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Abstract

Diffusion coupling in multiply associating aqueous electrolyte solution is stud-
ied. The process is illustrated in the case of zinc(II) ion which forms a set of
complexes, ZnCl2−n

n (with n = 1, .., 4), in the presence of chloride ions. The
transport of zinc ion, taken in radioactive form 65Zn2+, in the electric field
created by a gradient of LiCl, is investigated experimentally by employing an
adaptation of the closed capillary technique. The transient diffusion process
is modeled by using two different treatments: finite difference (FD) simula-
tion and normal mode (NM) analytic solution. Deviations from ideality are
taken into account with the use of the mean spherical approximation (MSA),
and the internal electric field is calculated using the dynamical electroneu-
trality condition. The theoretical FD and NM results are compared with the
experimental data about the diffusion of zinc.

Keywords: Electrolytes; association; non-ideal; diffusion; mean-spherical
approximation (MSA).

1. Introduction

Aqueous electrolytes are ubiquitous on earth. They may be found in nat-
ural waters (e.g., in oceans, lakes, sediments), in most living beings and in
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 Transient diffusion profiles of zinc(II) ion in the electric field created by major LiCl salt were 
obtained.

 The process is modeled by accounting for the various effects in play.

 Multiple complexation of zinc by chloride ion, non-ideality and electric field are the 
dominant effects.

 Deviations from ideality are described within the MSA model.



plants, trees,... They have a huge influence on the development and func-
tioning of life on the planet. The motion of ionic species governs the local
amount of ions. In this respect, aqueous electrolytes have the particular
property that the movements of the ions in a medium are strongly coupled
through the effect of electrostatic interactions [1, 2].

Diffusion coupling thus can be observed in many natural and industrial
domains and systems, such as in geochemistry (when studying diagenetic
fluxes in sediments [3, 4]), in biophysics (e.g. for a description of permeation
through ionic channels of cells [5]), in engineering processes (e.g., when using
membranes for industrial separations [6]), in materials science (e.g., in the
study of diffusion of ions in concrete [7] or for the assessment of chemical
ageing of concrete and composite materials [8]).

Diffusion coupling in aqueous ionic solutions has been investigated at a
fundamental level for a long time [1]. Theoretical descriptions have been
developed that assume linear transport theory, in which fluxes are linear
functions of forces [9]. Multicomponent diffusion has been examined in the
framework of Onsager formalism of irreversible thermodynamics [10].

A phenomenon that has great influence on coupled diffusion in electrolytes
is ionic association, consisting either of ion pairing or chemical reaction. In
geochemistry, Lasaga first examined the influence of ion pair formation on
diagenetic fluxes in marine sediments [4]. Ion pairing is important because
it modifies the effective charge of the diffusing species and so changes their
response to the internal electric field created by the diffusing ions. A clear
example is that of a monovalent tracer ion that associates with a monovalent
anion and forms a neutral species that is insensitive to the diffusion field [4].

Some time ago, we investigated the effect of ion pairing caused by magne-
sium(II) ion on the transient transport of sulfate ion by carrying out experi-
ments in a special diffusion cell (closed capillary) [11]. Later we investigated
the effect of a pH gradient on sulfate and phosphate ions [12]. In these works,
the diffusion-reaction equations were solved by using two types of treatments:
a ‘normal-mode’ analysis in which the equations are linearized and solved
analytically [13]; and a classical numerical finite-difference method in which
time and space are ‘sliced’ and the equations are solved incrementally in the
course of time. In these treatments, the equations were written in the ideal
case in which activity coefficients are taken equal to unity. Besides, the as-
sociations involved only one type of complex, leading to the ion pair MgSO0

4

in the case of Mg2+ and SO2−
4 [11], or to the hydrogen sulfate ion HSO−

4 in
the case of sulfate in the pH gradient.
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In environmental media, ionic pollutants exist in various forms. For in-
stance, toxic heavy metal ions of various valencies such as zinc, cadmium,
lead or mercury may form a series of complexes with ions like chloride, ni-
trate, hydroxide,... The speciation of these ions in the environment is an
important issue because complexation modifies the electric charge borne by
the ions. This phenomenon modifies the transport of trace metal ions when
they are submitted to diffusion electric fields caused by major ions in the
environmental medium, and also the physical and chemical behavior of the
ion interacting with the environment, e.g. their interactions with colloidal
and mineral particles.

Various softwares exist commercially which permit estimations of the spe-
ciation for many metal ions in aqueous solutions. One may cite the following
which have been developed in various countries: MINTEQ [14], MINEQL+
[15], JCHESS [16], PHREEQC [17] and CHEAQS [18]. The calculation of the
speciation is based on a solution to the chemical association equilibria which
involve the introduction of thermodynamic association constants (cumulative
constants βn for n = 1, 2, 3, ...) and the use of formulas for the computation
of the activity coefficients of the species. The softwares rely on previous
determinations of the association constants, which can be found in famous
books, e.g., in the book by Sillen and Martell [19]) or in the NIST Database
[20]. In general, deviations from ideality were computed using equations of
the Debye-Hückel type, like the Davies equation. Depending on the values
taken for the βn’s and on the equation used, softwares may give speciations
that differ in magnitude. Because the speciation is generally very difficult
to determine experimentally, there is uncertainty in the determination of
speciation in electrolyte solutions.

