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From Inter-Annotation to
Intra-Publication Inconsistency

Alaa Abi Haidar (Université Pierre et Marie Curie Paris 6)
Mihnea Tufiș (Université Pierre et Marie Curie Paris 6)

What are effective ways to help people with chronic illness, e.g. diabetes and heart disease?
Computational linguistics relies on human-annotated data to train machine learners. Inconsistency
among the human annotators must be carefully managed (otherwise, the annotations are useless in
computation). How can this annotation process be made scalable?

ABSTRACT

Curing chronic illnesses and diseases requires the huge effort of collecting all
available information on this matter and piecing it together with the aids of
mathematical and computer modeling. Both phases of information collection and
piecing together are prone to error.  Errors may result from human annotation
inconsistency, machine learning and parameterization when using supervised
learning. On a different scale, published results that need to be collected may
suffer from another kind of disagreement either due to varying experimental
methodologies or assumptions. Here, we discuss these inconsistencies and
disagreements in scientific literature  and we investigate those of the
inter-annotation of named entities in bioliterature from empirical perspectives.

INTRODUCTION

Mathematical modeling and simulation help us understand the underlying        
mechanisms behind complex and barely understood systems, such as immune         
systems in order to advance biomedical and drug studies and cure diseases [10].            
However, mathematical modeling requires huge amounts of parametric data,        
usually published in experimental and theoretical manuscripts and dispersed in the          
scientific literature. Pubmed comprises more than 19 million scientific articles [9]          
and this amount is growing at astounding rates. The manual extraction of valuable            
information and their classification into predefined labels, such as parametric         



values, units and species names, is very costly and inefficient. Hence, we use text             
mining, and more specifically, named entity recognition [8], in order to          
automatically and accurately extract and classify numerical and textual entities, that          
can later be plugged into mathematical models and simulated.

Nevertheless, a significant number of parametric values describing experimental        
results in the bio-literature are inconsistent due to variations in experimental          
approaches or imperfection in the experiments [19]. For example, the amount of T            
cells that mature from the thymus through the process of negative selection           1

remains a huge debate [1-7] and may vary between "less than 5%" to "10%". Our              
study focuses on analysing all reported rates for such processes in biological and            
other complex systems in order to study their statistical variations while identifying           
average values and outliers.

BACKGROUND

Most techniques for named entity recognition rely on supervised machine learning          
that require human-annotated training data. Studies have shown that there is at           
least 25% human inter-annotation disagreement (inconsistency) when annotating       
biological named entities [24]. According to the G-theory [20], sources of          
inconsistency might be of external influences like alterations in the tools used for            
annotations, increasing time pressure, removal or adding of rewards, or changes          
in the annotation scheme. A study reports 55% and 82% F1 scores for exact and              
relaxed inter-annotation agreement respectively when the task was to extract         2

interactions between enzymes and marine drugs in over 230 full-text articles [11].           
In another study, the relaxed inter-annotator agreement showed that 94% of the           
time curators were precisely extracting GO annotation from the literature and          3

72% of the time curators recalled all possible valid GO terms from the text [14]. Yet               
another study reports an inter-annotator agreement rate of over 60% for triggers           
and of over 80% for arguments using an exact match constraint [16]. More            
recently, a study reported inter-annotator agreement (IAA) F-measures for        
medication names and medication types, 94.2% and 88.2% respectively [13].         
However, the rates of inter-annotation agreement vary not only from study to           
study but also from domain to domain. For instance, Wiebe et al. report 82.0 F1              

1 T cells that recognize self antigens are eliminated in the thymus through a process known as negative
selection so that they do not bind to self and cause auto­immune diseases
2 Unlike exact matches, relaxed matches may span over less or more  words to describe the same concept.
3 The Gene Ontology, or GO, is a bioinformatics attempt to unify the representation of genes and gene
product attributes across various species



score of human annotation agreement for opinion expression [12].

Consequently, the human inter-annotation inconsistency creates a gray area of         
uncertainty that the machine learner depends on to create fine-tuned rules and           
exceptions. Furthermore, human annotation is often used as the gold standard for           
evaluating machine learning methods [15] and therefore it is very important to           
have as few disagreements as possible. Nevertheless, the human inter-annotation         
disagreement can be reduced by using strictly agreed-upon annotations, the         
reasonings of a single annotator, majority rules or by identifying mislabeled          
annotations [17, 18].

