use as
biological model system, we think it would be of fundamental interest to do such an analysis as
a community effort, even though this might be considered as on the first view as a “step-back”
as the growth dynamics of multi-cellular spheroids could have been measured 20—30 years
ago. Modern technology could largely permit automated analysis if pipelines were constructed
for that purpose, hence avoiding the largely manual and tedious analysis applied for the work
in this paper. Adding more and more cell lines would permit to refine the model one starts
with, and zoom into the so far still highly simplified representation of mechanisms without the
threat of having a far to large number of fit parameters that cannot be controlled. In this way,
identification of necessary model components and adjustment of parameters linking the com-
ponents could be achieved.

Materials and Methods

Cell Culture
NSCLC cell line SK-MES-1 used in this study was obtained from ATCC (Manassas, VA, USA)
and cultivated in a humidity controlled incubator at 37 C and 5% CO2 in 150cm2 tissue culture
dishes (TPP) in DMEM (Dulbecco’s modified Eagle’s medium, LONZA, Verviers, Belgium)
supplemented with 10% FCS (fetal calf serum, Southern America, GIBCO, Germany) and 1%
Penicillin/Streptomycin (Biochrom AG, Berlin, Germany). Cells were used between passages
10 and 30 and passaged at a split ratio of 1:4 to 1:6. Cultures were routinely tested for myco-
plasm contamination as described by Stacey and Doyle 1997 and always found to be negative.
Additional medium for the test cultures was DMEM w/o Glucose (GIBCO, Germany) supple-
mented with 10%FCS and 1mM Glucose (Carl Roth GmbH, Germany), and DMEM with 1.0
g/L glucose w/o L-Glutamine (LONZA, Verviers, Belgium) supplemented with 10% FCS and
25mM L-Glutamin (SIGMA, Germany). Additionally, cells were kept in a humidity controlled
incubator at 37 C and 5% CO2 and either normal atmospheric 20% O2 (corresponding to
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0.28mM) or 5% O2 (corresponding to 0.07mM). This choice permits comparison to classical
work in literature (e.g. [12]) and takes into account that lung is rich in oxygen. NSLC cells orig-
inate from lung epithelium having at least partially direct contact to the inhaled air so are at
least initially not limited to the blood oxygen level.

Solutions. 2%Methocel solution was prepared by stirring 6g Methylcellulose (SIGMA,
Germany) in 250ml propagation medium at 60 C for 20min. Then a further 250ml of medium
were added and stirred at 4 C over night. The solution was aliquotted in 50ml Falcon tubes,
centrifuged two times for 99min at 4000 rpm to concentrate long Methylcellulose-Fibers at the
bottom of the tube. Tubes were then stored upright at 4°C.

2% Agar-Solution was prepared by solving 5g bacterial grade Agar (GIBCO, Germany) in
250ml of H20. This solution was autoclaved and then kept at 60 C until 24 well-Plates were
coated.

Spheroid generation and cultivation. For the generation of spheroids with defined size
and cell number, a hanging drop assay was employed. Here cells were first trypsinized,
counted, then centrifuged and resuspended in propagation medium with 20%Methocel-Solu-
tion. Drops of 20μl of this cell suspension were pipetted on the lid of a 150cm2-culture dish,
which was subsequently carefully inverted back onto the dish. In this approach, all suspended
cells in the resulting hanging drop contribute to the formation of a single spheroid. After 48h
in the hanging drop the spheroids were transferred on 24 well plates, by carefully pipetting
with a cut 200ml pipette tip, with one spheroid in one ml of respective medium per well. The
wells were pre-coated with 250μl of 2% agar each to prevent attachment of spheroids. Medium
was changed once a week. Four different glucose/oxygen conditions were employed (see
Table 1). Spheroids were cultivated over a period of over 48 days.