In the present work, we propose to study transient diffusion patterns
in the case of a metal cation giving rise to multiple association. The metal
cation (in tracer amount) is placed in the electric field created by the diffusion
of a major salt. This type of experiment is a variation on the theme of
experiments we had carried out with magnesium(II) and sulfate ions [11,
12]. The latter system gave one type of ion pair. In the present work we
investigate the case of electrolytes leading to a set of complexes of increasing
stoichiometries through a series of stepwise associations.

Moreover, in contrast with our earlier work about coupling diffusion, we
now include the effect of deviations from ideality. Accounting for activity
coefficients in the treatment has several consequences. It modifies the speci-
ation of the metal cation under study, and therefore the diffusion rate of the
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various forms (free species and complexes). It also introduces a new driv-
ing force associated to the variation in space of the activity coefficients of
the chemical species, and it modifies the magnitude of the internal diffusion
electric field created by the major ions. The experimental observable is the
result of these different effects.

In this work, we carried out experiments with the zinc(II) cation. This
species has an important role in biological, geochemical and environmental
media [22, 23]. It is well known for giving rise to multiple association with
various anions [19] . Here, we used zinc chloride, which can give 4 complexes:
ZnCl+, ZnCl02, ZnCl

−
3 and ZnCl2−4 [19]. The zinc ion was taken in radioactive

form, 65Zn2+. A special technique consisting of a silica capillary inserted
in a cylinder of scintillating plastic was utilized to observe the transient
concentration profiles of the radioactive tracer [24]. The major salt producing
the internal electric field was LiCl. It was chosen because it produces a strong
electric field, which is due to the greatly differing values of the diffusivities of
the two ions Li+ and Cl−. The observed experimental transient profiles were
modeled by using finite difference (FD) and normal-mode (NM) methods.
Deviations from ideality were included in the calculations by using the mean
spherical approximation.

The main purpose of this paper is to investigate the validity of the mod-
eling approach for the description of transient diffusion profiles for a multiply
associating electrolyte. The theoretical descriptions include diffusion, ionic
association and activity coefficients for all species. The maximum concen-
tration of the major salt (LiCl) is sufficiently high to allow an appreciable
influence of activity coefficients. However it is limited to 2M in order to min-
imize the effect of hydrodynamic interactions and other subtle effects such
as reference frame or ionic relaxation [25].

The remainder of this paper is organized as follows. The next section
presents the experimental technique employed to probe the diffusion of the
tracer in the cell, and the experimental conditions of this study. Then, a
theoretical section exposes the basic equations governing the process and the
methods used to calculate the observed effect. Next, the experimental data
are compared with the results obtained from the model in the Results and
Discussion section. Finally a conclusion summarizes the main results of this
work and presents some prospects.
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2. Experimental

Diffusion experiments on an ion which is a pure β emitter can be con-
ducted adequately by using a cell made of perspex and scintillating plastic
[11, 12]. On the other hand if the tracer is both a β and γ emitter then
it is necessary to stop the β’s so that only the γ emission can be analyzed
(otherwise it would be impossible to distinguish the respective effects of the
β and γ radiations in the scintillating plastic). In the present work, the
commercially available radioactive isotope of the ion studied here, 65Zn2+, is
precisely a β and γ emitter.

In order to solve this difficulty, experiments were carried out by using
an adaptation of the closed capillary technique [24]. It is depicted in Figure
1. The cell consists of a silica capillary (sealed at its bottom end) of 3
cm length and ca. 0.8 mm inner diameter which is introduced into a bore
drilled through the center of a cylinder made of scintillating plastic. The
plastic cell was designed in such a way that the points A, B and C are on
the same straight line [24]. The silica capillary (whose wall is ca. 1 mm
thick) has the property of stopping the β+ particles of 0.33 MeV energy
emitted by 65Zn2+. In this way, scintillation in the scintillating plastic is
produced only by the γ radiation. In order to avoid capillarity problems at
the mouth of the capillary, the latter was filled on a distance of 2.8 cm (i.e.
2 mm below the top of the capillary). Indeed, filling the capillary with liquid
up to its mouth was observed to result in a significant loss of liquid in the
course of the experiment. The top of the capillary was sealed with a piece of
plastic paraffin film (Parafilm) to prevent evaporation. The silica capillary
was adjusted within the plastic bore so that the mid-point of the liquid phase
coincided with the top of the scintillating plastic cylinder.

