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SUMMARY

We derive a fast meshing algorithm for molecular surfaces that is based on patch-wise meshing using
an advancing-front method adapted to the particular case of molecular surfaces encountered in implicit
solvation models in computational chemistry. We focus on the solvent accessible surface (SAS) and the
solvent excluded surface (SES). The essential ingredient is a newly developed analysis of such surfaces
that allows to describe and characterize all singularities explicitly. The presented algorithm thus avoids
completely the problem of self-intersection of the SES.

KEY WORDS: Molecular Surface, Solvent Excluded Surface, Molecular Visualization, Meshing,
Advancing-front Method

1. INTRODUCTION

The majority of chemically relevant reactions take place in the liquid phase and the effect of the
environment (solvent) is important and should be considered in in silico computations. Various
implicit solvation models have been proposed in which the molecular surface of the solute is a part
of the model and constitutes the interface of the atomistic and the continuum model, see [15] for
a review article and references therein. A second field where the notion of molecular surface is
important is simply the visualization of molecules. To model a molecular surface of the solute, each
constituting atom is idealized by a simple sphere with its Van der Waals (VdW) radius. Three kinds
of molecular surfaces are commonly used in solvation models or in molecular visualization: the
VdW surface, the Solvent Accessible Surface (SAS) and the Solvent Excluded Surface (SES).

1.1. Previous Works

The definitions of the SAS and the SES were first introduced by Lee & Richards [7, 12] in the 1970s.
The SES is also called the ”smooth molecular surfaces” or ”Connolly’s surfaces” due to Connolly’s
fundamental calculation on it [3]. In 1996, Michel Sanner proposed his MSMS (Michel Sanner’s
Molecular Surface) algorithm for meshing molecular surfaces [13] which is now one of the most
widely-used packages for molecular visualization. Besides, there are many other contributions on
the visualization of molecular surfaces [6, 9] or the calculation of molecular areas and volumes
[16, 2]. However, a computable implicit representation of the SES and a complete characterization
of the SES-singularities remained unsolved until a recent paper by us [10].

1.2. Contribution

We develop a fast meshing algorithm for molecular surfaces, especially the SES, based on the
analytical characterization of the SES including its singularities presented in [10]. The explicit
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2 CH. QUAN & B. STAMM

Figure 1. 2D-schematics of the Solvent Accessible Surface and the Solvent Excluded Surface, both defined
by a spherical probe in orange rolling over the molecular VdW-atoms in dark blue.

characterization of all singularities resolves the issue of self-intersection that is experienced due
to singularities as they can be computed prior to the meshing of the surface. This, in turn, improves
greatly the possibilities of meshing the surface.

1.3. Outline

In the next section, we give the definitions and the implicit representations of different molecular
surfaces. In the third section, the construction of molecular surfaces, which is defined by
different patches and their connectivity, is proposed. Based on this pre-computed data, a fast
meshing algorithm for molecular surfaces is developed including two sub-algorithms for meshing
respectively a (convex or concave) spherical patch and a toroidal patch in the fourth section. Then,
we give the illustrations of some artificial as well as realistic molecular surfaces in the fifth section.
Finally, a conclusion is presented in the last section.

2. MOLECULAR SURFACES

A mathematical analysis and calculation of the SAS and the SES have been presented in our recent
work [10]. In this section, we recall some results including a mathematical definition of the surfaces
using their implicit representations.

2.1. Definitions

In quantum chemistry, atoms of a molecule are represented by VdW-balls with VdW-radii
which are experimentally fitted, given the underlying chemical element [11]. In consequence and
mathematically speaking, the VdW surface is defined as the topological boundary of the union of all
VdW-balls. Further, the SAS of a solute molecule is defined by the center of an idealized spherical
probe rolling over the solute VdW-atoms, that is, the surface enclosing the region in which the
center of a spherical probe can not enter. Finally, the SES is defined by the same spherical probe
rolling over the solute VdW-atoms, but now we consider the surface enclosing the region in which a
spherical probe can not access. In other words, the SES is the boundary of the union of all spherical
probes that do not intersect the VdW-balls of the solute molecule, see Figure 1 for a graphical
illustration.