Data Acquisition
Spheroid growth curves. Growth of spheroids was monitored by acquisition of bright

field images through an Olympus IX-70 microscope fitted with an AxioCam Erc5s camera
(Zeiss, Germany) twice a week. The projected area of spheroids was determined using ImageJ,
software version 1.43u. Mean areas and standard deviations were calculated using Microsoft
Excel. At least 4 spheroids were evaluated per time point and condition.

Cryosectioning and immunofluorescence staining. Spheroids were taken out at specified
time points (see Table 4), embedded in TissueTek (SAKURA Finetek, Netherlands) cryo-
medium, frozen over liquid nitrogen and processed for cryostat sectioning. Cryosections of 6–8
μm thickness were mounted on slides, air dried and then fixed with 4% PFA for 20 min at RT,
washed in PBS for 30 min at RT, permeabilized with ice cold 0.1% TritonX-100 / 0.1% sodium
citrate for 2min on ice. To stain for dead cells we employed the In Situ Cell Death Detection
Kit (No. 12 156 792 910 Roche Applied Science) according to the manufacturer’s protocol.
Staining for proliferating cells and ECM component Collagen IV was performed with anti
human Ki67, mouse monoclonal (No. M7240 DakoCytomation, Glostrup, Denmark) and anti
Collagen IV, rabbit polyclonal (No. 10760, Progen, Heidelberg, Germany) antibody in 12%

Table 4. Timepoints of cryosectioning.

Name Time

T3 17days

T4 24days

T5 34days

T6 46days

doi:10.1371/journal.pcbi.1004412.t004
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BSA respectively. Secondary antibodies used were anti mouse, donkey, Cy3 (No. 715-166-151,
Dianova, Hamburg, Germany) and anti rabbit, goat, Alexa 488 (No. A-11034 Molecular Probes
USA/NL) in 12% BSA. In both cases, nuclei were stained with HOECHST (Bisbenzimide H
33258 SERVA, Heidelberg, Germany) in 12%BSA. Sections were examined and photographed
using a Leica DM RBE (Leica, Germany) microscope fitted with epifluorescence optics.

Quantitative Image Analysis
The images acquired (see above) are raw data. They consist of a set of pixels with position

ðx; yÞ 2 N
2 and color intensities for the three color channels red, green and blue defined by

Ichannel½x; y� 2 ½0; 1Þ;

Ichannel : N2 ! R;
ð12Þ

where channel 2 {red, green, blue}. In the following, the tools used to preprocess the raw images
(e.g. to reduce noise) and to identify or segment objects (e.g. cell nuclei, spheroid border) will
be introduced. Then the preprocessed images have been analyzed quantitatively as described
subsequently.

Nuclei segmentation. The cell nuclei were stained with HOECHST staining (blue color
channel, see Fig 2). In order to segment the single nuclei, the images were smoothed by a series
of four median filters with kernel size 3 × 3 (see below) as a preprocessing step. A larger kernel
would smooth the image too much. In the following, the watershed algorithm(see below) was
applied to the inverted blue color channel, 1 − I[x, y] (I[x, y]2[0, 1)) for pixels above a certain
threshold I[x, y]blue > IHOECHST (see Table 4). Introduction of a threshold avoids the segmenta-
tion of the whole image, focusing only on regions clearly stained by HOECHST and thus asso-
ciated with the cellular nuclei.

Segmentation (watershed). The watershed algorithm is a segmentation algorithm sepa-
rating an image into different regions using the concept of watersheds. It was first proposed in
ref. [76], and later enhanced by a fast algorithm presented in ref. [77]. The idea of the algorithm
is to treat the images as landscapes, where color intensities I[x, y] correspond to the amplitude.
The landscape representation of an example image is shown in Fig 4. The local minima of the
landscape are identified with catchment basins where water would accumulate. To detect the
pixels belonging to the different basins, the landscape is successively “flooded” and pixels of the
current altitude are associated to the basin of their neighboring pixels (already associated to a
basin). When two basins touch each other a watershed line between them is created and expan-
sion is stopped. The algorithm either stops at a chosen maximum altitude (color intensity), or
when none of the basins can expand anymore.

