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Abstract

Background: Despite pleiotropic immunomodulatory effects of apolipoprotein E (apoE) in vitro, its effects on the
clinical course of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) are still
controversial. As sex hormones modify immunomodulatory apoE functions, they may explain contentious findings.
This study aimed to investigate sex-specific effects of apoE on disease course of EAE and MS.

Methods: MOG35-55 induced EAE in female and male apoE-deficient mice was assessed clinically and
histopathologically. apoE expression was investigated by qPCR. The association of the MS severity score (MSSS) and
APOE rs429358 and rs7412 was assessed across 3237 MS patients using linear regression analyses.

Results: EAE disease course was slightly attenuated in male apoE-deficient (apoE−/−) mice compared to wildtype
mice (cumulative median score: apoE−/− = 2 [IQR 0.0–4.5]; wildtype = 4 [IQR 1.0–5.0]; n = 10 each group, p = 0.0002).
In contrast, EAE was more severe in female apoE−/− mice compared to wildtype mice (cumulative median score:
apoE−/− = 3 [IQR 2.0–4.5]; wildtype = 3 [IQR 0.0–4.0]; n = 10, p = 0.003). In wildtype animals, apoE expression during
the chronic EAE phase was increased in both females and males (in comparison to naïve animals; p < 0.001).
However, in MS, we did not observe a significant association between MSSS and rs429358 or rs7412, neither in the
overall analyses nor upon stratification for sex.

Conclusions: apoE exerts moderate sex-specific effects on EAE severity. However, the results in the apoE knock-out
model are not comparable to effects of polymorphic variants in the human APOE gene, thus pinpointing the
challenge of translating findings from the EAE model to the human disease.

Keywords: apoE, Gender, Multiple sclerosis, MSSS, Association studies in genetics

Background
Apolipoprotein E (apoE) exerts pleiotropic biological
functions, including effects on lipoprotein metabolism as
well as on the innate and adaptive immune system. Po-
tential mechanisms underlying the immunomodulatory
properties of apoE involve enhanced anti-inflammatory
macrophage phenotype, decreased activation of NF-kB
and STAT1 [1], and downregulation of TH-1 and TH-17

responses via suppression of pro-inflammatory cytokines
secreted by macrophages [2]. apoE is expressed in the
CNS and is produced by antigen-presenting cells (den-
dritic cells, macrophages). These observations have led
to the investigation of apoE in multiple sclerosis (MS)
and its animal model experimental autoimmune enceph-
alomyelitis (EAE; reviewed by [3]). In this context, con-
troversial results have been reported for apoE in EAE
including both beneficial as well as aggravating effects
on disease severity and progression in apoE knock-out
mice [4, 5]. In parallel, two APOE polymorphisms, i.e.,
rs429358 (ε4, Cys130Arg) and rs7412 (ε2, Arg176Cys),
which represent established risk variants in Alzheimer’s
disease [6], have been assessed extensively for their role
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in MS. A recent study compiling data on nearly 30,000
subjects showed that these polymorphisms do not influ-
ence MS susceptibility [7]. However, their role in disease
progression still remains ambiguous, which at least in
part pertains to the fact that the majority of studies have
assessed rather small, i.e., underpowered datasets (for an
overview see e.g., [8]). Divergent findings may also be
due to confounders or effect modifiers such as sex, age,
or patient subgroups. Along these lines, a comparatively
small study testing 221 patients suggested that the asso-
ciation between APOE and MS severity was limited to
women [9]; however, this has not been described in
other studies [8]. Thus, in the current study, we compre-
hensively assessed the role of apolipoprotein E on dis-
ease severity of EAE as well as MS by taking into
consideration potential sex-specific effects of APOE
genotypes.