The diffusion experiments were conducted as follows. The bottom part
of the capillary (up to point O, see Figure 1), of length L, was filled with a
solution containing 1M or 2M LiCl + 10−2M ZnCl2 + radioactive zinc(II) in
tracer amounts (of the order of 10−8 M). Then, the top part of the capillary, of
the same length L, was filled very carefully with a solution composed of 10−2

M ZnCl2 + radioactive zinc(II) at the same concentration. The solutions were
introduced in the capillary by using a small plastic Pasteur pipette bearing
a thin flexible Teflon tube at its end. This device allowed us to accurately
handle very small volumes of liquid, of the order of 10 µL (half of the capillary
volume). Next, the cell was introduced in a β radioactivity counter which
determines the number of photons emitted in the scintillating plastic per
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Figure 1: Sketch of the diffusion cell. The points A, B and C are aligned.

time unit. The experiments were conducted with continuous monitoring of
radioactivity, at a temperature of 25 ± 1 ◦C. They were done in duplicate.

Because it is expected that the γ rays can have only one efficient conver-
sion in the plastic, it was shown [24] that the probability of conversion of a
γ ray is proportional to the length of plastic it crosses. This property allows
an explicit calculation of the counting intensity as a function of the tracer
concentration profile in the capillary. Then one can measure self-diffusion
coefficients of γ-emitters with this technique (as was done before in the case
of a radiolabelled biological molecule [24]), and study diffusion processes like
diffusion coupling.

The relative variation of the radioactivity intensity measured by the
counter may be written as,

ρ(t) ≡ I(t)

I(t = 0)
− 1 (1)
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with I(t) the intensity measured by the photomultipliers at time t, so that
ρ(t = 0) = 0. This intensity is produced by the radioactive tracer in its
various forms. At a given position x and time t, we denote this total tracer
concentration by CT (x, t).

With the notations of ref. [24] we can write,

ρ(t) =

∫ 1

0
[θ−(z, t)f−(z) + θ+(z, t)f+(z)]dz∫ 1

0
[f−(z) + f+(z)]dz

(2)

in which z ≡ x/L for x > 0 (x-axis oriented upwards, see Figure 1) and
z ≡ −x/L for x < 0, f− and f+ are functions proportional to the ‘efficacy’
of a γ-ray emitted at position x (f− for x < 0 in the bottom part of the
capillary and f+ for x > 0 in the upper part), and θ−(z, t) and θ+(z, t) are
the relative excesses of tracer concentration in bottom and upper parts of
the capillary, respectively, that is

θi(z, t) ≡
δC

(i)
T (z, t)

C
(0)
T

(3)

in which i = + or − and δC
(i)
T ≡ C

(i)
T − C

(0)
T , C

(−)
T and C

(+)
T are the tracer

concentrations for x < 0 and x > 0, respectively, and C
(0)
T is the initial

uniform tracer concentration in the capillary. Expressions for the functions
f− and f+ were given in ref. [24]. The concentration of the tracer is calculated
below by using FD and NM techniques.

3. Theory

3.1. Basic relations in the non-ideal case

A mixture of two aqueous electrolyte solutions with common anion is
considered. It is composed of a major salt, denoted by MA, constituted
of monovalent M+ and A− ions, and a salt TAn (Tn+ cation with n ≥ 2)
which is present in tracer amount in the solution. The major salt is totally
dissociated. On the contrary, the Tn+ cation is supposed to form N different
complexes of the form TA

(n−k)+
k , with k = 1, .., N , according to the following

reactions,

Tn+ + kA− 
 TA(n−k)+ (βk) (4)
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characterized by the thermodynamic cumulative constants βk, with k going
from 1 to N .

Hereafter we will adopt the following notations for convenience. We will
denote the free cation Tn+ with subscript 0, the first complex TA(n−1)+ with
subscript 1, ..., the k-th complex TA

(n−k)+
k with subscript k. The subscripts

+ and − will be used for the cation and anion of the major salt, M+ and
A−, respectively.

Moreover, we will make the common assumption that the complexation
reactions (eq. (4)) are very fast, so that a local equilibrium prevails for these
reactions at any point in the capillary. Then, at any position x and time t,
one can write for eq. (4),

Ck = βk Γk C0 (C−)
k (5)

in which any Ci is the concentration of species i at x and t (Ci(x, t)), and

Γk ≡ γ0(γ−)
k/γk (6)

where γi stands for the activity coefficient of species i on molarity scale. In
the experiments, the quantity of interest is the sum of the concentrations of
the various forms of the tracer,

CT ≡
N∑
k=0

Ck (7)

In this work, besides deviations from ideality due to association itself,
we take into account non-ideality effects on the transport of the species and
on the formation of the complexes, arising from volume exclusion and elec-
trostatic interactions,. This was done within the framework of the mean
spherical approximation (MSA) as detailed below. Now we will write down
the main equations governing the transport of the species in the solution.

