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Abstract
We develop an algorithm for meshing molecular surfaces that is based on patch-wise meshing

using an advancing-front method adapted to the particular case of molecular surfaces. We focus
on the solvent accessible surface (SAS) and the solvent excluded surface (SES). The essential
ingredient is a newly developed analysis of such surfaces in Ch. Quan, B. Stamm, Mathe-
matical Analysis and Calculation of Molecular Surfaces, Journal of Computational Physics,
322:760-782, 2016 that allows to describe all SES-singularities a priori and therefore a com-
plete characterization of the SES. In addition, an algorithm for filling molecular inner holes is
proposed based on the pre-computed data structures of molecular surfaces.
Keywords: Molecular Surface, Solvent Excluded Surface, Molecular Visualization, Implicit
Representation, Advancing-front Method, Meshing Algorithm

1 Introduction
Many fields of research like chemistry, biochemistry, physics and biomedicine work with molecular
surfaces. For example, the majority of (bio-)chemically relevant reactions take place in the liquid
phase and the effect of the environment (solvent) is important and should be considered in one way
or the other in the model. As an alternative to the way of taking solvent molecules explicitly into
account, various implicit solvation models have been proposed in which the molecular surface of the
solute is a part of the model and constitutes the interface of the atomistic and the continuum model
[1]. A second field where the notion of molecular surface is important is simply the visualization of
molecules.

In the simplest model of a molecular surface of the solute or a molecule in general, each consti-
tuting atom is idealized by a simple sphere with its Van der Waals (VdW) radius. The boundary
of the union of these VdW spheres is the so-called VdW-surface.
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Figure 1: The SES of a three atomic system with the self-intersection problem between two concave
spherical patches (left, triangulation provided by the MSMS-algorithm) and the SES with a singular
circle on the concave spherical patches (right, triangulation provided by our algorithm).

Besides the VdW-surface, two other kinds of molecular surfaces are commonly used in solvation
models or in molecular visualization: the Solvent Accessible Surface (SAS) and the Solvent Excluded
Surface (SES) [2]. Since the VdW-surface and the SAS are both the topological boundary of the
union of spheres, their geometric features are therefore easier to understand. However, the SES,
which sometimes performs better in a chemical calculation [3] or is more suitable for applications
like docking [4], is more complicated.

1.1 Previous Works
The definitions of the SAS and the SES were first introduced by Lee & Richards [5, 6] in the 1970s.
The SES is also called the "smooth molecular surfaces" or "Connolly’s surfaces" due to Connolly’s
fundamental calculation on it [2]. Indeed, the SES can be considered to be the prototype for the
computational study of molecular surfaces. This surface model has been applied to a very large
variety of problems and has also been used to compute solvation energies with continuum solvation
models [1, 3, 7].

Latter, Michel Sanner developed the reduced surfaces and proposed the MSMS (Michel Sanner’s
Molecular Surface) algorithm for computing an (in fact approximately) analytical representation of
the SES [8]. The MSMS algorithm can also provide a triangulation of the SES with a user-specified
density of vertices. Although it can not deal with all self-intersections between different patches of
the SES (see Figure 1 for an example where self-intersection occurs), the MSMS algorithm is now
one of the most widely-used packages of molecular surfaces.

Besides, there are many other contributions on the molecular visualization [9, 10, 11, 12, 13],
high-quality meshing [14] or the calculation of molecular areas and volumes [15, 16, 17]. However,
a computable analytical implicit representation of the SES and a complete characterization of all
SES-singularities remained unsolved until a recently-published paper by us [18].

1.2 Contribution
We give a detailed strategy for constructing the data structures of molecular surfaces, based on the
analytical characterization of the SES including its singularities presented in [18]. Then, a meshing
algorithm for molecular surfaces, especially the SES, is developed, combining an advancing-front
algorithm with the pre-computed data structures. The explicit characterization of all singularities
resolves the issue of self-intersection that is experienced due to singularities as they can be computed
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prior to the meshing of the surface. This, in turn, allows the possibilities of meshing the SES exactly,
in the sense that each vertex of the mesh lies exactly on the surface. We want to emphasize once
again that this is only possible due to the newly developed analysis of the molecular surfaces and
it is not the case for the existing meshing algorithms. In addition, we propose an algorithm for
filling molecular inner holes with virtual atoms for the reason that the appearance of these inner
holes is not always justified in the solute molecular cavity of the continuum solvation models, as
this would mean that the solvent is present in these inner holes.

1.3 Outline
In the next section, we give the definitions and the implicit representations of different molecular
surfaces. In the third section, the construction of molecular surfaces, which is defined by different
patches and their connectivity, is proposed. Based on this pre-computed data, an algorithm for
filling molecular inner holes is proposed in the fourth section. Further, a meshing algorithm for
molecular surfaces including two sub-algorithms for meshing respectively a (convex or concave)
spherical patch and a toroidal patch is developed in the fifth section where we also present some
illustrations of artificial as well as realistic molecular surfaces. Finally, a conclusion is presented in
the last section.

2 Molecular Surfaces
A mathematical analysis and calculation of the SAS and the SES has been presented in our recent
work [18]. In this section, we recall some results including a mathematical definition of the surfaces,
their implicit representations and the complete characterization of the SES.

2.1 Definitions
As already emphasized, atoms of a molecule can be represented by VdW-balls with VdW-radii
which are experimentally fitted, given the underlying chemical element [19]. In consequence, the
VdW-surface is defined as the topological boundary of the union of all VdW-balls. Further, the
SAS of a solute molecule is defined by rolling the center of an idealized spherical probe over the
solute molecule, that is, the surface enclosing the region in which the center of a spherical probe
can not enter. Finally, the SES is defined by the same spherical probe rolling over the molecule,
but now we consider the surface enclosing the region in which a spherical probe can not access. In
other words, the SES is the boundary of the union of all spherical probes that do not intersect the
VdW-balls of the solute molecule, see Figure 2 for a graphical illustration.