Methods
Mice, experimental autoimmune encephalomyelitis,
histopathology, and quantitative real-time PCR analyses
Animal experiments were approved by the North-Rhine-
Westphalia authorities for animal experimentation (AZ
84–02.04.2011.A251). Wildtype (wt) C57BL/6 (Harlan,
Germany) and apoE−/− mice (University of Duisburg-
Essen, Germany) were backcrossed to generate litter-
mates. Chronic EAE was induced in male and female 9–
11-week-old mice using 100 μg myelin-oligodendrocyte
glycoprotein peptide (MOG35-55) (Charité Berlin,
Germany) emulsified in complete Freund’s adjuvant
(CFA) containing 100 μg Mycobacterium tuberculosis
H37RA (Difco Laboratories, Augsburg, Germany) with
pertussis toxin injections (PTX, 100 ng intraperitoneally)
(LuBio Science, Luzern, Switzerland) on day 0 (d0)
and d2 post-immunization (p.i.). Two independent ex-
periments, each including both genotypes and sexes,
were performed. As controls, only littermate animals
were used. Clinical EAE signs were evaluated daily using
a 10-grade score [10] by an experimenter blinded to the
genotype. Concentration of plasma neurofilament heavy
chain (NfH) was quantified by ELISA as described previ-
ously [11, 12]. The amount of NfH for each animal was
calculated as the difference between NfH concentration
at d26 after immunization and at baseline (i.e., before in-
duction of EAE). For histopathology, mice were perfused
during the chronic disease phase of EAE (d26 or d35),
and immunohistochemistry was performed on cryosec-
tions of lumbar spinal cord tissue for T cells (rat-α-hu-
man CD3, 1:100; AbD Serotec, Düsseldorf, Germany)
and macrophages (rat-α-mouse Mac3, 1:100; BD-
Pharmingen, Heidelberg, Germany) [13]. Demyelination
was assessed using FluoroMyelin™ Red Fluorescent mye-
lin stain (1:300) according to manufacturer’s protocol
(Life Technologies, Karlsruhe, Germany) with DAPI

counterstaining of nuclei (Southern Biotech, Birming-
ham, USA). Fluorescent images were captured using an
inverted fluorescence microscope (BX51, Olympus), and
the percentage of demyelinated area was determined by
ImageJ [4]. Data are presented as median [interquartile
range [IQR], i.e., 25–75. percentile] or mean ± standard
error (SEM). To determine differences in clinical course
of EAE, Mann-Whitney U test was performed for cumu-
lative median scores (from onset of disease (d8) until the
end of observation (d35), statistical significance is graph-
ically indicated as **p < 0.01, ***p < 0.001) as well as me-
dian score for individual time points (statistical
significance is graphically indicated as #p < 0.05). Effects
of apoE genotypes on NfH were analyzed using Mann-
Whitney U test and on histological parameters (amount
of T cells, macrophages, demyelination, axonal density)
using Student’s t test.
Quantitative real-time PCR (q-rtPCR) for relative apoE

expression in the spinal cord of male and female wt mice
was performed during the chronic disease phase (d35
p.i.). Total RNA was isolated using TRIZOL followed by
the RNAeasy Mini Kit (Quiagen, Hilden, Germany) and
transcribed to cDNA according to the manufacturer’s
protocol (DNAse1 (Invitrogen, Karlsruhe, Germany); an-
chored Oligo-dt (Thermo Fischer, Schwerte, Germany);
dNTPs (Invitrogen); Superscript II (Invitrogen)). Q-
rtPCR was performed on an ABI real-time PCR system
(Applied Biosystems, Darmstadt, Germany) using Per-
feCTa FastMixII master mix (Quanta Bioscience, Gai-
thersburg, USA) (primer: Mm01307193_g1, Applied
Biosystems) normalized to the housekeeping gene β-
actin (primer: Mm00607939_s1 Actb, Applied Biosys-
tems) using the ΔΔct method. Differences of sex and
EAE on apoE expression were calculated using a one-
way ANOVA followed by Bonferroni’s multiple compari-
son test.
Results were calculated using GraphPad Prism 6

(GraphPad Software, USA). In all experiments, a p value
of <0.05 was defined as statistically significant, p values
≥0.05 as non-significant (n.s.).

Human subjects and genotyping
All samples were collected after informed written consent
and appropriate ethical approval at the respective sites.
The current study included 2193 MS cases (70.6 %
women) from Germany and 1044 patients (71.0 % women)
from France, for whom APOE genotypes had been gener-
ated previously (see [7] for details) and for whom informa-
tion on the expanded disability status scale (EDSS) [14],
disease duration at the timepoint of EDSS assessment, and
age at onset (AAO) was available. In case of multiple EDSS
measurements, only the most recent one was used. Based
on the available data on the EDSS and disease duration,
the multiple sclerosis severity score (MSSS) was calculated
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[15]. See [7], Additional file 1: Table S1 and Additional
file 1: Figure S3 for demographic details.

