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Abstract
Combining model-based and model-free reinforcement learning systems in robotic cognitive
architectures appears as a promising direction to endow artificial agents with flexibility and
decisional autonomy close to mammals. In particular, it could enable robots to build an inter-
nal model of the environment, plan within it in response to detected environmental changes,
and avoid the cost and time of planning when the stability of the environment is recognized
as enabling habit learning. However, previously proposed criteria for the coordination of these
two learning systems do not scale up to the large, partial and uncertain models autonomously
learned by robots. Here we precisely analyze the performances of these two systems in an asyn-
chronous robotic simulation of a cube-pushing task requiring a permanent trade-off between
speed and accuracy. We propose solutions to make learning successful in these conditions. We
finally discuss possible criteria for their efficient coordination within robotic cognitive architec-
tures.
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1 Introduction

Psychology and neuroscience have highlighted that learning and decision-making in mammals
result from the combination of two types of behaviors: goal-directed and habitual behaviors,
that are respectively exhibited after moderate and extensive training on a given task. When
rodents, monkeys or humans start a new decision-making task, they appear to initially rely
on their goal-directed system, taking time to analyze the structure of the task in order to
build an internal model of it, and make slow decisions by planning and inferring the long-
term consequences of their possible actions before deciding what to do next. Then as their
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performance gradually improves, they appear to make quicker and quicker decisions, putatively
relying on their habitual system which slowly acquires simple stimulus-response associations to
solve the task. Finally, when subjects restart to make errors after a task change, they appear to
restart planning within their internal model and thus slow down their decision process before
acquiring the new task contingencies [2]. The coordination of these two learning systems may be
evolutionarily advantageous by allowing mammals to avoid linejours og and costly computations
when the environment is sufficiently stable to allow habit learning, while still enabling animals
to detect environmental changes requiring to update their internal model and replan.

Computational modelling work has shown that the model-based (MB) / model-free (MF)
reinforcement learning (RL) framework can capture these different types of learning behaviors
[4], the internal model being in this case: (1) a transition function giving for each (state, action)
couple a probability to end up in each possible state of the environment; (2) a reward function
explicitly storing which (state, action) couples trigger a reward from the environment. However,
the principles for the coordination of MB and MF RL are still debated. In [4], the coordination
depends on the uncertainty of each system. This works well in simple simulated tasks with less
than 10 states but does not scale-up to real-world robotic tasks involving hundreds of states.
Keramati and colleagues [7] proposed to avoid estimating the uncertainty of the MB system by
considering that it always has “perfect information”, which again cannot be true in tasks where
the large number of states imposes to compute approximations of the transition function, as
we previously found in a robotic navigation implementation of these learning processes [3].

In a recent work, we proposed a new neuro-inspired cognitive architecture combining MB
and MF RL applied to a robotic cube-pushing task [11] and a human-robot cooperation task
[10]. We found in these cases that the combination of these two learning systems (Experts)
performs better than each learning system alone, which validates the relevance of the approach
for robotics. Nevertheless, we also found that the large number of states in these robotic
tasks makes the MB system reach poor performance, preventing a number of tested criteria for
systems coordination from achieving the task [12].

Here we present new simulations of our cognitive architecture in the robotic cube-pushing
task in order to precisely analyze the respective performance of MB and MF RL and under-
stand why classical neuro-inspired criteria for their coordination are not appropriate in this
paradigm. While the small number of states in computational neuroscience tasks enables the
MB to replan from scratch at each new decision (e.g. [5]), here we find that it can reach a
good performance only when starting from the previous plan at each new decision, which to
our knowledge constitutes a new proposal for computational neuroscience MB/MF RL models.
We then show in which cases MB and MF are advantageous and finish by discussing which
criteria could be efficient in these conditions.

2 Materials and Models

We study Experts from the Decision Layer [1] of the robotic cognitive architecture (figure 1a)
proposed in our previous work [11, 12, 10], implemented in ROS (Robot Operating System,
[9]) and simulated with move3D [13] in [10] (ROS in other works). The Decision Layer receives
a state built from perception and a reward from the environment, that gives a feedback on
the previous action choice. This information is sent to Experts and a Meta-Controller (MC) in
charge of selecting the most relevant Expert in the current situation, according to a criterion (see
[12] for a study of criteria). It delivers the final action to the Executive Layer, that recruits the
right skills (eg. SLAM, obstacle avoidance and control laws for navigating) from the Functional
Layer to actually perform the action. In this work, these layers are kept simple and the action’s
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(b) The experiment used for evaluating the archi-
tecture as described in [11]. Blocks are coming
towards the robot which can visually perceive the
presence of a block in Cc and by touch in Ca.