The definition of VdW-surface is based on the model that each atom has a specific radius around
the atom center. However, the definition of the VdW-surface has ignored the size and shape of the
surrounding solvent molecules in solvation models. The definition of SAS has taken this into account
by modeling them by idealized spherical probes with a certain probe radius. The definition of the
SES is different from the SAS in the sense that not the probe center traces out the desired surface,
but the surface of the probe. In the application of the above-mentioned docking [4], the SES will
not lead to the overlapping of neighboring surfaces since the SES does not inflate the atom radii
but the SAS will.

Sometimes, the SAS can be non-connected: it can be composed of several separate surfaces.
We call the outmost surface as the exterior Solvent Accessible Surface (eSAS) and the union of all
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Figure 2: 2-dimension (2D) schematics of the Solvent Accessible Surface and the Solvent Excluded
Surface, both defined by a spherical probe in orange rolling over the molecular VdW-atoms in dark
blue.

separated surfaces as the complete Solvent Accessible Surface (cSAS), see Figure 3 for an example
and [18] for details. Correspondingly, we also propose the concept of the complete Solvent Excluded
Surface (cSES) and the exterior Solvent Excluded Surface (eSES). We make a convention that the
SAS refers to both the cSAS and the eSAS in a general context, and the SES refers in the same
spirit to both the cSES and the eSES.

Both the VdW-surface and the SAS are composed of three parts: open spherical patches, open
circular arcs (or circles) and intersection points (formed by the intersection of three or more spheres).
The SES can be divided into three corresponding types of patches [2]: convex spherical patches,
toroidal patches and concave spherical patches, see Figure 4 for a 3D illustration. As showed in [18],
any point on a convex spherical patch of the SES has a closest point to the SAS on a spherical patch.
Similarly, any point on a toroidal patch of the SES has a closest point to the SAS on a circular arc,
and any point on a concave patch has a closest point to the SAS which is an intersection point.

2.2 Implicit Representations
We denote by M the number of atoms in a solute molecule, by ci ∈ R3 and ri ∈ R+ the center
and the radius of the i-th VdW atom. The open ball with center ci and radius ri is called the i-th
VdW-ball. The VdW-surface can consequently be represented as an implicit surface f̃−1

vdw(0) = {p ∈
R3|f̃vdw(p) = 0} with the following implicit function:

f̃vdw(p) = min
i=1,...,M

{‖p− ci‖2 − ri}, ∀p ∈ R3. (2.1)

Similarly, the open ball with center ci and radius ri + rp is called the i-th SAS-ball denoted by
Bi, where rp is the radius of the idealized spherical probe. Furthermore, we denote by Si the i-th
SAS-sphere corresponding to Bi, that is, Si = ∂Bi. Similar to the VdW-surface, the SAS can be
represented as an implicit surface f̃−1

sas (0) with the following implicit function:

f̃sas(p) = fvdw(p)− rp = min
i=1,...,M

{‖p− ci‖2 − ri − rp}, ∀p ∈ R3. (2.2)

We notice that the above implicit function of the SAS is simple to compute. It seems nevertheless
hopeless for us to further obtain an implicit function of the SES for the reason that f̃sas(p) is not
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Figure 3: The transparent eSAS (left) and the transparent cSAS (right) of 1B17 with 485 atoms
where the probe radius rp = 1Å. The boundary of each exterior spherical patch is constituted by
circular arcs in yellow while the boundary of each interior spherical patch is constituted by circular
arcs in red.

Figure 4: 3D schematic of the SES illustrating the convex spherical patches (red), the toroidal
patches (yellow) and the concave spherical patches (blue).
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a distance function to the SAS. On the other hand, having the signed distance function at hand
would allow the construction of an implicit function for the SES due to the geometrical relationship
between the SAS and the SES, i.e., they are separated by the fixed distance rp.

In [18], we calculated the signed distance function to the SAS. Indeed, since the SAS is a closed
surface, there exists a closest point on the SAS to any given point p ∈ R3, which is denoted by xpsas

depending on p. We emphasize that there might exist more than one closest point to p and in this
case, xpsas is chosen to be one of these closest points. The signed distance function fsas(p) can then
be easily written as:

fsas(p) =

{
−‖p− xpsas‖ if p lies inside the SAS,
‖p− xpsas‖ if p lies outside the SAS.

(2.3)

The difficulty is however to find efficiently one closest point xpsas. In the Chapter 6 & 7 of [20], one
can find a very detailed and general discussion about the properties of the signed (or more generally
speaking, oriented) distance function.

According to the fact that any point on the SES has signed distance −rp to the SAS, an implicit
function of the SES is obtained directly as:

fses(p) = fsas(p) + rp, (2.4)

which motivates the choice of using the signed distance function denoted by fsas(p) to represent the
SAS. From the above formula, the SES can be represented by a level set f−1

sas (−rp), associated with
the signed distance function fsas to the SAS. Therefore, the key point becomes how to compute the
signed distance fsas(p) from a point p ∈ R3 to the SAS. Generally speaking, given a general surface
S ⊂ R3 and any arbitrary point p ∈ R3, it is difficult or expensive to compute the signed distance
from p to S. The fast marching method [21] and the fast sweeping method [22] are two famous
methods for computing such signed distance. However, considering that the SAS is a special surface
composed of spherical patches, this computation can be done analytically [18].

Further, the region enclosed by the VdW-surface is called the VdW-cavity, that is, any point p
in the VdW-cavity satisfies fvdw(p) ≤ 0. More generally, the region enclosed by a molecular surface
is called by its corresponding molecular cavity. In consequence, the region enclosed by the SAS
is called the SAS-cavity, and the region enclosed by the SES is called the SES-cavity. Similarly,
any point p in the SAS-cavity satisfies fsas(p) ≤ 0, and any point p in the SES-cavity satisfies
fses(p) ≤ 0.