Sometimes, the SAS can be non-connected: it can be composed of several nonintersecting
separate surfaces. We call the outmost surface as the exterior Solvent Accessible Surface (eSAS)
and the union of all separated surfaces as the complete Solvent Accessible Surface (cSAS), see
Figure 2 for an example and [10] for details. Correspondingly, we also propose the concept of the
complete Solvent Excluded Surface (cSES) and the exterior Solvent Excluded Surface (eSES). We
make a convention that the SAS refers to both the cSAS and the eSAS in a general context, and the
SES refers to both the cSES and the eSES.
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Figure 2. The eSAS (left) and the transparent cSAS (right) of 1B17 with 485 atoms.

Figure 3. 3D schematic of the SES illustrating the convex spherical patches (red), the toroidal patches
(yellow) and the concave spherical patches (blue).

Both the VdW surface and the SAS are composed of three parts: open spherical patches, open
circular arcs (or circles) and intersection points (formed by the intersection of three or more spheres).
The SES can be divided into three corresponding types of patches [3]: convex spherical patches,
toroidal patches and concave spherical patches, see Figure 3 for a 3D illustration. As shown in [10],
any point on a convex spherical patch of the SES has a closest point to the SAS lying on a spherical
patch. Similarly, any point on a toroidal patch of the SES has a closest point to the SAS lying on a
circular arc, and any point on a concave patch has a closest point to the SAS which is an intersection
point.

2.2. Implicit Representations

We denote by M the number of atoms in a solute molecule, by ci ∈ R3 and ri ∈ R+ the center
and the radius of the i-th VdW-atom. The open ball with center ci and radius ri is called the i-th
VdW-ball. The VdW surface can consequently be represented as an implicit surface f−1vdw(0) with
the following implicit function:

fvdw(p) = min
i=1,...,M

{‖p− ci‖2 − ri}, ∀p ∈ R3. (1)

Similarly, the open ball with center ci and radius ri + rp is called the i-th SAS-ball denoted by
Bi, where rp is the radius of the idealized spherical probe. Furthermore, we denote by Si the i-th
SAS-sphere corresponding to Bi, that is, Si = ∂Bi. Similar to the VdW surface, the SAS can be
represented as an implicit surface f̃−1sas(0) with the following implicit function:

f̃sas(p) = fvdw(p)− rp = min
i=1,...,M

{‖p− ci‖2 − ri − rp}, ∀p ∈ R3. (2)
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4 CH. QUAN & B. STAMM

We notice that the above implicit function of the SAS is simple to compute. It seems nevertheless
hopeless for us to further obtain an implicit function of the SES for the reason that f̃sas(p) is not
a distance function to the SAS. On the other hand, having the signed distance function at hand
would allow the construction of an implicit function for the SES due to the geometrical relationship
between the SAS and the SES, i.e., they are separated by the fixed distance rp.

In [10], we calculated the signed distance function to the SAS. Indeed, since the SAS is a closed
surface, there exists a closest point on the SAS to any given point p ∈ R3, which is denoted by xpsas
depending on p. The signed distance function fsas(p) can then be easily written as:

fsas(p) =

{
−‖p− xpsas‖ if p lies inside the SAS,
‖p− xpsas‖ if p lies outside the SAS.

(3)

The difficulty is however to find efficiently the closest point xpsas.
According to the fact that any point on the SES has signed distance −rp to the SAS, an implicit

function of the SES is obtained directly as:

fses(p) = fsas(p) + rp, (4)

which motivates the choice of using the signed distance function denoted by fsas(p) to represent the
SAS. From the above formula, the SES can be represented by a level set f−1sas(−rp), associated with
the signed distance function fsas to the SAS. Therefore, the key point becomes how to compute
the signed distance fsas(p) from a point p ∈ R3 to the SAS. Generally speaking, given a general
surface S ⊂ R3 and any arbitrary point p ∈ R3, it is difficult to compute the signed distance from
p to S. However, considering that the SAS is a special surface composed of spherical patches, this
computation can be done analytically [10].