The diffusion equations obeyed by the concentration Ci of a species i is,

∂Ci

∂t
+∇Ji = Qi (8)

with t the time, x the space coordinate shown in Figure 1, ∇ ≡ ∂/∂x the
gradient operator in 1D, Ji the flux density, and Qi the source term coming
from the association reaction. In this equation, i denotes a free ion M+, A−,
Tn+ or a complex.
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The flux density Ji at position x and time t can be derived according to
linear transport theory [13] to obtain the well known extended Nernst-Planck
equation,

Ji = −Di∇Ci −DiCi∇ ln γi + βDiCi zieE (9)

in which Di is the diffusion coefficient of i, zie is its charge, γi is its activity
coefficient, E is the local internal electric field and β = 1/kT with k the
Boltzmann constant and T the temperature.

The electric field is obtained from the dynamical electroneutrality condi-
tion for the major salt MA,

J+ = J− (10)

in which the fluxes of the minor species containing T are neglected (T in
tracer amounts). At the same time the local electroneutrality condition is
fulfilled, which gives

C+ = C− = Cs (11)

again because one may neglect the concentration of the tracer, so that one
gets by combining eqs. (9)-(10),

E ≡ βeE =
D+ −D−

D+ +D−
∇ lnCs +

1

D+ +D−

(
D+

∂ ln γ+
∂Cs

−D−
∂ ln γ−
∂Cs

)
∇Cs

(12)
for which we used eq. (11) and E has the dimension of the inverse of a length.

The combination of eqs. (9)-(12) yields the well-known relation [26, 27],

Js = −Ds

(
1 +

∂ ln γs
∂ lnCs

)
∇Cs (13)

for the flux of the major salt s ≡ MA, with Ds the Nernst-Hartley diffusion
coefficient of the salt,

Ds ≡
2D+D−

D+ +D−
(14)

which is comprised between D− and D+. Eq. (13) shows that the effect
of non-ideality is to modify locally the diffusion coefficient of the salt by a
factor of (1+∂ ln γs/∂ lnCs).

The diffusion equation for the major salt is readily obtained from eq. (8)
with Q+ = Q− = 0 and eqs. (10), (11), (13),

∂Cs

∂t
= Ds∇

[(
1 +

∂ ln γs
∂ lnCs

)
∇Cs

]
(15)
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For the minor species containing the tracer we get using eqs. (8) and (9),

∂Ci

∂t
= Di∆Ci +Di∇ [Ci (∇ ln γi − ziE)] +Qi (16)

in which ∆ ≡ ∇.∇ = ∂2/∂x2 is the Laplace operator in 1D.
Non ideality was described using the mean spherical approximation (MSA)

[28], with values for the ion sizes and the solution permittivity that did not
vary with salt concentration. A specific size was attributed to each com-
plex (see the Results and Discussion section). The activity coefficients of
the species were calculated at the McMillan-Mayer level (solvent of constant
chemical potential and regarded as a continuum) and were converted to the
experimental (Lewis-Randall) level by using the formula [28, 29, 30],

ln γi = ln γMM
i − 2CsΦ

MM Vi (17)

with γMM
i and ΦMM the activity and osmotic coefficients, respectively, cal-

culated at the McMillan-Mayer (MM) level within the MSA model, and Vi

the partial molar volume (PMV) of i. The PMVs of Zn2+ and Cl− ions were
estimated by taking the volume of the ion [31], which gives values of 0.001
and 0.012 L mol−1, respectively. Indeed it was found that this simple choice
gives the good order of magnitude for the PMV of ZnCl2 at infinite dilution
(0.0235 L mol−1). The PMVs of the complexes were computed from the
formula, Vk = VZn2+ + kVCl− .

Since the tracer is in very small amount in the solution, the activity
coefficients of the complexes and of the salt ions only depend on the local
concentration of the salt. Thus, in what follows, all physical quantities only
depend on the local value of Cs. Consequently the gradient of any quantity
f may be calculated as,

∇f = f ′ ×∇Cs (18)

in which f ′ is the derivative of f w.r.t. Cs, f
′ ≡ ∂f/∂Cs.

The diffusion equation for total tracer may be obtained from the equations
for the various forms of the tracer. By considering that the concentrations
of the complexes are equilibrated at any point in the capillary, we obtain by
utilizing eqs. (5), (7) and (11),

Ck = βk Γk Cs
k CT

/ N∑
n=0

βnΓnCs
n (19)
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In this relation we make the usual convention for n = 0, namely that β0 = 1.
We note that equilibration, expressed by eq. (19), is made very simple by
the fact that T is in tracer amounts in the experiments.

Summation of the diffusion equations for the free and associated forms
of the tracer, together with the use of eqs. (12) and (19) in eq. (16), and
also

∑
iQi = 0, leads to the diffusion equation for total tracer. After some

algebra one gets,

∂CT

∂t
= DT ∆CT + d1

(
∇Cs

Cs

)
∇CT + d2

(
∇Cs

Cs

)2

CT + ds

(
∆Cs

Cs

)
CT

(20)
in which

DT =

∑N
k=0 Dk βkΓkCs

k∑N
k=0 βkΓkCs

k
(21)

is the (local) mean diffusion coefficient of the tracer, and the parameters d1,
d2 and ds have the dimension of a diffusion coefficient (but may be negative).
Their expression is given in the Appendix.