2.3 Complete Characterization of the SES
In this subsection, we present the main results about the complete characterization of the SES in
[18]. For any point xsas on the SAS, we define a mapping by

R(xsas) =
{
p ∈ Ω | dist(p,Γsas) = |p− xsas|

}
,

where Ω is the SAS-cavity, Γsas is the SAS and dist(p,Γsas) denotes the distance from p to Γsas.
Consequently, we have the following theorem according to [18]:

Theorem 2.1. The following equivalence statements hold:

[1] if xsas lies on a spherical patch of the SAS, part of the sphere Si, then R(xsas) = [ci, xsas] is
a line segment.
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[2] if xsas lies on a circular arc of the SAS, part of the intersection circle Si
⋂
Sj, then R(xsas) =

4xsascicj is a triangle.

[3] if xsas is an intersection point of the SAS, then R(xsas) is a polyhedron.

Remark 2.1. The first equivalence in the above theorem states that in the case where xsas lies on
a spherical patch of the SAS associated with Si, xsas is a closest point to an arbitrary point p ∈ Ω if
and only if p lies on the line segment with endpoints ci and xsas. The second equivalence states that
in the case where xsas lies on a circular arc of the SAS associated with Si and Sj, xsas is a closest
point to an arbitrary point p ∈ Ω if and only if p lies on the triangle with three vertices ci, cj and
xsas.

We can generalize the mapping R by

R(X) =
⋃
x∈X
R(x), ∀X ⊆ Γsas.

In consequence, for a spherical SAS patch denoted by Pi1 with index i1, its corresponding convex
SES patch P+ can be written as P+ = R(Pi1)

⋂
Γses where Γses is the SES; for a circular SAS

arc denoted by li2 with index i2, its corresponding toroidal SES patch Pt can be written as Pt =
R(li2)

⋂
Γses; for an SAS intersection point denoted by xi3 with index i3, its corresponding concave

SES patch P− can be written as P− = R(xi3)
⋂

Γses. In Figure 4, for instance, P+ is a red convex
patch, Pt is a yellow toroidal patch and P− is a blue concave patch. Further, according to Theorem
2.1, we know that R(Pi1) is a spherical sector, R(li2) is a double-cone region and R(xi3) is a
polyhedron.

There is no difficulty to compute the convex SES patches or the toroidal SES patches given all
spherical SAS patches and circular SAS arcs, see details in [2]. However, the self-intersection
problem might occur among the concave SES patches. For an SAS intersection point xi3 ∈
Sj1
⋂
Sj2
⋂
Sj3 , denote by P4 the concave spherical triangle corresponding to xi3 (see the left

of Figure 5 for a schematic), that is,

P4 = ∂Brp(xi3)
⋂{

p : p = xi3 +

3∑
k=1

λk(cjk − xi3), ∀λk ≥ 0

}
,

where cjk is the center of the sphere Sjk associated with xi3 , k = 1, 2, 3, and Br(c) denotes the open
ball with center c and radius r. Notice that P4 is a triangle-shaped patch generated by the sphere
∂Brp(xi3) and three planes, see the left of Figure 5 for an illustration. Then, we have the following
result from [18] for computing the concave SES patch P− corresponding to xi3 .

Theorem 2.2. P−=P4\
⋃
x∈K Brp(x) where K = {x ∈ I : ‖x− xi3‖ < 2rp, x 6= xi3} and I de-

notes the set of all SAS intersection points.

If P− does not coincide with P4, singular arcs occur on the concave SES patch and constitute
part of its boundary ∂P−, see the right of Figure 5 for an illustration. In fact, Theorem 2.2 says
that an arbitrary concave SES patch P− can be characterized as P4 excluding all spherical probes
centered at the "nearby" intersection points in K.

Remark 2.2. Theoretically speaking, the geometry of a concave SES patch can be as complicated
as possible. But Theorem 2.2 provides an analytical representation of each concave SES, which
finally gives a complete characterization of the SES together with the analytical representation of
each convex SES patch and each toroidal SES patch.
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Figure 5: On the left, the concave spherical triangle P4 with vertices (a1, a2, a3) corresponds to
an intersection point xI . In the case where P− coincide with P4, there will be no singularity
on the concave spherical patch. On the right, the concave spherical patch P− does not coincide
with P4 and there are singular circular arcs as parts of its boundary. The vertices of P− are
(a1, a2, a3, a4, b1, b2, a5). The two flat grey regions D1 and D2 are formed by the intersection of P4
with two other nearby spherical probes. These two regions have the boundaries composed of line
segments and circular arcs.

3 Construction of Molecular Surfaces
This section will focus on the construction of molecular surfaces by calculating different components
of them. We only consider the SAS and the SES since the construction of the VdW-surface is the
same as the SAS. Furthermore, we assume that any SAS-ball is not included in another one
(otherwise, the inner SAS-ball can be ignored).

3.1 Data Structures of the SAS
We first need to compute an intersection matrix in which the i-th row records the neighboring SAS-
spheres intersected with the i-th SAS-sphere. To retrieve all neighboring SAS-spheres, we can use
a data structure called a binary spatial division tree proposed by Barnes and Hut with the average
complexity O(logM) [23, 8] whereM is the number of atoms. In practice, the maximum number of
intersected SAS-spheres for a given SAS-sphere is bounded by a constant kmax. In consequence, the
intersection matrix is defined of size M × kmax and each row reports the indices of the neighboring
spheres. Based on this intersection matrix, we can establish data structures of the components of
both the SAS and then the SES.