RESULTS AND DISCUSSION

Here, we attempt to quantify human annotation inconsistency based on a          
biological article annotated by several annotators. More specifically, we study the          
annotation inconsistency of a biomedical article [24] that is annotated by three           
experts for 9 categories of named entities. The following table lists the number of             
annotated entities for each of the 9 categories by each of the three annotators:

almeida_annotation_
Al.tag

almeida_annotation_Veroni
que.tag

almeida_annotation_Floren
ce.tag

 17 UNIT
 22 LOCATION
 34 NUM
 63 INDIVIDUAL
227 METHOD
255 COFACTOR
344 PROCESS
950 POPULATION
8140 O

 17 UNIT
 20 LOCATION
 65 NUM
 74 INDIVIDUAL
226 METHOD
231 COFACTOR
360 PROCESS
907 POPULATION
8152 O

 28 LOCATION
 30 UNIT
 38 INDIVIDUAL
 58 NUM
161 METHOD
356 COFACTOR
454 PROCESS
904 POPULATION
8014 O

Table 1. The number of annotated entities in a biomedical article [24] for each of the 9 categories by                  
each of the three annotators

The categories describe biological concepts. In the following example “The T cell           
proliferation is 0.4 cells/hr” can be annotated as follows: “T cell proliferation”           
describes a PROCESS, “0.4” a NUM (numerical value) and “cells/hr” a UNIT. More            
complex entities are harder to classify into concepts which may create annotation           
inconsistencies between several annotators.



For the example at hand, we identify inconsistencies varying from 1.5% to 8.3% out             
of a total of 10052 terms as shown in table 2. Our average values are below those                
reported by [24]. However, that might be due to the fact of working on a different               
dataset and with different entities.

Al Ver Flo

Al 0% 1.5% 7.8%

Ver 0% 8.3%

Flo 0%
Table 2.  Inter-annotator inconsistencies varying from 1.5% to 8.3% out of a total of 10052 terms

Next, we study to what extent inter-annotation inconsistency in training data can           
influence the robustness of machine learning and the predicted results. We          
hypothesize that factors such as the size of annotated training data, the number            
of annotators, the number of class labels, and the over-fitness of supervised           
machine learners play major roles in the robustness of the learning and the            
classification results. We attempt to answer these questions using empirical         
approaches inspired by [21] a study of robustness when classifying noisy land           
rover data from satellite images.

EVALUATING INTER ANNOTATOR AGREEMENT

Determining inter annotator agreement (IAA) can be a daunting task for reasons           
such as proper choice of agreement coefficients and lack of consensus on the            
interpretation of such coefficients [26].

Taking into account the recommendations of Artstein and Poesio [26 - 590]           
considering the better quality measure given by chance corrected coefficients as          
compared to simple percentage agreement, we have performed the reliability         
testing over the annotations performed over our corpus of text. Given that we are             
in a scenario of multi-annotators (namely, three) using a nominal variable, we will            
discuss the results we've obtained for the computation of the adapted versions of            
Cohen’s ᵰ� and Fleiss' multi-ᵰ� as well as for Krippendorff’s ᵯ�.

As a reminder, the first 2 coefficients above are based on the basic coefficients             
used in 2-annotators scenarios: Scott’s ᵰ� (1955), Cohen’s ᵰ� (1960).



 ,π, k     =   1 − Ae
A  − Ao e

where Ao is the observed agreement and Ae is the expected agreement. [26 - 559]

As explained in [26 - 560], the difference between ᵰ� and ᵰ� lies in the assumptions               
made to compute the probability for a coder (annotator) to categorize an           
utterance in a certain category.

The indices we used are the generalizations of Scott's ᵰ� and Cohen's ᵰ� made by              
Fleiss (1971) and Davies and Fleiss (1982) respectively.
To generalize, Fleiss' multi-ᵰ� uses a different interpretation of the observed          
annotation Ao, namely the pairwise agreement, which is the number of pairs           
agreeing on an utterance out of the total number of pairs of coders.
Equally, multi-ᵰ� involves the computation of the expected agreement Ae based on           
individual coder marginals.