Noise-reduction (median filter). As each local minimum is giving rise to one basin, it is
important to smooth the images thereby reducing noise in the image before performing the
segmentation in order to avoid an over-segmentation into many fragmented pieces. For this
purpose a number of different linear (e.g. mean filter, Gaussian blur) and non-linear filters
(median) were applied. We used a sequence of median filters known to result in an edge-pre-
serving smoothing, i.e. while removing noise it conserves the original features of the image (e.g.
nuclei shapes) in contrast to, for example, Gaussian blur. The impulse response I0[x, y] for each
input pixel (x, y) is the median of neighboring entries within a certain ‘window’ of size n × n:

I 0½x; y� ¼ medianjx�x0 j�a;jy�y0 j�a I½x0; y0�f g; ð13Þ

where a = (n − 1)/2.
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Spheroid lumen and border. The basis for estimating the spheroids borders was the cell
nuclei (see above). By applying a series of dilation filters a coarse approximation of the cell
shapes around the nuclei was achieved. A dilation can be described as the following:

I 0½x; y� ¼ maxjx�x0 j�a;jy�y0 j�a I½x0; y0�f g:

Finally, the empty spaces (necrotic areas) in the center of the spheroids were removed by
hole-filling algorithms (e.g. by flood filling). Fig 4 shows the estimated spheroid lumen around
the cell nuclei in green color for an example picture. The spheroid border is assumed to be the
interface between the green (lumen) and the black (background) area(s).

Radial profiles, binning and averaging. As the spatial arrangement of cell phenotypes
(proliferating, quiescent and dead) and ECM density could be assumed to be approximately
concentric, the following sections focus on how to extract the spatial statistical profiles of the
quantities stained. As Fig 4 shows, the spheroids were not completely spherical, but typically
slightly elongated with irregular surfaces. To account for this, all statistics have been performed
as a function of distance to the spheroid border, defined by ΔL, as opposed to the distance to
the center of mass, which would be the method of choice in case the MCTSs would have been
perfectly spherical. For estimation of the radial profiles binning was utilized. I.e. ΔL was divided
into small intervals ΔLi = [h(i), h(i + 1)), so-called bins, of h = 1μm length (image resolution:
pixel = 0.98μm2). Then each nucleus that contains at least one pixel, whose distance to the clos-
est border pixel is ΔL 2 ΔLi, enters into the statistics of bin i. The average curves were generated
from the radial profiles of the individual images by calculating the average values of the corre-
sponding bins with the same index.

Nuclei density and cell diameter. The local cell density can be estimated from the number
of nuclei per area. Its inverse is the area per nucleus. The nuclei served as construction points
for a Voronoi diagram. In a Voronoi diagram all points closer to one construction point than
to any other construction point belongs to one Voronoi cell. Voronoi cells are polygonal in
shape. Accordingly, the Voronoi cell belonging to one nucleus was identified with the 2D

Fig 12. Cell density and cell size estimation. Left: The Delaunay triangulation of all segmented nuclei serves to estimate the cell sizes via its dual, the
Voronoi diagram. Right: Average cell diameter as a function of distance to the spheroid border. The black curve is the average profile of six images (condition
III, T3) with bin size 1μm and the red curve is the gliding average with window size 10μm.

doi:10.1371/journal.pcbi.1004412.g012
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projection area of the cell having that nucleus. We estimated the cell diameter to be 16.8 (±0.6)
μm (Fig 12).

Automated staining detection: Thresholding. Beside HOECHST staining for all nuclei,
the sliced MCTS were specifically stained for proliferation using Ki67 and cell death using
TUNEL.

In order to quantify cell proliferation, Ki67 positive nuclei (red) had to be distinguished
from Ki67 negative nuclei (blue only). Moreover background noise (due to staining from dif-
ferent layers, image artifacts, etc.) had to be eliminated to minimize the number of “false posi-
tive” and“false negative” nuclei.