An intersection point on the SAS can in theory be formed by the intersection of more than three
SAS-spheres. This can appear quite often due to symmetries. In this case, the intersection can
however be divided into multiple triplets of SAS-spheres for simplicity. Therefore, we assume that
any intersection point is formed by the intersection of three SAS-spheres. On each SAS-sphere, we
calculate the intersection points formed by the intersection with any two neighboring SAS-spheres.
After calculating the intersection points on each SAS-sphere, we obtain the set of all intersection
points I. An intersection point has the following data structure:

8



SAS Intersection Point

• (x, y, z): coordinate of the point

• (i, j, k): indices of three corresponding SAS-spheres

For each pair of neighboring SAS-spheres, we can calculate all circular arcs on the intersection
circle of two intersecting SAS-spheres since all intersection points on this circle are known. To
represent each circular arc, we record the starting and ending point, its center, radius, radian and
the pair of SAS-spheres with the following data structure:

Circular SAS Arc

• (i1, i2): index of the starting and ending intersection point

• (x, y, z): coordinate of the center

• r: radius
• β: radian
• (i, j): indices of two corresponding SAS-spheres

On each SAS-sphere, there are loops composed of circular arcs, which also form the boundaries
of spherical patches. In consequence, we can represent each loop by a set of constituting circular
arcs and then each spherical patch by a set of loops forming the boundary. The following data
structures are used:

SAS Loop

• l1, l2, . . . , ln1
: the consisting circu-

lar arcs

• i: index of the SAS-sphere on which
the loop lies

Spherical SAS Patch

• L1,L2, . . . ,Ln2
: the loops forming

the boundary of the patch

• i: index of the SAS-sphere on which
the patch lies

3.2 Assembling Spherical Patches
The crucial problem in the above data structures is to associate a spherical patch with a set of
loops forming its boundary. This is tightly connected with determining whether two loops lie on
the boundary of a common spherical patch or not, given all loops on a sphere. This motivates us
to propose a method based on a binary tree structure. To do so, we define the "interior" and
"exterior" of a loop on a sphere. More precisely, a loop divides the sphere into the "interior",
the part which is not hidden by any intersected sphere forming this loop, and the "exterior", the
remaining part. Denote by {L1,L2, . . . ,Ln} the list of loops on the sphere. For any two loops
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Figure 6: On the left is a brief schematic of an SAS-sphere and the loops on it. There are six
loops on the SAS-sphere {L1,L2,L3,L5,L6,L6}, and three spherical patches with the boundaries
formed by two loops in green {L4,L5}, three loops in red {L1,L3,L6} and one loop in blue {L2}
respectively. The tree on the right illustrates the corresponding binary tree whose leaves identify
the boundaries of three different spherical patches.

Li and Lj belonging to the boundary of a common spherical patch, we then have Li ⊂ L◦j and
Lj ⊂ L◦i , where L◦i and L◦j represent respectively the "interior" of L◦i and L◦j . In consequence, each
spherical patch on the sphere has a boundary composed of loops which are "inside" each other.
Here, one loop "inside" another means that the loop is in the "interior" of the other and further, a
loop is said to be "inside" itself.

The problem is to classify all loops into different classes such that each loop in one class is
"inside" another one in the same class. We first divide the set of loops on a sphere into two subsets
by checking whether an element of the set is "inside" a given loop or not. Then, we can look at
each of the subsets (loops) and for each subset, we check again if each loop of this subset is "inside"
the first loop of this subset. If yes, we continue to check for the next loop of the subset until we find
one loop that is "outside" another and then we build two new subsets for this subset. Otherwise,
if each loop of the subset is "inside" all the others, we leave this subset as a leaf of the binary tree
representing the boundary of a spherical patch. Given an initial loop, we can therefore derive a
binary tree whose leaves identify the boundaries of different spherical patches. See Figure 6 for a
schematic of this process.

This method is also suitable for assembling a concave spherical SES patch denoted by P−
corresponding to an SAS intersection point xi3 using the formula in Theorem 2.2. We first calculate
all loops forming the boundary of P− each having a data structure as an SAS loop. Then, we classify
the set of loops into different subsets each identifying the boundary of a sub-patch using the above
method which is based on a binary tree.

3.3 Assembling Surfaces
a. SAS

With the above data structures of different molecular components, we are ready to construct com-
plete and exterior molecular surfaces, i.e., assemble these data structures. The cSAS is composed
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Figure 7: Schematics of a rectangle-shaped toroidal patch (left, yellow) and a double-triangle-
shaped toroidal patch (right, yellow) corresponding to two circular SAS circles respectively with
radius larger than and smaller than rp.

Figure 8: The SAS and the SES of caffeine with probe radius rp = 1.5Å. On the left, the SAS is
composed of spherical patches in blue, circular arcs in yellow and intersection points in red. On the
right, the patches in red (resp. in yellow or in blue) are convex spherical patches (resp. toroidal
patches or concave spherical patches) on the SES, each corresponding to a spherical patch (resp. a
circular arc or an intersection point) on the SAS.

of all spherical patches on each SAS-sphere, which have been calculated in Section 3.2. We map a
faraway point from the molecule onto a spherical SAS patch and then use this patch as the first
element of the eSAS. Two spherical SAS patches are neighbors if they have a common circular arc
or circle on their boundaries. By adding neighboring spherical patches one by one, we finally obtain
all spherical patches on the eSAS. Since the data structure of each patch contains all necessary
information about its neighbors, this is straightforward.

b. SES

As already mentioned, a spherical SAS patch (cSAS or eSAS) corresponds to a similar convex
spherical SES patch (respectively cSES or eSES), a circular SAS arc corresponds to a (rectangle-
shaped or double-triangle-shaped, see Figure 7) toroidal SES patch and an SAS intersection point
corresponds to a concave spherical SES patch obtained from Theorem 2.2. A graphical illustration is
presented in Figure 8 for the caffeine molecule. With this geometrical relationship, the construction
of the cSES and the eSES can be done directly based on the construction (i.e., the assembling of
the data structures) of the cSAS and the eSAS, where the data structures of different SES patches
are established as follows:
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Rectangle-shaped Toroidal Patch