3.2. Normal-mode treatment

The normal-mode (NM) treatment consists of linearizing the transport
equations. Any physical quantity, q(x, t), is decomposed in two terms: an
equilibrium term, q∞ (for t → ∞), and a non-equilibrium or perturbation
term δq(x, t), that is, q(x, t) = q∞ + δq(x, t). Linearization is implemented
by keeping only the first-order terms in the equations.

Here, the concentrations of total tracer, CT (x, t), and of the salt, Cs(x, t)

are expressed as, Ci(x, t) = C∞
i + δCi(x, t), in which C∞

T = C
(0)
T and C∞

s =

C
(0)
s /2 (with C

(0)
s the initial salt concentration in the bottom half of the

capillary). The diffusion coefficients appearing in eq. (20) may be written
as, D = D∞ + δCsD

′ (with D = DT , d1, d2, ds). Linearizing eq. (20) w.r.t.
δCT and δCs leads to a diffusion equation for the total tracer in which the
terms proportional to d1 and d2 disappear because they are of second order,
δCsδCT or (δCs)

2, respectively (because ∇Ci = ∇δCi for i = s, T ). So one
obtains straightforwardly,

∂δCT

∂t
= D∞

T ∆δCT + d∞s
C∞

T

C∞
s

∆δCs (22)
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in which D∞
T and d∞s are the values of DT and ds (eqs. (21) and (32)) at

equilibrium, for Cs = C∞
s .

Analogously, the linearized diffusion equation for the salt is,

∂δCs

∂t
= D∞

s ∆δCs (23)

in which

D∞
s ≡ Ds

(
1 +

∂ ln γs
∂ lnCs

∣∣∣∣
Cs=C∞

s

)
(24)

is the effective salt diffusivity at equilibrium.
The coupled equations, eqs. (22) and (23), can be solved by using Fourier

transform on space (denoted by an asterisk) and Laplace transform on time
(denoted by a tilde), as exposed in previous work [11]. The result is,

δC̃∗
T (q, s) = δC̃

∗(s)
T (q, s) + δC̃

∗(m)
T (q, s) (25)

with

δC̃
∗(s)
T (q, s) ≡ δC∗

T (q, t = 0)

s+ q2D∗
T

(26)

δC̃
∗(m)
T (q, s) ≡ −d∞s

C∞
T

C∞
s

q2
δC∗

s (q, t = 0)

(s+ q2D∞
T )(s+ q2D∞

s )
(27)

in which q and s are the Fourier and Laplace variables associated to x and t,
respectively, and δC

∗(s)
T is the self-diffusion term and δC

∗(m)
T is the migration

term for the tracer.
We note that, in the present experiments, the initial tracer concentration

profile is uniform (equal concentration in the two halves of the capillary),
so that δCT (x, t = 0) = 0 and thus δC∗

T (q, t = 0) = 0. Therefore, only the

migration term, δC̃
∗(m)
T , will remain in Eq. (25).

Finally, by using the same method as in previous work [11], we find that
the solution for the function ρ(t) (Eq. (1) or (2)) is,

ρNM(t) = − 4

π
d∞s

∞∑
k=0

Fk

2k + 1

exp(−q22k+1D
∞
T t)− exp(−q22k+1D

∞
s t)

D∞
s −D∞

T

, (28)

where qn ≡ nπ/2L, and

Fk =

∫ 1

0

[f−(z)− f+(z)] sin
[
(2k + 1)

π

2
z
]
dz

/∫ 1

0

[f−(z) + f+(z)] dz (29)
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In eq. (28) d∞s was computed from eq. (32) at equilibrium and the quantity
Ψ′

k (appearing in eq. 32 for ds) was calculated by numerical differentiation.
For the geometry of the set-up depicted in Figure 1, the coefficients Fk

were found to have the following values [24] : F0= 0.472677, F1= 0.0564312,
F2= 0.0233391, F3= 0.00424871, F4= 0.004660106, F5= 0.0000347272. Since
all these parameters are positive, we deduce from eq. (28) that ρNM has the
sign of −d∞s .

For sufficiently long times, eq. (28) may be reduced to its first exponential
term. In the present case we find that this approximation is valid to 1%
accuracy for t & 10 h. By differentiation of this simplified expression w.r.t.
time one gets the order of magnitude of the time tm at which ρNM is maximum
(in absolute value),

tm =
4L2

π2D∞
s

lnx

x− 1
(30)

with x ≡ D∞
T /D∞

s . By inserting this expression for tm into eq. (28) we find
after some simplifications that the maximum amplitude of ρNM (at t = tm)
is approximately given by,

ρNM(t = tm) ≃ − 4

π
F0

d∞s
D∞

s

xx/(1−x) (31)

The function xx/(1−x) decreases monotonously with x from a value of 1 for
x = 0 to 0 for large values of x.