Via an intensity threshold, IKi67, we accepted a pixel (x, y) to be Ki67 positive only if its red
color intensity Ired(x, y) was above a certain value:

Ki67ðx; yÞ ¼
1; if Iredðx; yÞ � IKi67;

0; else:
ð14Þ

(

Via the fractional threshold, φKi67, we decided whether a nucleus X typically composed of
many pixels was Ki67 positive or not:

Ki67ðXÞ ¼
( 1; if

1X
ðx;yÞ2X1

X
ðx;yÞ2XKi67ðx; yÞ � φKi67;

0; else:

ð15Þ

Parameters IKi67 and φKi67 control the classification and had to be chosen such that the results
minimize the number of false negative and false positive nuclei.

Choice of detection thresholds. The threshold values were chosen such that sensitivity
and specificity of the classification were simultaneously and robustly maximized. The sensitiv-
ity (TPR = true positive ratio) is given by

TPR ¼ TP
TP þ FN

; ð16Þ

where TP denotes the true positive and FN the false negative nuclei. The specificity
(TNR = true negative ratio) is defined by

TNR ¼ TN
TN þ FP

; ð17Þ

with TN being the true negative, FP the false positive nuclei. A “perfect”method would yield
specificity and sensitivity both being one, i.e., no false negative and no false positive would be
detected. In order to distinguish between TP, FN, TN and FP, a reference (“gold standard”) is
needed. For this purpose part of the images were manually evaluated for Ki67-positive (true
positive) and Ki67-negative (true negative) nuclei (Fig 13). Subsequently, the threshold values
of the automated image analysis method were calibrated such that TPR and TNR were maxi-
mized. This was true in a certain range for both threshold values (Fig 14). Simultaneous opti-
mization of TPR and TNR minimizes the classification error given by

� ¼ FP þ FN
TP þ FP þ TN þ FN

: ð18Þ

Fig 14 shows the values of TPR, TNR and � applying automated detection to the benchmark
image in Fig 13 (left) for wide parameter ranges of IKi67 and φKi67.
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A good agreement (small classification error) between automated and manual Ki67 detec-
tion was reached for 0.35� IKi67 � 0.5 and φKi67 � 0.2. The parameter values used in the fol-
lowing are denoted in Table 5 and the corresponding comparison of manually and
automatically detected Ki67-positive nuclei is shown in Fig 13.

Cellular Automaton
The cellular automaton model, which extends on previous work ([43, 47]), is defined by a set
of rules:

Cell. One biological cell can occupy either one or two sites on a Voronoi diagram (Fig 5,
Fig S1 in S1 Document). The term Voronoi lattice site is used from now on to distinguish the
Voronoi cell from a biological cell. At the beginning of the cell cycle, i.e. after division, it always
occupies only one Voronoi lattice site. Later in the cell cycle (specified below) it grows by occu-
pying a neighboring lattice site as well.

Cell cycle progression/replication. The cell cycle is subdivided intomd intervals (Fig 5).
At the beginning of the cell cycle the cell internal counterM is set toM = 0. If the nutrient con-
ditions are permissive for proliferation according to the conditions detailed in the main text

Fig 13. Automatic versusmanual detection of Ki67 positive nuclei.

doi:10.1371/journal.pcbi.1004412.g013

Tumor Spheroid Growth Control Mechanisms from Data and Simulations

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004412 February 11, 2016 28 / 39



and in the supporting information (S1 Document) then a cell enters the cell cycle. This was
mimicked by the transitionM = 0!M = 1. A proliferating cell successively increased its inter-
nal counter starting fromM = 0 with a ratemd kdiv by one untilM =md. Here kdiv = τ−1, where
τ is the expectation value of the cell cycle time, and depends on the environmental conditions

Fig 14. Sensitivity analysis for threshold parameters IKi67 and φKi67. The plots show the sensitivity, specificity and classification error comparing the
manual detection with the automated detection for a combination of {IKi67, φKi67}.

doi:10.1371/journal.pcbi.1004412.g014

Table 5. Image processing parameters.