Further, the region enclosed by the VdW surface is called the VdW-cavity, that is, any point p in
the VdW-cavity satisfies fvdw(p) ≤ 0. More generally, the region enclosed by a molecular surface
is called by its corresponding molecular cavity. In consequence, the region enclosed by the SAS
is called the SAS-cavity, and the region enclosed by the SES is called the SES-cavity. Similarly,
any point p in the SAS-cavity satisfies fsas(p) ≤ 0, and any point p in the SES-cavity satisfies
fses(p) ≤ 0.

3. CONSTRUCTION OF MOLECULAR SURFACES

This section will focus on the construction of molecular surfaces by calculating different
components of them. Since the basic ideas have been showed only briefly in [10], we will present
here more details about how to construct such surfaces in practice. We only consider the SAS and
the SES since the construction of the VdW surface is the same as the SAS. Furthermore, we assume
that any SAS-ball is not included by any other one (otherwise, the inner SAS-ball can be ignored).

3.1. Data Structures of the SAS

We first need to compute an intersection matrix in which the i-th row records the neighbor SAS-
spheres intersected with the i-th SAS-sphere. To retrieve all neighbor SAS-spheres, we can use
a data structure called a binary spatial division tree proposed by Barnes and Hut with the average
complexityO(logM) [1, 13] whereM is the number of atoms. In practice, the maximum number of
intersection SAS-spheres for a given SAS-sphere is bounded by a constant kmax. In consequence, the
intersection matrix is defined of size M × kmax and each row reports the indices of the neighboring
spheres. Based on this intersection matrix, we can establish data structures of the components of
both the SAS and then the SES.

An intersection point on the SAS can in theory be formed by the intersection of more than
three SAS-spheres. This can appear quite often due to symmetry. In this case, the intersection can
however be divided into multiple triplets of SAS-spheres for simplicity. Therefore, we assume that
any intersection point is formed by the intersection of three SAS-spheres. On each SAS-sphere, we
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calculate the intersection points formed by the intersection with any two neighbor SAS-spheres.
After calculating the intersection points on each SAS-sphere, we obtain the set of all intersection
points I . An intersection point has the following data structure:

SAS Intersection Point

• (x, y, z): coordinate of the point
• (i, j, k): indices of three corresponding SAS-spheres

For each pair of neighboring SAS-spheres, we can calculate all circular arcs on the intersection
circle of two intersecting SAS-spheres since all intersection points on this circle are known. To
represent each circular arc, we record the starting and ending point, its center, radius, radian and the
pair of SAS-spheres with the following data structure:

Circular SAS Arc

• (i1, i2): indices of the starting and ending intersection point
• (x, y, z): coordinate of the center
• r: radius
• β: radian
• (i, j): indices of two corresponding SAS-spheres

On each SAS-sphere, there are loops composed of circular arcs, which also form the boundaries of
spherical patches. In consequence, we can represent each loop by a set of constituting circular arcs
and then each spherical patch by a set of loops forming the boundary. The following data structures
are used:

SAS Loop

• l1, l2, . . . , ln1
: indices of the con-

sisting circular arcs
• i: index of the SAS-sphere on

which the loop lies

Spherical SAS Patch

• L1,L2, . . . ,Ln2
: indices of the

loops forming the boundary of the
patch
• i: index of the SAS-sphere on

which the patch lies

3.2. Assembling Spherical Patches

The crucial problem in the above data structures is to associate a spherical patch with a set of
loops forming its boundary. This is tightly connected with determining whether two loops lie on
the boundary of a common spherical patch or not, given all loops on a sphere. This motivates us to
propose a method based a binary tree structure. To do so, we define the ”interior” and ”exterior” of
a loop on a sphere. More precisely, a loop divides the sphere into the ”interior”, the part which is
not hidden by any intersected (open) ball forming this loop, and the ”exterior”, the remaining part.
Therefore, a loop itself belongs to its ”interior”. Denote by {L1,L2, . . . ,Ln} the list of loops on the
sphere. For any two loops Li and Lj belonging to the boundary of a common spherical patch, we
then have Li ⊂ L◦j and Lj ⊂ L◦i , where L◦i and L◦j represent respectively the ”interior” of Li and
Lj . In consequence, each spherical patch on the sphere has a boundary composed of loops which
are ”inside” each other. Here, one loop ”inside” another means that the loop is in the ”interior” of
the other.
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6 CH. QUAN & B. STAMM

Figure 4. On the left is a brief schematic of all loops on an SAS-sphere. There are six loops on the SAS-
sphere {L1,L2,L3,L5,L6,L6}, and three spherical patches with the boundaries formed by two loops in
green {L4,L5}, three loops in red {L1,L3,L6} and one loop in blue {L2} respectively. The tree on the right
illustrates the corresponding binary tree whose leaves identify the boundaries of three different spherical

patches.