• il: index of the corresponding cir-
cular SAS arc

• Lt1 or (Lt1,Lt2) : one loop composed
of four circular arcs or two circles
forming the boundary

Double-triangle-shaped Toroidal Patch

• il: index of the corresponding cir-
cular SAS arc

• (Lt1,Lt2): two loops each composed
of up to three circular arcs forming
the boundary

Convex Spherical SES Patch

• iP : index of the corresponding
spherical SAS patch

• L+
1 ,L

+
2 , . . . ,L+

m1
: loops forming the

boundary of the patch

Concave Spherical SES Patch (or Sub-
patch)

• iI : index of the corresponding SAS
intersection point

• L−1 ,L
−
2 , . . . ,L−m2

: loops forming the
boundary of the patch

In the above data structures of the SES, a loop (Lti) on a toroidal patch contains only the corre-
sponding circular arcs (or circles), each having the same structure as a circular SAS arc introduced
in the previous subsection. A loop (L+

i or L−i ) on a spherical SES patch has the same structure
as an SAS loop containing both the corresponding circular arcs (or circles) and the index of the
sphere on which the loop lies.

4 Molecular Inner Holes
As already mentioned, there might exist inner holes in the cSAS-cavity (or the VdW-cavity). In
implicit solvation models, one might be interested in filling these inner holes since it is unphysical
that the solvent is present in these holes.One possibility is to construct virtual atoms to fill these
inner holes, which simultaneously doesn’t influence the construction of the eSAS. In particular,
these virtual atoms can be treated as completely artificial with the purpose to fill these inner holes.
One has however to consider that these virtual balls should not intersect the exterior region of the
SAS-cavity.

Denote the exterior SAS by Γe and the separate inner subsurfaces of the cSAS by Γi
j , 1 ≤ j ≤ n.

Further, denote the set of intersection points on Γe by Ie and the set of intersection points on Γi
j

by I i
j . With the above notations, we state the following lemma:

Lemma 4.1. The distance between two subsurfaces of the cSAS can be characterized by

dist(Γe,Γi
j) = min

x∈Ie,y∈Iij
‖x− y‖, ∀1 ≤ j ≤ n,

and
dist(Γi

j ,Γ
i
k) = min

x∈Iij ,y∈Iik
‖x− y‖, ∀1 ≤ j, k ≤ n,

where dist(X,Y) denotes the minimum distance between two sets X and Y defined by dist(X,Y ) =
minx∈X,y∈Y ‖x− y‖ and ‖ · ‖ denotes the Euclidean norm.
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Proof. Consider any point p ∈ Γi
j . If it has a closest point xpsas ∈ Γe lying on a spherical patch or a

circular SAS arc, then p must lie on the corresponding line segment or the corresponding triangle
according to Theorem 2.1 (and Remark 2.1). However, notice that p is not included by the union of
all SAS-spheres. It implies that p can not lie on such a line segment or triangle which is covered by
the union of SAS-spheres. This is a contradiction! In consequence, p can only have a closest point
to Γe in the set of intersection points Ie. On the other hand, we have the same conclusion that for
any point on Γe, it can only have a closest point to Γi

j in I i
j . Therefore, the distance between Γe

and Γi
j is equal to the distance between the two sets of intersection points Ie and I i

j . That is to say,

dist(Γe,Γi
j) = min

x∈Γe,y∈Γi
j

‖x− y‖ = min
x∈Ie,y∈Γi

j

‖x− y‖ = min
x∈Ie,y∈Iij

‖x− y‖.

Further, we have the same result for Γi
j and Γi

k, i.e., the distance between Γi
j and Γi

k is equal to the
distance between the two sets I i

j and I i
k.

The above lemma allows a fast computation of the distance from an inner cavity to the exterior
SAS or to another inner cavity since the right-hand sides only compute the distances among the
finite number of intersection points. With the distances between each inner subsurface and the
exterior subsurface Γe of the cSAS (i.e. the eSAS), we can add virtual spheres with small enough
radii so that each virtual sphere doesn’t intersect Γe. This prevents the added virtual spheres
affecting the geometry of Γe.

Given an inner subsurface Γi
j , we want to fill the inner hole enclosed by it with virtual spheres.

We propose the following three steps to do this:

• First, we fix the radii of virtual atoms as δj =
1

2
dist(Γe,Γi

j).

• Second, we take a small rectangular box containing the inner hole and take a set of virtual
spheres with radius δj which cover this box completely, implying that the inner hole is also
covered.

• Third, we remove all virtual spheres whose centers lie outside the inner hole and at the same
time have distance to Γi

j greater than δj . In other words, we remove those virtual spheres
which don’t intersect the inner hole and therefore don’t contribute to fill the inner hole.

In consequence, the remaining virtual spheres (atoms) covers the inner hole enclosed by Γi
j while

do not intersect the exterior region of the SAS-cavity. By repeating the above steps for each inner
cavity with the boundary Γi

j , ∀1 ≤ j ≤ n, we can finally fill all inner holes with virtual spheres.
Figure 9 illustrates the added virtual spheres for filling four inner holes of molecule 1ETN, one
sphere for each hole.

5 Meshing
The SAS is composed of spherical patches like the VdW-surface but with increased radii ri + rp.
In consequence, meshing the SAS or the VdW-surface can be reduced to developing a meshing
algorithm for an arbitrary spherical patch given its SAS-center, its SAS-radius and its boundary
information obtained from the above data structures. This algorithm can also be applied to mesh a
convex or concave SES patch, since its center, its radius and its boundary information are known. In
this section, we propose a meshing algorithm of molecular surface consisting of two sub-algorithms
respectively for meshing a spherical patch and meshing a toroidal patch.
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Figure 9: The left figure shows the SAS (blue) of 1ETN with rp = 0.7Å and the added virtual
spheres (yellow) filling the inner holes. On the right, the inner holes and the added virtual spheres
are magnified for a better view.