Parameter Value

IHOECHST 0.15

ITUNEL 0.45

φTUNEL 0.20

IKi67 0.35

φKi67 0.05

doi:10.1371/journal.pcbi.1004412.t005
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(see Eq 11). Note that the transitions are Poisson processes; the emerging total distribution of
cell cycle time is an Erlang distribution [43].

A) Cell growth. AtM =mg �md a cell grows by occupying a neighbor Voronoi lattice site
in addition to the one it occupies already. Consequently, for the choicemg <md the doubling
of the mass took place somewhere in the cell cycle but not in the moment of cell division as it is
the case in the classical Eden model [78] or more recent work [43]. If all neighboring lattice
sites are already occupied, then the cell first liberates one of them by pushing adjacent cells
toward the closest free lattice site and then occupies the original site and the liberated neighbor
site (for details see supplementary material).

B) Cell division. WhenM =md the cell splits into two daughter cells with each of the
daughter cells occupying a single Voronoi lattice site. After the division each cell decides
whether to reenter the cell cycle or to become (permanently) quiescent. The probability to
reenter the cell cycle, pre, depends on the environmental conditions (see Eq 4).

Cell death. Under certain conditions specified in the main body of the text a cell dies with
the rate knec (see Eq 9).

Cell lysis. Dying cells are lysed with the rate klys. Consequently the corresponding Voronoi
lattice sites are set free.

Cell migration. Cells are able to move either by being pushed if another cell grows, or by
active migration. Active migration is mimicked by hopping to a neighboring Voronoi site. The
choice of the hopping rate depends on the considered biological process:

A) Random walk/free diffusion. In the case of unbiased cell movement the hopping rate
has been chosen to λi = λ/n for all n neighboring sites i = 1. . .n. This corresponds to a diffusion
process such that λ = 6D/l2, with D the diffusion coefficient and l the average distance between
two adjacent lattice sites.

B) Biased random walk. The dynamics of the multi-cellular configuration is determined
by a master equation for the multivariate probability to find a certain multi-cellular configura-
tion, X where X = {x1, x2, . . .} denotes the state vector of the multicellular configuration. One
way is to enumerate all lattice sites and denote by xk the state vector of the cell localized at lat-
tice site k. If this lattice site is empty, the state is zero. The dynamics is then formalized by

@pðX; tÞ
@t

¼
X
X0

e

�DEX0!X

FT � ðtX0!XÞ�1 � pðX 0; tÞ � e

�DEX!X0

FT � ðtX!X0 Þ�1 � pðX; tÞ:

In the case of cell-cell adhesion ΔEX ! X0 represents the energy difference resulting from a
change of cell-cell contacts when moving from the current (configuration X) to the new lattice
site (configuration X0). p(X, t) is the probability of the system being in configuration X at time
t. τy ! z denotes the time between two successive hops from y! z. FT is a characteristic fluctu-
ation energy [1]. An alternative explained in the supplementary information is to enumerate
all cells, and for each cell the processes it can perform. A process is then chosen with a proba-
bility that corresponds to its relative weight, calculated as the rate for this process divided by
the sum of the rates for all other processes (for algorithmic details, see supplementary
information).

Metabolism
Glucose and oxygen are among the main metabolites of most biological cells. In normal tissue
they are provided mainly by the vascularization. Tumor spheroids as avascular tumors (in-
vivo) are mainly fed by nutrients diffusing into the interior from the border. Above a certain
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size they display regions lacking glucose (hypo-nutrition) and/or oxygen (hypoxia). This
occurs if the nutrients entering the tumor via its borders are consumed completely before
reaching the center.