The problem is to classify all loops into different classes such that each loop in one class is
”inside” any other one in the same class. We first divide the set of loops on a sphere into two subsets
by checking whether each element of the set is ”inside” the first loop or not. Then, we can look
at each of the subsets (loops) and for each subset, we check again if each loop of this subset is
”inside” the first loop of this subset. If yes, we continue to check for the next loop of the subset
until we find one loop that is ”outside” another and then we build two new subsets for this subset.
Otherwise, if each loop of the subset is ”inside” all the others, we leave this subset as a leaf of the
binary tree representing the boundary of a spherical patch. Given an initial loop, we can therefore
derive a binary tree whose leaves identify the boundaries of different spherical patches. See Figure
4 for a schematics of this process.

This method is also suitable for assembling a concave spherical SES patch denoted by P−
corresponding to an SAS intersection point xm based on the formula presented in [10]:

P− = P0\
⋂
x∈K

Brp(x), (5)

where P0 is the spherical triangle containing P−,K collects all SAS intersection points with distance
less than 2rp to xm, and Brp(x) denotes the open ball centered at an intersection point x with
radius rp. Notice that P− might be composed of several (in most cases, unique) spherical sub-
patches on ∂Brp(xm). The spherical triangle P0 is as illustrated by the blue patch in Figure 3 and
the surface that is cut out by the balls Brp(x) is due to the so-called self-intersection of the surface.

We first calculate all loops forming the boundary of P− each having a data structure like an SAS
loop. Then, we classify the set of loops into different subsets each identifying the boundary of a
sub-patch using the above method which is based on a binary tree.

3.3. Assembling Molecular Surfaces

With the above data structures of different molecular components, we are ready to construct different
molecular surfaces, i.e., assemble these data structures. The cSAS is composed of all spherical
patches on each SAS-sphere, which have been calculated in Section 3.2. For the eSAS, we map
a faraway point from the molecule onto a spherical SAS patch and then use this patch as the first
element of the eSAS. Two spherical SAS patches are neighbors if they have a common circular arc
or circle on their boundaries. By adding neighboring spherical patches one by one, we finally obtain
all spherical patches on the eSAS. Since the data structure of each patch contains all necessary
information about its neighbors, this is straightforward.
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Figure 5. Schematics of a rectangle-shaped toroidal patch (left, yellow) and a double-triangle-shaped toroidal
patch (right, yellow) corresponding to two circular SAS circles respectively with radius larger than and

smaller than rp.

Figure 6. The SAS and the SES of caffeine with probe radius rp = 1.5Å. On the left, the SAS is composed
of spherical patches in red, circular arcs in yellow and intersection points in blue. On the right, the patches
in red (resp. in yellow or in blue) are convex spherical patches (resp. toroidal patches or concave spherical
patches) on the SES, each corresponding to a spherical patch (resp. a circular arc or an intersection point)

on the SAS.

As already mentioned, a spherical SAS patch (cSAS or eSAS) corresponds to a similar convex
spherical SES patch (respectively cSES or eSES), a circular SAS arc corresponds to a (rectangle-
shaped or double-triangle-shaped, see Figure 5) toroidal SES patch and an SAS intersection point
corresponds to a concave spherical SES patch obtained by formula (5). A graphical illustration is
presented in Figure 6 for the caffeine molecule. With this geometrical relationship, the construction
of the cSES and the eSES can be done directly based on the construction (i.e., the assembling of the
data structures) of the cSAS and the eSAS, where the data structures of different SES patches are
established as follows:

Rectangle-shaped Toroidal Patch

• il: index of the corresponding
circular SAS arc
• Lt1 or (Lt1,Lt2) : index of one loop

composed of four circular arcs or
indices of two circles forming the
boundary

Double-triangle-shaped Toroidal Patch

• il: index of the corresponding
circular SAS arc

• (Lt1,Lt2): indices of two loops each
composed of up to three circular
arcs forming the boundary
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8 CH. QUAN & B. STAMM