Figure 1: 1a Control architecture and 1b simulated task

effect is directly solved by the simulation.

2.1 Habitual Expert (model-free RL)

The habitual behavior is implemented as in [11]. It is a 1-layer neural network where weights
W between state input St and action output encode the value Qt(s, a) of doing a certain action
in the considered state. Thus, estimating action values consists in propagating input activity
into the network to get output activity, from which is computed an action selection probability
distribution used for decision. It is done with Eq. (1) (bit is the bias for action ai).

Qt(st, a
i
t) = Wt · St + bit . (1)

Wt is updated incrementally according to the Qlearning rule (Eq. (2), [14]) and the reward
rt obtained (γMF : discount factor).

δ = rt(st−1, at−1) + γMF ·max
a

Qt−1(st, a)−Qt−1(st−1, at−1) . (2)

Learning these associations is a long process as only the experienced states can be updated,
and this process is even longer in case previous knowledge biases the behavior which makes the
agent only explore a subpart of the task’s space.

The conversion from Qt(st, at) to the probability Pt(at | st) is done using the softmax
function and the decision is drawn from the resulting distribution. Thus, the initial policy is
random as all Qt(s, a) are equal to zero before a reward is received.

2.2 Goal-directed Expert (model-based RL)

The goal-directed behavior, as in [11], incrementally learns transition and reward models (T,R)
of the task after each interaction with the environment. The reward model is a collection of
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(s, a) pairs directly associated to the instant reward rt experienced. The transition model is

incrementally learned storing connection strengths of s
a−→ s′ according to Eq. (3). The strength

T (s, a, s′) is updated at learning rate αMB and converted to a transition probability Prt(s, a, s
′)

when planning. These updates happen when a change is experienced by the robot.

Tt(s, a, s
′) = Tt−1(s, a, s

′) + αMB · (1− Tt−1(s, a, s
′)) . (3)

Qt(s, a) = max

(
rt(s, a), (γMB ·

∑
s′

Prt−1(s, a, s
′) ·max

a′
Qt(s

′, a′))

)
. (4)

Action values Qt(s, a) are computed by planning (i.e. propagating the known rewards in the
graph generated by the transition function using Eq. (4)), and are used to decide an action in
each state. Planning is done with a limited time budget per decision. When time expires, the
estimation of Qt(s, a) is stopped and the current estimates are used for decision. Because of this
time constraint, planning is focused on the N most visited states, hypothetized to be the most
interesting in a stable environment. This is done by computing the ratio Rn between the current
entropy of the state visits distribution and its maximal entropy and selecting N = Rn ∗Nmax

states. See [11] for the implementation details.
Changes in the environment (ie. a transition leads to a new state or reward’s value has

dropped) modify the models when experienced. The next computation of Qt(s, a) takes the
model updates into account and adapts the behavior accordingly. Decision is taken as for the
habitual expert.

Here, we consider two versions of planning: the “drop” version clears its Qt(s, a) estimation
and compute from scratch; the “keep” version computes starting from the previous estimation.

2.3 Task

We evaluate each Expert controlling individually the robot in the cube-pushing task from [11]
(see fig 1b). A simulated robot is facing a conveyor belt with evenly spaced blocks coming
at speed vbs. The robot has 3 actions (”Do Nothing”, ”Look Cam”, ”Push Arm”) that can
modify the environment and update its binary perception of blocks. As time elapses, previous
perceptions are kept in memory (separately in a visual memory and a tactile one) and the state
of memories produces the state st sent to Experts.

Two conditions are defined in the task: the Regular Condition (RC), where vbs is kept con-
stant and the Speed Shift condition (SS) where vbs increases after a certain number of decisions.
If the task in itself, especially in the Regular Condition, is deterministic and predictable by the
robot, its representation by the robot is more complex. Because no synchrony is forced between
robot actions and the world, aliasing can happen in the state experienced by the robot. Thus,
erroneous transitions can be experienced and the models built include stochastic transitions.
We do not address the question of representations in this work, but previously pointed out the
importance of that question for real autonomous robots in [12].

3 Results

In these conditions, we found that keeping the previous plan between decisions in the model-
based system dramatically improved the performance (figures 2a & 2b), compared to dropping
the plan and replanning from scratch at each new decision as it is proposed in computational
neuroscience models (eg. [5]). The improvement of performance was true in both the regular
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(a) Performance RC.

(b) Performance SS.

(c) Planning time RC.

(d) Planning time SS.

(e) Performance histogram RC.

(f) Performance histogram SS.