Power calculation and genetic association analysis
Power estimates for the human association analyses were
calculated using the genetic power calculator [16, 17] as-
suming a minor allele frequency of 0.15 and 0.07 as re-
ported in NCBI’s dbSNP [18], a type I error rate of 0.05,
and an additive quantitative trait locus (QTL) model. For
both polymorphisms, our study had excellent (>90 %)
power to detect additive QTL variance of 0.5 %. Linear re-
gression analyses using an additive and a recessive model
were performed in PLINK v1.07 [19, 20] including all sub-
jects and adjusting for center of recruitment, AAO, and
sex. Additional analyses were performed after stratification
for sex while adjusting for center and AAO. Empirical p
values were obtained after 10,000 rounds of permutation.
All reported p values are two-tailed.

Results
apoE deficiency ameliorates EAE course in male but not
female mice
apoE deficiency demonstrated a moderate sex-specific
effect on the clinical EAE course. In male animals, cu-
mulative disease severity was attenuated in apoE−/− mice
compared to wt mice (cumulative median score: male
apoE−/− = 2 [IQR 0.0–4.5], n = 10, male apoE+/+ = 4 [IQR
1.0–5.0], n = 10; p = 0.0002; Fig. 1a). Considering median
clinical scores for individual time points, male mice
showed a significant difference between genotypes on
d21 and d22 p.i. (p < 0.05). Following this line, body
weight was higher in male apoE−/− mice (cumulative
mean weight 28.1 ± 0.9 g) than in male wt animals (cu-
mulative mean weight, 26.2 ± 0.8 g; p < 0.001; Additional
file 1: Figure S1a). In contrast, in the female group, EAE
was more severe in apoE−/− mice compared to wt controls
(cumulative median score: female apoE−/− = 3 [IQR 2.0–
4.5], n = 10, female apoE+/+ = 3 [IQR 0.0–4.0], n = 10;
p = 0.003; Fig. 1b and cumulative mean weight: female
wt = 20.5 ± 0.7 g; female apoE−/− = 20.5 ± 0.8 g; p = n.s.;
Additional file 1: Figure S1b). Differences in EAE incidence
supported the sex-specific effect of the apoE genotype on
disease manifestation (incidence male apoE−/− = 7/10, male
apoE+/+ = 10/10, female apoE−/− = 10/10, female apoE+/+ =
9/10, p = n.s., Fisher’s exact test). These results confirmed
our initial observations in pilot studies with non-littermate
control animals (data not shown).
In line with the clinical data, neurofilament heavy

chain (NfH) concentrations in the plasma, which repre-
sent a marker for axonal damage [11, 21, 22] revealed a
significant difference between male wt and apoE-defi-
cient mice (p = 0.0286) but not between female mice
(p = 0.8; Fig. 2). Significantly increased axonal degen-
eration in spinal cord sections of male wt animals

compared to male apoE-deficient mice (d35) was fur-
ther corroborated by silver impregnation (relative
axonal density: male apoE−/− = 10.2 ± 3.2, n = 6, male
apoE+/+ = 3.2 ± 0.8, n = 5; p = 0.001).
Spinal cord immunohistopathology (pooled data from

d26 and d35) did not show statistically significant differ-
ences of apoE−/− mice compared to wt mice within the
two sex strata; however, observations tended to be con-
sistent with the clinical observations. Specifically, male
apoE−/− mice showed slightly lower macrophage (−29 %,
p = 0.4, Additional file 1: Figure S2a) and T-cell infiltra-
tion (−46 %, p = 0.3; Additional file 1: Figure S2b) com-
pared to male wt mice. Likewise, female apoE−/− mice
showed 47 % more infiltrating macrophages (p = 0.06;
Additional file 1: Figure S2a) and 34 % more T cells (p =
0.3; Additional file 1: Figure S2b) than the wt group.
Furthermore, male apoE−/− mice showed a non-
significant decrease in demyelination compared to male
controls (wt = 8.6 % ± 4.8, n = 5, apoE−/− = 5.3 % ± 5.2; n
= 5; p = 0.3), and a non-significant effect pointing into
the opposite direction was observed for females (wt =
2.0 % ± 1.5, n = 8, apoE−/− = 4.3 % ± 3.4; n = 5; p = 0.1;
Additional file 1: Figure S2c).
During the chronic EAE phase, apoE expression in the

spinal cord increased in wt animals in comparison to
untreated healthy controls in both strata (females: 13-
fold increase; males: 11-fold increase, one-way ANOVA,
p < 0.001; Fig. 3).