3.3. Finite difference method

A classic finite difference algorithm was used in this work. The main
ingredients of the method were described in our previous study [11]. The
diffusion equations were discretized in space and time, and the system was
symmetrized at both ends of the capillary. A number of Nc = 200 cells
was taken to represent the capillary. The result was observed to be nearly
independent of Nc for Nc ≥ 200. At each time step, all species were let to
diffuse individually according to eqs. (15) and (16) with Qi = 0, and then
the concentrations of the complexes were equilibrated in each cell.

A difference in the present work comes from the inclusion of non-ideality.
In our earlier treatment [11], conservation of matter in the capillary was
ensured by imposing a zero electric field at both ends of the capillary. In
the present work, it was found that this condition could be satisfied by
discretizing eq. (16) (without expanding it) and by imposing the relation,
∇ ln γi − ziE = 0, in cells no. 1 and Nc at every time step.
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4. Results and Discussion

4.1. Parameter values

First, parameter values had to be determined for the description of as-
sociation, activity coefficients and transport of species in the model. An
approximate procedure had to be used in order to reduce the number of pa-
rameters in the model. Their values are collected in Table 1. They were
determined as follows.

The diameters of the salt ions Li+ and Cl− were required for the com-
putation of activity coefficients of all species within the MSA [30]. In this
framework, we usually keep the diameter of Cl− ion equal to its Pauling crys-
tallographic value (3.62 Å) because it is essentially unhydrated. Then, the
diameter of (hydrated) Li+ ion was adjusted by fitting the experimental os-
motic coefficient of aqueous LiCl solution up to 2M, by keeping the dielectric
constant of solution equal to that of water.

The values for the cumulative constants βn were taken from a database
published in the geochemical community for the determination of speciation
in natural waters [32]. These values are close to those proposed by Marcus
[33].

A fit of experimental osmotic coefficient data for zinc perchlorate solution
up to 0.2 mol kg−1 [34] within the MSA with constant solution permittivity
gave an optimum zinc(II) ion diameter of ∼ 6.4 Å with a diameter of 4.53
Å for the perchlorate ion [30]. In this fit, zinc perchlorate was regarded as
being not associated as found experimentally [35, 36]. This value of 6.4 Å
was taken here for the computation of the activity coefficient of free zinc(II)
ion in LiCl solution.

It is known from experiment that the structure of the zinc(II) ion in water
is a hexa-coordinated aquo-complex, ZnW2+

6 [36] (in which W represents the
water molecule), with an average lifetime of a few nanoseconds [37]. The
maximum diameter of this species is of the order of 1.76 + 2× 2.76 ∼ 7.3 Å,
as found by adding the diameters of the bare zinc(II) ion [31] and two times
that of the water molecule. Besides, the diameter of a sphere having the same
volume as this species is ∼ 5.1 Å. We note that the MSA adjusted diameter
of the zinc(II) ion in perchlorate solution is nearly the average of these two
values. So, the diameter of 6.4 Å may be interpreted as the effective size of
the aquo-complex in the MSA.

The structure of zinc chloride complexes in water has been studied exper-
imentally [38] and by ab initio numerical simulation [21, 22, 39]. The consis-
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tent picture emerging from these studies is one in which the monochloro
and the dichloro complexes are hexa-coordinated, and the trichloro and
tetrachloro complexes are tetra-coordinated. Their formulas are ZnClW+

5 ,
ZnCl2W

0
4, ZnCl3W

− and ZnCl2−4 . The change of coordination in the com-
plexes with 3 and 4 chlorides is likely to originate from the fact that it lowers
the electrostatic repulsion between the charges on the chlorides as compared
to hexa-coordinated compounds [39]. The diameters taken for the complexes
in the MSA model were estimated from the MSA diameter of zinc(II) ion
(σ0=6.4 Å) and the volumes of the complexes (vk) by using the formula,
σk = σ0 (vk/v0)

1/3. This led to the values listed in Table 1.
The diffusivities of Li+, Cl− and Zn2+ at 25◦C were obtained from the val-

ues for the limiting equivalent conductivities [27] by using a classic conversion
formula (eq. 11.49 of ref. [27]). Those for the complexes were assessed by
utilizing the D value for the zinc(II) ion, the values of the complex diameters
(σk), and the Stokes-Einstein formula, from which we got, Dk = D0 σ0/σk, by
assuming that σk is a good approximation for the hydrodynamic diameter of
the complex k. It is noticed in Table 1 that the value of D is not monotonous
in the series because of the transition from hexa- to tetra-coordination when
passing from ZnCl2 to ZnCl−3 .

Table 1: Values taken for diameters (σi), diffusivities (Di), and cumulative formation
constants βi of species.