Convex Spherical SES Patch

• iP : index of the corresponding
spherical SAS patch
• L+

1 ,L
+
2 , . . . ,L+

m1
: indices of the

loops forming the boundary of the
patch

Concave Spherical SES Patch (or Sub-
patch)

• iI : index of the corresponding SAS
intersection point

• L−1 ,L
−
2 , . . . ,L−m2

: indices of the
loops forming the boundary of the
patch

In the above data structures of the SES, a loop (Lti) on a toroidal patch contains only the
corresponding circular arcs (or circles), each having the same structure as a circular SAS arc
introduced in the previous subsection. A loop (L+

i or L−i ) on a spherical SES patch has the same
structure of an SAS loop containing both the corresponding circular arcs (or circles) and the index
of the sphere on which the loop lies.

4. MESHING ALGORITHM

The SAS is composed of spherical patches like the VdW surface. In consequence, meshing the
SAS or the VdW surface can be reduced to develop a meshing algorithm for an arbitrary spherical
patch given its SAS-center, its SAS-radius and its boundary information obtained from the above
data structures. This algorithm can also be applied to mesh a convex or concave SES patch, since
its center, its radius and its boundary information are known. In this section, we propose a fast
meshing algorithm of molecular surface consisting of two sub-algorithms respectively for meshing
a spherical patch and meshing a toroidal patch.

4.1. Boundary Division

We first give a strategy to divide the boundary of a (toroidal or spherical) patch on the SAS or the
SES, which ensures that the meshes of two neighboring patches match, i.e., that the final global
mesh will be conforming.

To divide the boundary of a toroidal or a spherical patch, we set initially the triangle size (the
approximate length of a triangle edge) to d, which should be relatively small compared to the radius
of the spherical patch. Since the boundary of a patch consists of loops which are composed of
circular arcs, we make a uniform division of each circular arc on the boundary. The radius and the
radian of a circular arc lm are denoted by rlm and θlm . At the same time, we set a maximum allowed
angle variation between two neighboring division points to α0 (we use a value of α0 = 60◦ in the
numerical examples) in the case where the radius of the circular arc rlm is small compared to d.
Then, the number of elements of the discretization of this circular arc denoted by Nlm is set as
follows:

Nlm = max

{⌊
rlmθlm
d

⌋
+ 1,

⌊
θlm
α0

⌋
+ 1

}
, (6)

where b·c is the floor function which maps a real number to its largest smaller integer. In
consequence, this ensures that the distance and the angle variation between two neighboring division
points are respectively smaller than d and α0.

4.2. Meshing a Spherical Patch

In this subsection, we present an advancing-front method, see [5, 8, 14, 4] for an overview of this
technique, for fast meshing a (convex or concave, SAS or SES) spherical patch uniformly, with its
center, its radius and its boundary information known. However, any other meshing algorithm can
be applied to the spherical patch as long as they conserve the given boundary partition. Therefore,
the following algorithm can be replaced with another algorithm of choice.
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4.2.1. General Strategy The process of any advancing-front method can be summarized as follows:

(1) Initialization of the front.
(2) Creation of an internal element

– determination of the departure zone;
– analysis of the entity and creation of (an) internal point(s) and (an) internal element(s);
– update the front.

(3) Repeat the creation of elements as long as the front is not empty.

For a given spherical patch, the initial front is chosen naturally to be its boundary which has been
divided in Section 4.1. Then, a departure edge in the front is analyzed from which one or several
new internal triangles are created. The front is updated and the process repeated until the front is
empty, that is, when the front has merged and the spherical patch is entirely meshed.

4.2.2. Data Structure Denote by P ∈ RNp×3 the coordinates of the Np points in the mesh,
initialized to be the coordinates of all points of the boundary division. We define the orientation
of any loop on the spherical patch satisfying that the interior of this patch is always on the right side
if one goes along the loop. In consequence, each edge on a loop is endowed with an orientation,
implying that we can classify its two endpoints by the right endpoint (the starting endpoint) and the
left endpoint (the ending endpoint).