Association analyses of MSSS and APOE polymorphisms
do not show statistically significant results
Linear regression analyses of MSSS and APOE rs7412
and rs429358 in the overall analyses across 3237 MS pa-
tients did not reveal statistically significant (p < 0.05) as-
sociation with MS severity after 10,000 rounds of
permutation. This result did not change after stratifica-
tion for sex (Table 1, Additional file 1: Figure S4). While
the minor (C) allele of rs429358 tended to be associated
with a higher MSSS across all patients assuming a

Table 1 Association analyses of the MS severity score and APOE
polymorphisms rs429358 and rs7412

Stratum (N) SNP βadd padd, padd-emp βrec prec, prec-emp

All (3237) rs7412 −0.025 0.824,0.323 0.010 0.985,0.453

rs429358 0.115 0.220,0.739 0.841 0.0140,0.774

Women (2290) rs7412 0.023 0.865,0.460 0.091 0.883,0.384

rs429358 0.221 0.0464,0.357 0.971 0.0170, 0.765

Men (947) rs7412 −0.117 0.571,0.539 −0.009 0.993,0.923

rs429358 −0.180 0.302,0.302 0.446 0.482,0.998

Linear regression analyses of the MS severity score (MSSS) and APOE rs7412
and rs429358 were performed across 3237 MS patients as well as after
stratification for sex
N number, SNP single-nucleotide polymorphism, add additive model, rec
recessive model, emp p value obtained after 10,000 rounds of permutation.
β corresponds to the effect estimated for the minor allele of rs7412 (T) and
rs429358 (C), respectively
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Fig. 1 Clinical disease course of active MOG35-55 induced EAE in C57Bl/6 wildtype (apoE+/+) and apoE-deficient (apoE−/−) mice. a In male (m)
mice, the absence of apoE leads to an attenuated disease severity. b In contrast, in females (f), apoE deficiency results in a worse disease course.
Data were pooled from two independent experiments. Clinical disease course was assessed using a 10-grade scale and depicted as mean ± SEM.
Statistical analyses: median scores analyzed with Mann-Whitney U test from onset of disease (d8) until the end of observation (d35) (***p < 0.001,
**p < 0.01) and for individual time points (#p < 0.05)

Fig. 2 Neurofilament heavy chain (NfH) concentration in blood
plasma of C57Bl/6 wildtype mice (apoE+/+) and apoE-deficient (apoE
−/−) mice after a MOG35-55-induced EAE indicates the extent of
axonal damage. In the chronic phase (d26), male apoE+/+ mice show
a significantly increased NfH concentration compared to male apoE
−/− mice. NfH concentration was calculated as difference (Δ)
between d26 and baseline (i.e., before EAE-induction). Statistical
analyses: *p < 0.05 by Mann-Whitney U test

Fig. 3 Relative apoE expression in the spinal cord at different time
points of a MOG35-55-induced EAE in C57Bl/6 wildtype mice.
Quantitative real-time PCR analyses show an increased apoE
expression in the chronic phase (d35) of EAE in both females and
males compared to untreated animals (BL). Statistical analyses:
***p < 0.001; one-way ANOVA (post test: Bonferroni’s multiple
comparison test)
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recessive model (β = 0.841, prec = 0.0140) and in the fe-
male stratum assuming both recessive (β = 0.971, prec =
0.0170) as well as additive models (β = 0.221, padd =
0.0464), significance of neither of these results survived
after 10,000 rounds of permutation (Table 1).

Discussion
Results of this study indicate that the absence of apoE
slightly attenuates EAE in male mice but at the same
time aggravates disease course in female animals. In line
with this observation, decreased NfH concentration in
male apoE-deficient mice in comparison to wt mice sug-
gests an attenuation of axonal damage in male mice
lacking apoE. Increased apoE expression in the spinal
cord of female and male wt mice in the chronic disease
phase may indicate an influence of apoE on disease pro-
gression during EAE.
In contrast to the results in the rodent model, we did

not detect a robust association between MSSS and
APOE rs7412 or rs429358 in over 3200 patients despite
excellent (>90 %) power to observe even moderate
changes in the MSSS. This suggests that rs7412 and
rs429358 do not have a notable influence on MS
severity.
Studies that investigated the role of apoE deficiency in