We modeled the diffusion and uptake of glucose and oxygen by a reaction-diffusion equa-
tion:

@tu ¼ r � ðDuðsÞruÞ þ ruðs; uÞ; ð19Þ

where Du is the molecule diffusion coefficient and ru(σ, u) denotes the reaction term, u 2 {G,
O}. The diffusion coefficient was chosen differently in the nutrient medium than inside the
tumor spheroid. The reaction term mimicked the cells consumption with the choice

ruðs; uÞ ¼ �quðuÞs ¼ �quðuÞ
X
k

dðr� rkÞ: ð20Þ

Glucose and oxygen consumption rates. In experiments on EMT6/Ro cells for varying
medium concentrations the cell consumption rates for each of the two molecules were
observed to depend on each other ([12, 79]). Casciari et al. [80] proposed an extended Michae-
lis-Menten-like consumption rate for glucose,

qG ¼ Vmax
G

½G�
½G� þ kGG

; ð21Þ

and oxygen,

qO2
¼ Vmax

O2

½O2�
½O2� þ kO2

O2

: ð22Þ

Fig 15. Oxygen (right) and Glucose (left) consumption. The graphs show a comparison between experimental measurements of glucose and oxygen
consumption rates of EMT6/Ro cells [80] (dots) and predictions of Eqs 21 and 22 (grid). The rates are functions of the local extra-cellular glucose and oxygen
concentrations. (The original values were rescaled frommol/cell/s tomM/h(=mol/m3/h) for an average cell volume of 2700μm: 1mol/cell/s = 13.3 × 1017mM/h.)

doi:10.1371/journal.pcbi.1004412.g015

Tumor Spheroid Growth Control Mechanisms from Data and Simulations

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004412 February 11, 2016 31 / 39



By direct comparison to their data we found the following cross-linking terms to fit well the
experimentally observed consumption rates (Fig 15):

Vmax
G ¼ qmax

G 1� 1� qmin
G

qmax
G

� � ½O2�
½O2� þ kO2

G

� �
;

Vmax
O2

¼ qmax
O2

1� 1� qmin
O2

qmax
O2

 !
½G�

½G� þ kGO2

 !
:

ð23Þ

Within this paper we assumed the same functional form and parameter values for the con-
sumption rates of the SK-MES-1 cells as no equivalent measurements as those for the glucose
and oxygen consumption rates of EMT6/Ro cells were available for SK-MES-1 cells. The
parameters of Eqs 21, 22 and 23 were inferred from [12] (see Fig 15 and Table 6).

ATP as energy currency of the cell. As glucose or oxygen-dependent thresholds for cell
cycle progression or cell death led to results disagreeing with the experimental observations, in
a next step we investigated the potential impact of glucose and oxygen on cell division and
death. Besides being utilized as cell material, glucose is mainly used to gain energy for cell
maintenance and reproduction. This happens by oxidation of glucose, which under standard
conditions reads [54]:

C6H12O6 þ 6O2 ! 6CO2 þ 6H2O:

The freed energy (ΔG = −2880kJ/mol) is thereby stored in ATP. We below denote in a highly
simplified form by summarizing reactions the contributions of glucose and oxygen to the ATP
production. For one mol of glucose, within Glycolysis,

Glucoseþ 2NADþ !k1 2Pyruvateþ 2ATP þ 2NADH: ð24Þ

Under anaerobic conditions (lack of oxygen), pyruvate is metabolized into lactate in order
to convert NADH back to NAD+ (see Eq 29).

Otherwise, if sufficient oxygen is available, the two moles of NADH are turned into 4–6
ATP molecules by oxidadive phosphorylation, depending on the shuttle system transporting
the electrons of the NADH through the mitochondrial membrane from the cytosol into the
mitochondria (the inner mitochondrial membrane is impermeable for NADH or NAD+). For
glycerin-3-phosphat-shuttle it is 4 ATP. While glycolysis occurs in the cytosol, the citric acid
cycle occurs in the mitochondrial matrix, and oxidative phosphorylisation at the inner mito-
chondical membrane. In the presence of sufficient oxygen, under aerobic conditions, one mol

Table 6. Model parameters for glucose and oxygen consumption.