Figure 2: Left column: Model-based performance in both conditions. The performance is evaluated as
the median of the cumulative reward with its 1st and 3rd quartiles. Middle column: Model-based time of
planning, in seconds. Right column: Experts performance histogram showing the distribution of runs.
The dashed line indicates the occurrence of the speed shift.

case and the speed shift case, showing that keeping the previous plan does not reduce the ability
of the model-based system to flexibly adapt to environmental changes in our task. In addition,
keeping the previous plan also allowed the model to reduce decision-making time in the two
studied experimental cases (figures 2c & 2d). Indeed, starting with at least partially relevant
information at each new decision may have allowed the planning process to converge more
quickly. Moreover, shifting the speed of the conveyor belt (figure 2d) resulted in an increase in
decision-making time for the model-based system which drops the previous plan at each new
decision. This is because in this case the model had both to adapt its internal model to the new
environment and to replan from scratch in this model. In contrast, the model-based system
which keeps the previous plan only marginally increased its decision-making time in response
to a speed shift. The model-based system in this case had to adapt its internal model but could
benefit from the previous plan in the major part of the model where this plan was still relevant
after the environmental change.

After simulating 50 experiments with the goal-directed Expert (MB drop the plan, MB keep
the plan) and with the habitual Expert in each condition (regular condition, speed shift), we
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found that the distribution of performances of the model-based system was consistently shifted
to the right when keeping the plan (2nd row in figures 2e & 2f) compared to dropping it (1st

row in figures 2e & 2f). This again argues in favor of keeping the plan in the model-based sys-
tem in robotic tasks involving hundreds of states, in contrast with computational neuroscience
implementations using less than ten states. Interestingly, we also found that the used parame-
terization of the model-free system produced a somehow bimodal distribution of performances
(3rd row in figures 2e & 2f): a subset of simulated MF reached poor performance compared
to MB, as classically considered in computational neuroscience; in contrast, another subset of
simulated MF reached better performance than the model-based system. This variability was
partly due to the parameterization we used for the MF system which was optimized on average
performance. When optimizing to reduce variability, the average performance of MF is interme-
diate between the two distributions but still not dramatically poorer in performance than the
MB system (data not shown). This suggests that the MF system can sometimes reach a better
or at least similar performance to the MB system, especially in robotic tasks where the large
number of states make it difficult to learn and exploit an internal model of the environment.
Thus in contrast to the previously proposed criteria for the coordination of MB and MF RL
in computational neuroscience and considering that the MB system is always efficient [4, 7, 5],
an efficient cognitive architecture should rather monitore on-line the respective performance of
MB and MF system and give the hand to the one which reveals the most advantageous at a
given moment.

4 Discussion

We presented an analysis of the behavior of Experts used in our cognitive architecture and
showed that for the goal-directed Expert (model-based RL), overall robot performance can be
improved in both conditions of our task by keeping the plan (i.e. action value estimation) from
one decision to the other, instead of replanning from scratch as most of the work [4, 5] we
take inspiration from do. We also showed that the planning time is shorter when keeping the
plan, and stays more stable when the environment changes. Finally we showed that the task
can sometimes make the habitual Expert (model-free RL) more efficient than the goal-directed
Expert, contradicting the hypothesis that due to the flexibility allowed by its internal model,
the latter is always more efficient than the former.

These results give a second chance to the criteria proposed in [12], as several are strongly
relying on the goal-directed Expert performance. Improving the Expert can allow some criteria
to perform better than a random mixture of model-free and model-based RL that we initially
tested as proof-of-concept for their coordination [11].

Moreover, this analysis highligths that monitoring more accurately Experts can bring more
information on their current adequation to the task: the evolution of the number of states and
transitions in the goal-directed Expert can provide an analogous measure to the variation of
action values in the habitual Expert on the status of learning. These measures could in addition
constitute indirect measures of uncertainty within the model-based system, thus avoiding to
compute computationally expensive explicit Bayesian measures of it as it has been previously
proposed [4].

Although we mainly studied the planning capabilities of the goal-directed expert, studying
how the model is learnt more precisely could also lead to improvements in performance: in
order to keep a relevant model, having a forgetting mechanism or pruning transitions [6] could
remove the transitions coming from erroneous perceptions that are rarely experienced.

The bimodal performance of the habitual behavior and the difficulty to optimize both the
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performance and the variability on this task raises the idea that the role of the Meta-Controller
could also be to adapt Experts’ parameters online, as we previously proposed in a robotic
implementation of meta-learning applied to a single model-free learning process [8]. In future
work, we will test these different online performance monitoring and meta-learning processes
applied to MB/MF RL in our cognitive architecture confronted to a variety of robotic tasks to
assess its robustness.
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