5.1 Boundary Division
We first give a strategy for dividing the boundary of each (toroidal or spherical) patch on the SAS
or the SES, which ensures that the meshes of two neighboring patches match on their interface, i.e.,
that the final global mesh will be conforming.

To divide the boundary of a toroidal or a spherical patch, we set initially the triangle size
(the approximate length of a triangle edge) to d, which should be relatively small compared to the
radius of the spherical patch. Since the boundary of a patch consists of loops which are composed of
circular arcs, we make a uniform division of each circular arc on the boundary. The radius and the
radian of a circular arc lm are denoted by rlm and θlm . At the same time, we set a maximum allowed
angle variation between two neighboring division points to α0 (in our codes, we use α0 = 60◦) in the
case where the radius of the circular arc rlm is small compared to d. Then, the number of elements
of the discretization of this circular arc denoted by Nlm is set as follows:

Nlm = max

{⌊
rlmθlm
d

⌋
+ 1,

⌊
θlm
α0

⌋
+ 1

}
, (5.5)

where b·c is the floor function which maps a real number to its largest smaller integer. In conse-
quence, this ensures that the distance and the angle variation between two neighboring division
points are respectively smaller than d and α0.

5.2 Spherical Patches
In this subsection, we use the basic advancing-front method, see [24, 25, 26, 27, 28] for an overview
of this technique, for meshing a (convex or concave, SAS or SES) spherical patch uniformly, with
its center, its radius and its boundary information known. We only present the brief scheme of this
method working on a sphere. However, we emphasize that any other suitable meshing algorithm
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Figure 10: Meshing two spherical patches.

can be applied to the spherical patch as long as they conserve the given boundary partition. For
instance, the marching cubes algorithm [29, 30] or the Delaunay refinement algorithm [31, 32], can
be taken into account. Therefore, the following algorithm can be replaced with another algorithm
of choice.

The process of any advancing-front method can be summarized as follows:

(1) Initialization of the front.

(2) Creation of an internal element

– determination of the departure zone;

– analysis of the entity and creation of (an) internal point(s) and (an) internal element(s);

– update the front.

(3) Repeat the creation of elements as long as the front is not empty.

For a given spherical patch, the initial front is chosen naturally to be its boundary which has been
divided in Section 5.1. Then, a departure edge in the front is analyzed from which one or several
new internal triangles are created. The front is updated and the process repeated until the front is
empty, that is, when the front has merged and the spherical patch is entirely meshed.

To keep the completeness, we present in the Appendix our implementation of the advancing-
front algorithm. Also, we illustrate the mesh of a spherical patch that is obtained using this
advancing-front algorithm in Figure 10.

Remark 5.1. Considering that the goal is to visualize molecular surfaces, the quality of mesh will
not be focused on. If one aims to high-quality meshes, a remeshing process might be helpful or one
can also use a different advancing-front algorithm.

5.3 Toroidal Patches
To mesh a toroidal SES patch, we should distinguish the cases of a rectangle-shaped patch and
a double-triangle-shaped patch. We can parameterize a rectangle-shaped patch by defining a
mapping from the toroidal patch to a rectangle having the same side length and the same boundary
division as this patch. In consequence, given the boundary division of the rectangle, we first mesh
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Figure 11: Schematics of meshing a rectangle (left) and a isosceles triangle (right) with the boundary
division given.

Figure 12: Meshing a rectangle-shaped patch (left) and a double-triangle-shaped patch (right).

it in a trivial way (see the left of Figure 11 for a schematic) and then map the vertices of this mesh
back to the patch to obtain the mesh of the rectangle-shaped patch. Similarly, we can parameterize
a double-triangle-shaped patch by defining a mapping from this patch to two isosceles triangles
respectively having the same side lengths and the same boundary divisions. We first mesh the two
isosceles triangles (see the right of Figure 11 for a schematic) and then map the vertices of this
mesh back to the patch to obtain the mesh of the double-triangle-shaped patch. Since the toroidal
SES patch is part of a torus generated by rotating the spherical probe around an axis, these two
mappings can be explicitly given using the parametric representation of a torus [33].

We illustrate the mesh of a rectangle-shaped toroidal patch on the left of Figure 12 and the
mesh of a double-triangle-shaped toroidal patch on the right.

5.4 Mesh Refinement
Once the mesh of a molecular patch is established, it is easy to refine it uniformly. Indeed, we
can bisect each edge of the mesh and map its middle point to the closest point on the patch which
can be computed given the data structure of the patch. Then, each triangle is replaced with four
smaller triangles formed by the three vertices of this triangle and three closest points to the middle
points of the three edges. In consequence, the refined mesh consists of these smaller triangles. This
process of refinement is quite efficient with the complexity proportional to the number of triangles
in the mesh.
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Figure 13: The mesh (right) of caffeine before remeshing with rp = 1Å and the mesh (left) after
remeshing with the MMGS tool.

5.5 Remeshing
In many cases, high-quality meshes of molecular surfaces are required. One way to further improve
the meshes generated by the above advancing-front algorithm is to use surface remeshing tools.
With a remeshing tool, one can usually set some quality requirements and obtain an output mesh
approximating well the input mesh. Figure 13 illustrates the mesh of caffeine using the remeshing
tool MMGS developed by Dapogny et al. [34] as an example. One should notice that in this case,
the remeshing can not ensure that all vertices lie exactly on the molecular surfaces anymore but it
can keep the initial vertices of the input mesh.