Parameter Unit Value

kG
G mM 0.068

kO2
G

mM 0.031

qmin
G mM/h 186.67

qmax
G mM/h 706.67

kO2
O2

mM 0.031

kG
O2

mM 0.100

qmin
O2

mM/h 120.00

qmax
O2

mM/h 306.66

doi:10.1371/journal.pcbi.1004412.t006
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of pyruvate is transformed to one mol of acetyl-CoA, and introduced into the citric acid cycle
whereby one mol of NADH is generated. In the citric acid cycle, from one mol of acetyl-CoA, 3
moles of NADH, one mole of FADH2, and one GTP are generated. By oxidative phosphoryla-
tion, one mol of NADH yields 3 moles of ATP, and one mol of FADH2 yield 2 moles of ATP.
For each mol of NADH or FADH2 entering oxidative phosphorylation, 1/2 mol of O2 is con-
sumed. Summarizing, in the presence of sufficient oxygen, for one mol pyruvate, entering the
citric acid cycle, 4 moles of NADH yielding 12 moles of ATP, 1 mol of FADH2 yielding 2 moles
of ATP, and 1 mol GTP energetically corresponding to one mol of ATP are produced. As
NADH from glycolysis (see Eq 24) is only turned to ATP in presence of sufficient oxygen, we
add the emerging 2–3 ATP per NADH to the r.h.s. and the NADH to the l.h.s. of the aerobe
pathway reaction:

Pyruvateþ NADH þ 3O2 !
k2
17ð18ÞATP þ NADþ:

As mentioned above, the reactions take partially place in the cytosol, partially in the mitochon-
dria, and the ATP yield from NADH depends on the shuttle system used which is why the
numbers of ATP yield can slightly differ. We here continue our calculation with 17 moles ATP
per mol pyruvate.

We assume that the changes in intra-cellular glucose and oxygen concentrations mainly
depend on the metabolic rates, k1 and k2, and the uptake rates from the extra-cellular space, qG
and qO2

,

d½G�
dt

¼ �k1½G� þ qG; ð25Þ

d½O2�
dt

¼ �3k2½Pyruvate�½NADH�½O2�3 þ qO2
: ð26Þ

The changes in ATP concentration can be written as following:

d½ATP�
dt

¼ 2k1½G� þ 17k2½Pyruvate�½NADH�½O2�3: ð27Þ

Assuming the equilibrium conditions of Eqs 25 and 26 are reached very fast we can refor-
mulate Eq 27, and in case of [G]> [G]crit obtain

d½ATP�
dt

¼ 2qG þ
17

3
qO2

¼ pATP: ð28Þ

In case [G]� [G]crit, the concentration of pyruvate becomes zero, hence no ATP is pro-
duced. To avoid that cells completely deprived of glucose are still capable of producing ATP,
we assume the critical amount of glucose to be [G]crit = 0.01mM.

Fig 8 illustrates how cells regulate their consumption of glucose and oxygen under very dif-
ferent circumstances, hyponutrition (low glucose) and hypoxia (low oxygen), in such a way
that a yield of ATP is maintained at values between 1000 and 1700 ×10−17 mM/h per cell. This
observation suggests that continuously dividing EMT6/Ro cells need at least 1000mM/h. On
the other hand Eq 28 implies that EMT6/Ro cells metabolize only 10% of the consumed glucose
in the Krebs-cycle under sufficient glucose and oxygen supply (see Fig 8). The other 90% are
either fermented to lactate or used to build up other cell components (e.g. amino acids, nucleo-
tides) nevertheless important for cell reproduction. Jiang et al. [22] indicated a much lower
fraction (75%) of anaerobically metabolized glucose.
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Lactate—the side product of anaerobe metabolism. Under anaerobic conditions the cell
accumulates pyruvate molecules generated in glycolysis as these cannot be further processed in
the citric acid cycle (or Krebbs cycle) without the presence of oxygen. On the other hand,
NADH cannot be oxidized back to NAD+, which is needed for the glycolysis to continue. To
over come this shortcoming of NAD+, pyruvate is reduced to lactate by incorporating a proton
of NADH.