Since the front might consist of several loops, we choose one of them as the active loop. This can
be due since the initial boundary of the patch is already composed by several loops or, as we will
see later, a loop can be split into two loops at any stage of the algorithm. Any edge on this active
loop is called an active edge and any point on the active loop is called an active point. All active
edges are sorted by the orientation of the active loop. We always choose the first active edge as the
departure edge mentioned in the previous subsubsection and create a new triangle having the active
edge as one side. Then, we update the set of active edges and go to the next active edge.

At each step, the set of active edges is represented by a matrix Ae of size Nae × 2 where Nae is
the number of active edges. Any active edge in Ae is represented by the indices of its two endpoints
in P . The set of triangles of the mesh at each step are represented by a matrix T of size Nt × 3
recording the indices of the three vertices of a triangle where Nt is the number of triangles in the
mesh.

4.2.3. Testing Front Points For a given active edge denoted by e with the right endpoint P1 and
the left endpoint P2, we want to construct a point P0 for creating a new triangle with the edge e
and the opposite point P0. The unit normal vectors at P1 and P2 on the spherical patch are denoted
respectively by −→n1 and −→n2. Then, we define a unit vector −→ne by

−→ne =
−−−→
P1P2

|
−−−→
P1P2|

×
−→n1 +−→n2

2
,

which is perpendicular to the edge e. Geometrically speaking, −→ne is a tangential unit vector to the
sphere pointing towards the unmeshed region of the patch.

In the following, the notion of point-edge distance between a point and an edge is introduced
and defined as the sum of the Euclidean distances between the point and two endpoints of the edge.
Notice that each edge in the mesh is a chord of the corresponding sphere and its projection on the
sphere, which is a circular arc, lies on the plane generated by this edge and the center of the sphere.
We say that two edges of the mesh ”intersect” if their corresponding projected circular arcs intersect
on the sphere.

For the edge e, the neighboring active edge with P1 as a common endpoint is called the right
neighboring active edge denoted by e1. The one with P2 as a common endpoint is called the
left neighboring active edge denoted by e2. The endpoint of e1, other than P1, is denoted by
Pr and the endpoint of e2, other than P2, is similarly denoted by Pl. By projecting the vectors
−−→
P1Pl and

−−−→
P1P2 to the tangent plane to the sphere at point P1, we obtain two vectors −→τ1l and −→τ12.
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10 CH. QUAN & B. STAMM

Figure 7. Planar schematics of two criterions for searching a possibly front point: angle criterion (left) and
point-edge distance criterion (right).

The angle between e and e1, denoted by α1, is then defined to be the angle between vectors
−→τ1l and −→τ12 if det (−→τ1l,−→τ12,−→n1) ≥ 0 and to be 2π minus the angle between vectors −→τ1l and −→τ12 if
det (−→τ1l,−→τ12,−→n1) < 0 where det(·) denotes the determinant of a matrix. The angle between e and e2,
denoted α2, is defined similarly to α1.

We first check if there exists possible points among the front points for the creation of a new
triangle and collect all candidates in a set Sf . This means that we first try to create a new triangle
with the existing front points without creating a new point. We propose two criterions for adding
front points to Sf as follows:

• Angle Criterion:
Set a minimal angle between two neighboring active edges to εα. If α1 < εα, add the left
neighboring active point to Sf , see the left of Figure 7 for a shematic. If α2 < εα, add the
right neighboring active point to Sf .

• Point-edge Criterion:
Set a point-edge distance tolerance between a front point and a front edge to εe. For a front
point Pf from the set of points of all loops, other than P1 or P2, we check if it has a distance
to e smaller than |e|+ εe where |e| is the length of e, see the right of Figure 7. Further, we
check if the scalar product between −→ne and the vector from 1

2 (P1 + P2) (the middle point of
e) to Pf is positive, and simultaneously if both edges PfP1 and PfP2 do not ”intersect” any
other front edge. If all conditions are satisfied, we add Pf to Sf . Then, we take a new front
point, check again if all above conditions are satisfied and repeat until we have checked all
front points.

The angle criterion is used to check if the angle between e and one of its neighboring edges is small
and the point-edge criterion is used to check if there exists any front point close to the edge e. In
consequence, Sf is a list of front points Pf that are possibly suited for creating a new triangle with
the edge e and the opposite point Pf .