5.6 Illustrations
We visualize in Figure 14 the meshes of the eSES of some artificial molecules and in Figure 15 and
Figure 16 the meshes of eSES of some non-artificial molecules. In both cases, they are generated
by the above-proposed meshing algorithm. In these figures, the green curves are the boundaries of
all singular concave SES patches which are computed according to Theorem 2.2. On these singular
patches, some singular arcs of the surface appear which might cause the self-intersection problem
encountered in previous implementations. Generally speaking, the existence of singularities is quite
often and the larger the molecule is, the more singularities exist.

In addition, we should mention that the techniques of molecular visualization (for example,
[9, 10, 11, 12]) can also be combined with the molecular data structures constructed in Section 3,
taking into account the complete characterization of the SES.

5.7 Computational Cost
To get a first idea about the efficiency of the proposed algorithm, we present the total run time
with respect to the number of atoms of different molecules. This program was run on a laptop
with 2.5GHz quad-core Intel Core i7 processor in Matlab. Figure 17 demonstrates the relationship
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Figure 14: The eSES of three artificial spheres (left) and the eSES of four artificial spheres (right)
where the green curves are the boundaries of singular concave patches.

Figure 15: The eSES of molecule 1B17 with 485 atoms (left) and the eSES of molecule 101M
with 1414 atoms (right) where rp = 1.5Å. The green curves are the boundaries of singular concave
patches.
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Figure 16: The eSES of molecule 4S19 with 3333 atoms (left) and the eSES of molecule 1IA0
with 9606 atoms (right) where rp = 1.5Å. The green curves are the boundaries of singular concave
patches.

between the total run time and the size of molecule, where we observe almost a linear relationship.
In order to lower the pre-constant of the linear scaling, one has to refer to a proper and more profes-
sional implementation in a better performing language. We therefore expect a better performance
of the proposed method in fortran or C++.

6 Conclusion
In this article, we presented the construction of data structures for different molecular surfaces
containing all information of their components. At the heart of our method is the recently developed
singularity analysis of the SES which avoids the problem of self-intersection. This allows us to
develop a meshing algorithm by meshing separately each patch, which includes two sub-algorithms
respectively for meshing a (convex or concave, SAS or SES) spherical patch with an advancing-front
method and for meshing a toroidal (SES) patch. It is also worth mentioning that each vertex of
the created mesh lies exactly on the molecular surface. In addition, we propose an algorithm for
filling molecular inner holes with virtual spheres since in some cases, the presence of these inner
holes is unphysical, in particular in the context of solvation model. We provide therefore a way
to treat these inner holes for more accurate chemical computation. In the future, we will focus
on the computation of solvation energy in the polarizable continuum solvation model (PCM) using
the SES-cavity, based on the complete characterization of the SES, together with the proposed
algorithm for filling inner holes.
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Figure 17: Total run time of the proposed algorithm for meshing the SESs of molecules with various
sizes where the approximate triangle size d is set to be 0.5Å and the probe radius rp = 1.5Å.
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Figure 18: On the left, the left endpoint and the right endpoint of edge e are determined by the
orientation of the loop. On the right, two dashed edges e1 (in blue) and e2 (in red) "intersect" in
the sense that their two projected chords in form of circular arcs intersect on the sphere.

A Appendix: Advancing-front Algorithm

A.1 Data Structure
Denote by P ∈ RNp×3 the array of coordinates of the Np points in the mesh, initialized to be the
coordinates of all points of the boundary division. We define the orientation of any loop on the
spherical patch satisfying that the interior of this patch is always on the right-hand side if one
goes along the loop. In consequence, each edge on a loop is endowed with an orientation, implying
that we can classify its two endpoints to the right endpoint (or the starting endpoint) and the left
endpoint (or the ending endpoint) viewing from the outside of the sphere where the patch lies, see
the left of Figure 18 for a schematic.

Since the front might consist of several loops, we choose one of them as the active loop. Any
edge on this active loop is called an active edge and any point on the active loop is called an active
point. All active edges are sorted by the orientation of the active loop. We always choose the first
active edge as the departure edge mentioned in Subsection 5.2 and create a new triangle having
the active edge as one side. Then, we update the set of active edges and go to the next active edge.

At each step, the set of active edges is represented by a matrix Ae of size Nae × 2 where Nae is
the number of active edges. Any active edge in Ae is represented by the indices of its two endpoints
in P . The set of triangles of the mesh at each step are represented by a matrix T of size Nt × 3
recording the indices of the three vertices of a triangle where Nt is the number of triangles in the
mesh.

A.2 Check Front Points
For a given active edge denoted by e with the right endpoint P1 and the left endpoint P2, we want
to construct a point P0 for creating a new triangle with the edge e and the opposite point P0. The
unit normal vectors at P1 and P2 on the spherical patch are denoted respectively by −→n1 and −→n2.
Then, we define a unit vector −→ne at the middle point of e by

−→ne =

−−−→
P1P2

|
−−−→
P1P2|

×
−→n1 +−→n2

2
,
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which is perpendicular to the edge e and is tangent to the spherical patch at the same time.
Geometrically speaking, −→ne is a tangential unit vector to the sphere pointing towards the unmeshed
region of the patch.

In the following, the notion of point-edge distance between a point and an edge is introduced
and defined as the sum of the Euclidean distances between the point and two endpoints of the edge.
Notice that each edge in the mesh is a chord of the corresponding sphere. Note that the projection
of the chord onto the sphere is a circular arc which lies on the plane generated by the chord and
the spherical center. We say that two edges "intersect" if their projected chords in form of circular
arcs intersect on the sphere, see the right of Figure 18 for a schematic of two "intersecting" edges.