Pyruvateþ NADH!k3 Lactateþ NADþ: ð29Þ

This process is called the lactic acid fermentation.
In the model we assumed lactate to be a direct side product of glucose metabolized anaero-

bically i.e., in absence of oxygen. For each molecule of glucose entering the anaerobic lactate
fermentation the cell will produce 2 molecules of lactate. Assuming the lactate production rate
to be pL � 2qG (where qG corresponds to anaerobic rate of glucose metabolisation) and lactate
to leak out of cells and diffuse in the tissue, results in the following formulation of the lactate
dynamics

@½L�
@t

¼ r � ðDLðsÞr½L�Þ þ 2 qG �
qO2

6

� �
; ð30Þ

where DL is the diffusion coefficient (see Table S1 in S1 Document), qG the glucose consump-
tion rate (Eq 21) and qO2

the oxygen consumption rate (Eq 22). σ is the local cell density.
Extra-cellular matrix. Components of the ECM are produced by resident cells, and

secreted into the ECM via exocytosis [81]. Once secreted, they aggregate with the existing
matrix. In the model ECM is produced by cells, diffuses within the interstitial space and
degrades with a constant rate

@½ECM�
@t

¼ DECMD½ECM� þ kECMgen s� kECMdeg ½ECM�; ð31Þ

where is the density of viable cells, [ECM] is dimensionless and proportional to the ECM con-
centration divided by a reference concentration which in Col IV stained micrographs corre-
spond to the highest color intensity. Thus [ECM] ranges from 0 to 1 permitting a direct
comparison with the image data.

Waste material. Cells dying either by apoptosis or necrosis are finally lysed and release
their intra-cellular material into the interstitial space. We assumed some of these molecules
inhibiting for cell cycle progression of other cells. The dynamics was modeled by a reaction dif-
fusion equation:

@½W�
@t

¼ DWD½W� þ kWgensD � kWupts½W�; ð32Þ

where σD is the local density of dead cells (no matter if by necrosis or apoptosis) but not yet
lysed cells, [W] is the density of waste, DW is the waste molecule diffusion constant, kWgen is the

rate at which waste molecules leak into the interstitial space, kWput is the rate at which waste mol-

ecules are taken up by viable cells.

Temporal Evolution & Numerical Treatment
The cellular dynamics was modeled by a master equation describing the time evolution of the
probability of the multi-cellular configuration. The molecular dynamics was modeled by a sys-
tem of deterministic partial differential equations.
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Cell kinetic: Gillespie algorithm. The master equation is solved numerically by the Sto-
chastic Simulation Algorithm proposed in [82]. The idea is to investigate the expected time
interval until the next event (cell migration, cell cycle progression, necrosis, apoptosis, division,
. . .) and then choose an event randomly, where the probability for each choice reflects its rela-
tive weight compared to all possible configuration changes. A detailed description of this part
can be found in [83].

Molecular kinetic: Steady state solution. As the temporal scale of the cellular dynamics
(> hours) and molecular dynamics (<minutes) differ by several orders of magnitude, we
could assume that the molecular concentrations reached their steady state very quickly after a
change in the cellular configuration. Consequently, we updated the molecular gradients with a
constant time step of 0.1h by solving the system of PDEs (Eqs 19, 28, 30, 31 and 32) for their
steady state solution. We verified that choosing a smaller time step did not have any significant
impact on the model kinetics, and by solving the full time dependent equation for selected
parameter combinations, that the time scale at which the concentrations reached their steady
state values were short compared to the time scale of cell growth, division and death considered
here. To calculate the steady state solutions all the PDEs were solved by a finite difference
scheme, with a central difference discretization of the diffusion operator, on the regular lattice
used to construct the unstructured lattice populated by the cells (see S1 Document). The cou-
pled equations for glucose and oxygen were solved monolithically, with a semi-implicit itera-
tive scheme. The other PDEs were solved with the same spatial discretization. BiCGSTAB was
used to solve all the linear problems.

Supporting Information
S1 Document. Details about the tumor growth model, model developement, additional
simulation results and additional information on the image analysis.
(PDF)
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