If Sf is not empty, we sort it with respect to the point-edge distance to the edge e and chose the
one denoted by P0 that has the minimal distance to e, i.e.,

P0 = argminp∈Sf
dist(p, e), (7)

where dist(p, e) is the point-edge distance between a point p and an edge e. This ensures that any
other point in Sf does not lie in the triangle4P0P1P2.

4.2.4. Creation of a new Point In the previous subsubsection, we first scan the set of front points
that can be used to create a new triangle for a given edge e. Nevertheless, if Sf is empty, we should
consider to create a new testing point Ptest on the spherical patch. This testing point is constructed
such that the edges PtestP1 and PtestP2 have the same length and that the distance from 1

2 (P1 + P2)

to Ptest is
√
3
2 d. The existence of Ptest is guaranteed if and only if the distance from 1

2 (P1 + P2) to
the sphere on which the patch lies is smaller than

√
3
2 d. This distance is smaller than |e|2 according to
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Figure 8. Planar schematics of two criterions for checking if Ptest is suited as a new vertex of the mesh:
point-edge criterion (left) and distance criterion (right).

Figure 9. Planar schematics of updating the active loop in two cases: the case where P0 is a front point on
the active loop but not a neighboring active point of e (left) and the case where P0 is a front point but not
on the active loop (right). The new active loop is composed of the red edges and the dashed edges are newly

created edges.

the triangle inequality, which guarantees the existence of Ptest if |e| <
√
3d. Notice that in the case

where |e| = d, the triangle4PtestP1P2 is equilateral. We check if Ptest is suited as a new vertex of
the mesh based on the following two criterions:

• Point-edge Criterion:
Check first if there exists a front edge ef having a point-edge distance to Ptest smaller than
|ef |+ εe, see the left of Figure 8. If yes, we further check for each endpoint of ef (still denoted
by Pf ) if the scalar product between −→ne and the vector from 1

2 (P1 + P2) to Pf is positive
and simultaneously the edges PfP1 and PfP2 do not ”intersect” any other front edge. If all
conditions are satisfied for the edge ef and the endpoint Pf , we add Pf to Sf . Then, we take
a new front edge, check again if all above conditions are satisfied and repeat until we have
checked all front edges.

• Distance Criterion:
Set a distance tolerance between a testing point and a front point to εd. If there exits a front
point Pf with distance to Ptest smaller than εd (see the right of Figure 8) and both edges PfP1

and PfP2 do not ”intersect” any other front edge, then we add Pf to Sf .

If Sf is not empty now, we still select the point P0 using formula (7) with this Sf . Otherwise, we
define P0 as Ptest.

4.2.5. Updating an Active Loop and Controlling the Size of the Triangles The previous section was
devoted to determine the point P0 given an edge e. Then, a new triangle can be created by connecting
the endpoints of e and the point P0.

After the creation of the triangle, we update the active loop including Ae and Nae, the set of
vertices of the mesh including P and Np, as well the set of triangles T and Nt. However, we should
pay attention to two special cases of updating the active loop. If the point P0 is a front point on the
active loop but not a neighboring active point of e, the active loop is divided into two parts and we
chose one of them to be the new active loop, see the left of Figure 9. If the point P0 is a front point
but not on the active loop, we add the loop on which P0 lies to the active loop to form a larger active
loop, see the right of Figure 9. After updating, we go to the next active edge on the active loop and
repeat the process until the front has merged.

To obtain a mesh that is as uniform as possible, it is also necessary to control the length of each
newly created edge. From the boundary division of circular arcs in Section 4.1, the length of any
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edge on the initial front is (in most cases, slightly) smaller than d. After the initialization, we bisect
the newly created edge whenever its length is larger than

√
3d and then map its middle point to the

closest point on the sphere in order to obtain two new shorter edges. This technique ensures that
each edge of the mesh will not become too large. Like this, we control the maximal diameter of
each triangle.