For the edge e, the neighboring active edge with P1 as a common endpoint is called the right
neighboring active edge denoted by e1. The one with P2 as a common endpoint is called the left
neighboring active edge denoted by e2. The endpoint of e1, other than P1, is denoted by Pr and
the endpoint of e2, other than P2, is similarly denoted by Pl. By projecting the vectors

−−→
P1Pl and−−−→

P1P2 to the tangent plane to the sphere at point P1, we obtain two vectors −→τ1l and −→τ12. The angle
between e and e1, denoted by α1, is then defined to be the angle between vectors −→τ1l and −→τ12 if
det (−→τ1l,−→τ12,

−→n1) ≥ 0 and to be 2π minus the angle between vectors −→τ1l and −→τ12 if det (−→τ1l,−→τ12,
−→n1) < 0

where det(·) denotes the determinant of a matrix. The angle between e and e2, denoted α2, is defined
similarly to α1.

We first check if there exists possible points among the front points for the creation of a new
triangle and collect all candidates in a set Sf . This means that we first try to create a new triangle
with the existing front points without creating a new point. We propose two criterions for adding
front points to Sf as follows:

• Angle Criterion

Set a minimal angle between two neighboring active edges to εα. If α1 < εα, add the left
neighboring active point to Sf , see the left of Figure 19 for a shematic. If α2 < εα, add the
right neighboring active point to Sf .

• Point-edge Criterion

Set a point-edge distance tolerance between a front point and a front edge to εe. For a front
point Pf from the set of points of all loops, other than P1 or P2, we check if it has a distance
to e smaller than |e|+ εe where |e| is the length of e, see the right of Figure 19. Further, we
check if the scalar product between −→ne and the vector from the middle point of e to Pf is
positive, and simultaneously if both edges PfP1 and PfP2 do not "intersect" any other front
edge. If all conditions are satisfied, add Pf to Sf .

The angle criterion is used to check if the angle between e and one of its neighboring edges is small
and the point-edge criterion is used to check if there exists any front point close to the edge e. In
consequence, Sf is a list of front points Pf that are possibly suited for creating a new triangle with
the edge e and the opposite point Pf .

If Sf is not empty, we sort it with respect to the point-edge distance to the edge e and choose
the one denoted by P0 that has the minimal distance to e, i.e.,

P0 = argminp∈Sf
dist(p, e), (1.6)

where dist(p, e) is the point-edge distance between a point p and an edge e. This ensures that any
other point in Sf does not lie in the triangle 4P0P1P2.
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Figure 19: Planar schematics of two criterions for searching a possibly front point: angle criterion
(left) and point-edge distance criterion (right).

Figure 20: Planar schematics of two criterions for checking if Ptest is suited as a new vertex of the
mesh: point-edge criterion (left) and distance criterion (right).

A.3 Create a New Point
In the above subsection, we first scan the set of front points that can be used to create a new
triangle for a given edge e. Nevertheless, if Sf is empty, we should consider to create a new testing
point Ptest on the spherical patch. This testing point is constructed such that the edges PtestP1

and PtestP2 have the same length and that 4P1P2Ptest has a fixed height h (we take h =
√

3
2 d).

In the case where |e| = d, the triangle 4PtestP1P2 is equilateral. Then, we check if Ptest is suited
as a new vertex of the mesh with the following two criterions:

• Point-edge Criterion

Check first if there exists a front edge ef having a point-edge distance to Ptest smaller than
|ef |+εe, see the left of Figure 20. If yes, we further check for each endpoint of ef (still denoted
by Pf ) if the scalar product between −→ne and the vector from the middle point of ef to Pf
is positive and simultaneously the edges PfP1 and PfP2 do not "intersect" any other front
edge. If all conditions are satisfied for the edge ef and the endpoint Pf , we add Pf to Sf .

• Distance Criterion

Set a distance tolerance between a testing point and a front point to εd. If there exists a
front point Pf with distance to Ptest smaller than εd (see the right of Figure 20) and both
edges PfP1 and PfP2 do not "intersect" any other front edge, then we add Pf to Sf .

If Sf is not empty now, we still select the point P0 using formula (1.6) with this Sf . If Sf is empty,
we determine P0 as Ptest.
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A.4 Update Front
The previous section was devoted to determine the point P0 given an edge e. Then, a new triangle
can be created by connecting the endpoints of e and the point P0.

After the creation of the triangle, we update the active loop including Ae and Nae, the set of
vertices of the mesh including P and Np, as well the set of triangles T and Nt. However, we should
pay attention to two special cases of updating the active loop. If the point P0 is a front point on
the active loop but not a neighboring active point of e, the active loop is divided into two parts
and we chose one of them to be the new active loop. If the point P0 is a front point but not on
the active loop, we add the loop on which P0 lies to the active loop to form an active larger loop.
After updating, we go to the next active edge on the active loop and repeat the process until the
front has merged.

To obtain a mesh that is as uniform as possible, it is also necessary to control the length of
each newly created edge. From the boundary division of circular arcs in Section 5.1, the length of
any edge on the initial front is (in most cases, slightly) smaller than d. After the initialization, we
bisect the newly created edge whenever its length is larger than a given tolerance d0 and then map
its middle point to the closest point on the sphere in order to obtain two new shorter edges. This
technique ensures that each edge of the mesh will not become too large. Like this, we control the
maximal diameter of each triangle.

In the advancing-front algorithm for meshing a spherical patch, we generate a surface mesh on
the sphere which is essentially as difficult as generating a mesh for a planar domain in 2D. In this
process, a new triangle can always be created by determining an optimal point P0 and therefore the
front will finally merge. This implies that a dead lock [27] of the front will not appear. From another
point of view, we can first transform the spherical patch to a planar region, mesh it using a 2D mesh
generator such as the NetGen [27] and transform the mesh back to the original spherical patch. In
consequence, the robustness of the proposed advancing-front algorithm can be guaranteed.
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