Species σi(Å) Di (10
−5 cm2 s−1) log10 βi

Li+ 4.26 1.03a

Cl− 3.62 2.03a

ZnW6
2+ 6.40 0.703a

ZnClW5
+ 6.65 0.677 0.49

ZnCl2W4
0 6.88 0.654 0.62

ZnCl3W
− 6.50 0.692 0.51

ZnCl2−4 6.75 0.667 0.20
aExperimental value

4.2. Forces in play

In order to gain more insight into the process, the speciation found for the
zinc ion at LiCl concentrations of 0.5M, 1M and 2M from the MSA descrip-
tion, and in the ideal case with association is shown in Table 2. The first two
concentrations, 0.5M and 1M, correspond to the values for the concentration
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of LiCl at point O (see Figure 1) when the bottom of the capillary is filled
with 1M or 2M LiCl solution at t = 0. Indeed the LiCl concentration at point
O is approximately constant in time during the diffusion process and it is
equal to half of the initial concentration in the bottom part of the capillary.

Table 2: Speciation and average valency for zinc at various concentrations of LiCl, obtained
from the present MSA model (first line for every LiCl concentration) and in the ideal case
(second line, in parentheses).

CLiCl Zn2+ ZnCl+ ZnCl2 ZnCl−3 ZnCl2−4 ⟨z⟩a
0.5M 25.4% 40.8% 19.3% 11.6% 2.9% 0.74

(23.2%) (37.3%) (26.2%) (10.6%) (2.7%) (0.68)
1M 10.5% 24.0% 19.8% 27.7% 18.0% -0.19

(7.3%) (23.1%) (31.8%) (25.2%) (12.6%) (-0.13)
2M 2.4% 4.4% 6.5% 22.2% 64.5% -1.4

(1.3%) (8.1%) (22%) (34.5%) (34.1%) (-0.92)
aAverage valency of zinc species in its various forms

It must be noticed that this zone of the capillary is where most of the
internal electric field effect is created. This is due to the fact that the electric
field is the most intense in this region of highest gradient of LiCl. This field
originates from the diffusion of the major ions. The chloride ion diffusivity
being larger than that of the lithium ion, an electric field is created, directed
from the bottom to the top of the capillary, that pulls the slow ion (the
positive lithium ion) and slows down the fast ion (the chloride ion).

It is seen in this table that as expected the speciation of zinc is shifted
towards the formation of complexes of higher stoichiometry when CLiCl is
increased. In the upper region of the capillary, as long as LiCl has not
reached this zone, the zinc is in the form of Zn2+ ion (dilute ZnCl2 solution).
It is seen also in this table that the effect of deviations from ideality is rather
weak at 0.5M LiCl, moderate at 1M and appreciable at 2M.

The value of the average valency of zinc containing species, ⟨z⟩, is given
in the last column of Table 2. It has a value of 2 at very low CLiCl, at which
the free zinc(II) ion is the dominant form of zinc. This quantity gives an
indication of the net effect of the electric field on the zinc species (taken
globally, in all forms) because the complexes are expected to have similar
diffusivities. In particular, since ⟨z⟩ is positive at 0.5M LiCl and negative at
1M, we find that the electric field should have opposite effects on zinc at these
two concentrations (which correspond to those at point O in the capillary
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for initial 1M and 2M LiCl, respectively, in the bottom part). At very low
LiCl concentration, the zinc(II) ion would be dragged in the direction of
the electric field (from the bottom to the top of the capillary) because it
is positive, which would make the function ρ take negative values. When
CLiCl is increased, ⟨z⟩ is also decreased. Then we expect that ρ will take
less negative values for initial 2M LiCl than for 1M under the effect of the
electric field.

Besides the influence of the electric field, the second main phenomenon
governing the motion of zinc is self-diffusion (the term −Di∇Ci in eq. (9)).
In solutions of 1M and 2M LiCl initially in the bottom of the capillary, the
Zn2+ ion is the minor zinc species and it is by far the major ion in the top
part. This strong gradient causes natural diffusion of Zn2+ ion from the top
to the bottom half of the capillary. It is the reverse situation as regards the
complexes that are nearly inexistent in the top part. This induces crossed
fluxes of free zinc(II) ion and of the complexes. However the overall flux of
zinc from the bottom to the top of the capillary is likely to be small because
these fluxes may compensate each other.

The last effect is that of deviations from ideality on the fluxes as ex-
pressed in eq. (9) by the term −DiCi∇ ln γi. The activity coefficients of
the zinc compounds obtained from the MSA model are collected in Table 3.
The bivalent ions Zn2+ and ZnCl2−4 have the lower values because they have
higher electrostatic interactions with the major salt, which gives them lower
electrostatic energies. The monovalent ions ZnCl+ and ZnCl−3 , and still more
the neutral ion ZnCl2, have higher activity coefficient values.

Table 3: Values of ln γi for the zinc compounds obtained from the present model.