Finally, Krippendorff's ᵯ� is a versatile coefficient which addresses the limitations of           
(multi-)ᵰ� and (multi-)ᵰ� regarding the equal treatment of all disagreements [26 -           
564]

   1 α =   −  De
Do

, where Do is the observed disagreement and De is the expected disagreement.
[26 - 565, 566]

We computed the coefficients in the following 2 situations [27, 28]:

1. Full annotations, taking into account the large number of utterances classified           
as O(ther) by all annotators (Coders = 3, Utterances = 10043).

Average Pairwise
Agreement [%]

Pairwise (1-2)
Agreement

Pairwise (1-3)
Agreement

Pairwise (2-3)
Agreement

94.162% 98.457% 92.283% 91.745%
Table 3a. Average Pairwise Agreement [%]

Avg. Pairwise CK Pairwise (1-2) CK Pairwise (1-3) CK Pairwise (2-3) CK

0.828 0.953 0.774 0.758
Table 3b. Average Pairwise Multi-ᵰ� (based on Cohen’s ᵰ�)



multi-ᵰ� Ao Ae

0.827 0.942 0.662
Table 3c. multi-ᵰ� (based on Scott’s ᵰ�)

Krippendorff’s ᵯ� No. of decisions

0.827 30129
Table 3d. Krippendorff’s ᵯ�

Looking at the "classical" agreement reporting, the average pairwise percentage         
agreement is at 94.2%, with the best agreement rate being between coder 1 and             
coder 2 at 98.5%.

As expected, the values for multi-ᵰ� and average pairwise multi-ᵰ� are approximately           
equal and since all disagreements are treated equally, Krippendorff's ᵯ� is also           
nearly equal to the two before. The approximate value of 0.82 for multi-ᵰ�, classifies             
the annotation process as "perfect" according to the strength scale given by Landis            
and Koch (1977) [26 - 576].

2. Altered annotations, discarding the utterances classified as O(ther) by all          
annotators (Coders = 3, Utterances = 2349).

Average Pairwise
Agreement [%]

Pairwise (1-2)
Agreement

Pairwise (1-3)
Agreement

Pairwise (2-3)
Agreement

75.039% 93.401% 67.007% 64.708%
Table 4a. Average Pairwise Agreement [%]

Avg. Pairwise CK Pairwise (1-2) CK Pairwise (1-3) CK Pairwise (2-3) CK

0.675 0.914 0.569 0.543
Table 4b. Average Pairwise Multi-ᵰ� (based on Cohen’s ᵰ�)

multi-ᵰ� Ao Ae

0.674 0.75 0.233
Table 4c. multi-ᵰ� (based on Scott’s ᵰ�)



Krippendorff’s ᵯ� No. of decisions

0.674 7047
Table 4d. Krippendorff’s ᵯ�

In this case, almost 8000 utterances which have been all annotated as Other by all              
three coders were completely discarded from the reliability study.

The classic pairwise percentage agreement thus records a drop of the average           
value (75%); however, it is interesting to notice that the agreement between coders            
1 and 2 stays as high as in the original situation (93.4%) which indicates a very high                
agreement for their annotations on the "main" classes (excepting the all-O(ther))          
as well.

As before, the values of the three coefficients are (not surprisingly) almost equal,            
but are dropping this time, somewhere around 0.67, which on the strength scale of             
Landis and Koch (1977) [26 - 576] indicates only a "substantial" agreement in the             
annotation process, making the annotation suitable for “tentative conclusions”.        
Interesting enough, this is exactly the value which was set as the original threshold             
by Krippendorff (although he referred to it as "highly tentative and cautious")           
before he reviewed it and later set it at 0.8.

CONCLUSION

In this manuscript, we identify and discuss two forms of inconsistencies, one in            
published parametric results that we are studying in collaboration with         
immunologists , and another in manually human annotated data for machine         4

learning. Both forms of inconsistencies influence the accuracy of biomedical         
research to a significant extent that we are interested in quantifying in our            
research. We expect our study to shed a light on both forms of inconsistencies,             
ones resulting from human inter-annotation and those published in biological         
literature.
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