Algorithm 1 Advancing-Front Method for Meshing a Spherical Patch

1: procedure MESHING SPHERICAL PATCH
2: Initialization of Ae, Nae, P, Np, T, Nt
3: while the front is not merged do
4: for each active edge e do
5: Define the set of possibly suited front points Sf
6: if α1 < εα then . Angle Criterion
7: Add P1 to Sf
8: else if α2 < εα then
9: Add P2 to Sf

10: end if
11: for each front point Pf do . Point-Edge Criterion
12: if dist(Pf , e) < |e|+ εe then
13: Add Pf to Sf if4PfP1P2 doesn’t ”intersect” the front
14: end if
15: end for
16: if Sf is nonempty then
17: P0 = argminp∈Sf

dist(p, e)
18: break
19: else
20: Create a new point Ptest
21: for each front edge ef do . Point-Edge Criterion for Ptest
22: if dist(Ptest, ef ) < |ef |+ εe then
23: for each endpoint Pf of e do
24: Add Pf to Sf if4PfP1P2 doesn’t ”intersect” the front
25: end for
26: end if
27: end for
28: for each front point Pf do . Distance Criterion for Ptest
29: if dist(Ptest, Pf ) < εd then
30: Add Pf to Sf if4PfP1P2 doesn’t ”intersect” the front
31: end if
32: end for
33: if Sf is nonempty then
34: P0 = argminp∈Sf

dist(p, e)
35: break
36: else
37: P0 = Ptest
38: end if
39: end if
40: Create a new triangle4P0P1P2 and update Ae, Nae, P, Np, T, Nt
41: end for
42: end while
43: return P, Np, T, Nt
44: end procedure
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Figure 10. Meshing two spherical patches.

Figure 11. Meshing a rectangle-shaped patch (left) and a double-triangle-shaped patch (right).

4.3. Meshing a Toroidal Patch

To mesh a toroidal SES patch, we should distinguish the cases of a rectangle-shaped patch and
a double-triangle-shaped patch. We parameterize a rectangle-shaped patch by defining a mapping
from this patch to a rectangle. Given the boundary division of the rectangle, we uniformly mesh it
and then map the vertices of the mesh back to the patch to obtain the mesh of the rectangle-shaped
patch. Similarly, we parameterize a double-triangle-shaped patch by defining a mapping from this
patch to two isosceles triangles. Then, we mesh these two isosceles triangles respecting the given
boundary division and map the vertices of the mesh back to the patch to obtain the mesh of the
double-triangle-shaped patch.

5. IMPLEMENTATION

5.1. Illustrations

We illustrate the mesh of a spherical patch that is obtained using the advancing-front algorithm in
Figure 10. We also illustrate the mesh of a rectangle-shaped toroidal patch on the left of Figure
11 and the mesh of a double-triangle-shaped toroidal patch on the right. In addition, we present
the SESs of some artificial and non-artificial molecules generated by the above meshing algorithm
(Figure 12 and Figure 13).

5.2. Refinement

Once the mesh of a molecular patch is established, it is easy to refine it uniformly. Indeed, we can
bisect each edge of the mesh and map its middle point to the closest point on the patch which can
be computed given the data structure of the patch. Then, each triangle is replaced with four smaller
triangles formed by the three vertices of this triangle and three closest points to the middle points of
the three edges. In consequence, the refined mesh consists of these smaller triangles. This process
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Figure 12. The SES of three artificial spheres (left) and the SES of four artificial spheres (right) where
rp = 1.75Å.

Figure 13. The SES of molecule 1B17 with 485 atoms (left) and the SES of molecule 101M with 1414 atoms
(right) where rp = 1.75Å.

of refinement is quite efficient with the complexity proportional to the number of triangles in the
mesh.

6. CONCLUSION

In this article, we presented the construction of data structures for different molecular surfaces
containing all information of their components. At the heart of our method is the recently developed
singularity analysis of the SES which avoids the problem of self-intersection. This allowed us
to develop a fast meshing algorithm by meshing separately each patch, which includes two sub-
algorithms respectively for meshing a (convex or concave, SAS or SES) spherical patch with an
advancing-front method and for meshing a toroidal (SES) patch. Furthermore, it is worth to mention
that each vertex of the created mesh lies exactly on the molecular surface.

The obtained meshes allow then to discretize the partial differential equations used in implicit
solvation models that are commonly reformulated as integral equations on the molecular surface, or
to visualize the molecular surface.
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