EAE have yielded inconsistent, in parts, and even contra-
dictory results [2, 4, 5, 23]. Discrepancies may be due to
methodological differences (e.g., the immunization proto-
col) or due to other modifying factors that have not been
investigated in the respective studies. In this context, one
potential influencing factor that was not controlled for in
previous studies is the sex distribution of the tested
animals.
apoE is expressed in the CNS in resident immune cells

and has been implicated in different immunoregulatory
functions [1, 2, 23]. For instance, in a recent study,
milder disease in apoE-deficient mice was associated
with a reduction of dendritic cells (DCs), which—in
turn—can be modulated by sex hormones, i.e., estrogens
and primarily E2 [24, 25]. Other studies have reported
that apoE modulates macrophages toward an anti-
inflammatory phenotype [1] and suppresses microglial
activation [26, 27]. The activity of these cells can be
modulated by the exposition of estrogen and testoster-
one (reviewed in [28]). Androgene-receptors (AR) are
expressed on immune cells [29]; therefore, especially, an-
drogens may have immunomodulatory or even immuno-
suppressive effects [28]. A direct interaction of apoE
with AR has also been described [30–32]. Thus, immune
functions appear to be influenced by androgens via AR
and may be modulated by apoE. Although we did not in-
vestigate mechanistic pathways, the previously described
interactions between immune functions and sex hor-
mones may account for some of the sex-specific

differences observed in our study that may additionally
be influenced by apoE.
While our human data do not reveal sex-specific asso-

ciation of APOE genotypes and MS severity, the associ-
ation of APOE genotypes with Alzheimer’s disease (AD)
has been described to be modulated by sex and ethnicity.
Whereas APOE2 and APOE3 seem to be protective
across ethnic groups, APOE4 increases AD risk [6]. The
latter effect appears to be pronounced in women [33].
The lack of association of tested APOE polymorphisms

with MS severity is in line with the results of most previ-
ous publications (for an overview see [8]), including a
large pooled re-analysis of previously published datasets
on 3518 patients [34] that are independent from those
analyzed here. Overall, the authors of the latter study
did not find compelling evidence for an association of
APOE and MSSS either. While they observed a higher
MSSS in male homozygote carriers of the APOE e4 allele
when compared to all other groups (p = 0.004), this find-
ing did not withstand multiple comparison corrections
[34]. In light of the fact that the two largest, independ-
ent, and well-powered studies on rs7412 and rs42935
did not produce robust results, it appears most likely
that rs7412 and rs429358 in APOE do not play a sub-
stantial role in MS severity as measured by the MSSS.
However, several aspects need to be considered upon in-
terpretation of our association results: We have tested
two APOE variants, namely two non-synonymous poly-
morphisms that represent the most important contribu-
tors to Alzheimer’s disease risk [6] and that have been
extensively characterized functionally. However, even
homozygosity at either of these polymorphic sites does
not fully mimic the rodent apoE knock-out model [35].
Therefore, the lack of robust genetic effects in humans
does not necessarily contradict the results obtained in
the apoE−/− mouse model. However, the translation of
findings from experimental models and especially in the
context of EAE to the human situation has repeatedly
failed as only certain facets of the human disease can be
modeled [36]. Thus, we cannot exclude that the effects
of apoE observed in the rodent EAE model in this study
are of lesser or no relevance for the human disease. In
addition, we have only assessed the aforementioned two
non-synonymous polymorphisms in the APOE region.
Thus, we cannot exclude the presence of other variants
in the APOE locus with a possible effect on MS severity,
although a recent genome-wide association study (which
did not assess those two variants directly due to tech-
nical reasons (see [7] for explanation)), did not observe
evidence for an association of MSSS and other genetic
variants in the APOE region [37]. Another consideration
extends to the fact that genetic association analyses of
MS severity have overall only yielded rather limited suc-
cess [38]; one explanation, which could also affect the
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MSSS association analysis results presented here, is the
lack of more appropriate clinical and paraclinical classifi-
cation schemes to better represent disease severity and
progression. In addition, other variables, e.g., informa-
tion on treatment regimes, may represent confounders
in the APOE association analysis that could not be
accounted for in our and previous analyses (e.g., [34]).

Conclusions
In conclusion, our study shows a moderate sex-specific
influence of apoE on EAE severity indicating a complex
interaction between apoE, sex, and inflammatory pro-
cesses at least in the animal model. We did not observe
robust sex-specific effects of APOE polymorphisms on
MS severity, which may be explained by several factors
including difficulties in comparing rodent apoE-deficient
animals and polymorphic changes in the human APOE
gene. Further characterization of apoE and its potential
sex-specific influences on inflammation may lead to
novel insights into disease-modifying mechanisms. Yet,
our study highlights difficulties of direct translation of
experimental findings in mice to the human situation.
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