[LiCl] Zn2+ ZnCl+ ZnCl2 ZnCl−3 ZnCl2−4
1M -0.919 0.372 0.773 0.412 -0.951
2M -0.493 1.24 1.86 1.08 -0.394

According to eq. (9) the flux of species i due to non-ideality has the sign of
−∇ ln γi. Thus, with the x-axis being oriented from the bottom to the top of
the capillary (see Figure 1), the sign of the overall flux for a species i may be
expected to have basically the sign of ln γi reported in Table 3. Consequently,
according to this table, we see that the species should behave differently with
respect to this effect. On the other hand, we observe that the values of ln γi
all increase in algebraic value from 1M to 2M LiCl concentration. Therefore
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the effect of activity coefficients should be stronger at 2M LiCl than at 1M.
The transfer of zinc under this effect from the bottom to the top of the
capillary should be larger at 2M than at 1M , so making ρ more negative.

This preliminary discussion shows that the transport of zinc in the cap-
illary is the result of several antagonistic effects. At low CLiCl, the main
effect would be due to the electric field (which remains finite by virtue of
eq. (12) and becomes independent of Cs when Cs becomes very small), so
that ρ would be negative. When CLiCl is increased, the effect of self-diffusion
must be small, that of the electric field is to reduce the amplitude of ρ, and
that of activity coefficients is to enhance it. The theoretical FD and NM
treatments were utilized to solve this problem. The results are exposed in
the next section.

4.3. Comparison of experimental and theoretical results

Typical experimental curves (denoted by the letter “e”) and theoretical
results are presented in Figures 2 and 3, in which−ρ is plotted as a function of
time. The fact that the experimental plots appear as broken lines originates
from the natural fluctuations in γ-emission by the radioactive zinc tracer.

Figure 2: Plot of −ρ as a function of time for the experiment with 1M LiCl. (e) Experi-
mental points; (FD) and (NM) FD and NM results with association and deviations from
ideality, respectively; (FD ass0) FD without association but with deviations from ideality;
(FD ideal) FD for ideal solution with association.
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Figure 3: Plot of −ρ as a function of time for the experiment with 2M LiCl. (e) Experi-
mental points; (FD) and (NM) FD and NM results with association and deviations from
ideality, respectively; (FD ass0) FD without association but with deviations from ideality;
(FD ideal) FD for ideal solution with association.

In Figure 2, the FD result including association and deviations from ide-
ality is in very good agreement with the experimental data. The FD curves
obtained in the ideal case (FD ideal), and without association (FD ass0), are
also shown. They indicate how sensitive the FD result is to the incorporation
of these two phenomena. It is noticed that the ideal plot for −ρ is below the
non-ideal result (maxima of ca. 6% and 8%, respectively). On the contrary,
in the absence of association, the result (FD ass0) is significantly above the
FD plot, mainly because associated forms of zinc ion have a lower (possibly
negative) electric charge than the free zinc(II) ion. Consequently the effect
of the electric field is lower on these species or it is in the reverse direction.
The normal modes (NM) plot is slightly above the FD plot, with a relative
difference of ∼ 17% between the two maxima. Moreover, the positions in
time of the maxima for −ρ are nearly identical (∼ 22.0 h and 22.6 h for FD
and NM, respectively), and the value for NM coincides with the one given by
eq. (30) (tm = 22.6 h). The value for the NM maximum is accurately given
by eq. (31).

In Figure 3, the same curves as in Figure 2 are plotted in the case of initial
2M LiCl. It is observed that the full FD result (accounting for association
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and activity coefficients) is close to the experimental curve (“e”). At the
same time, the sensitivity of the FD result to the inclusion of association
and deviations from ideality is much more pronounced than at 1M LiCl
(see Figure 2). Here, the FD result in the ideal case is much below the FD
plot, which shows the importance of including non-ideality in the description.
Moreover, the formation of zinc complexes is seen to cause a large drop in
the observed maximum for −ρ. In the absence of association we find that
the maximum for the FD plot is of ∼ 18% as compared to ∼ 10% for the
experiment and the full FD curve. Thus, the full FD calculation including
association and activity coefficients seems capable of capturing the main
effects acting on the various forms of the solute. Besides, the NM plot is
just a bit higher than the FD plot, with a relative difference between the
two maxima of ∼14%. The positions in time of the maxima are a bit more
different from each other than at 1M LiCl (∼ 17 h and 19 h for FD and NM,
respectively). This value for NM is precisely given by eq. (30) (tm = 19.2 h).

5. Conclusion

It has been found that the model developed in this work provides a good
prediction of transient diffusion profiles for a multiply associating ion forming
chemical complexes in a supporting electrolyte. This satisfactory description
was developed by taking literature values for the association constants and
by describing deviations from ideality within the MSA with reasonable in-
put parameter values. The prediction consisted of using a finite difference
algorithm and, besides, an approximate normal mode analytic calculation.
Both accounted for diffusion, internal electric field and activity coefficients
for all species. The normal mode result was found to be a little larger than
the more accurate finite difference result. The NM method may be used to
estimate the order of magnitude of the experimental effect and it provides a
confirmation of the FD result.

In subsequent work, we will study the case of electrolytes forming several
ionic complexes. In such systems, the cation interacts strongly with an anion
through electrostatic forces but does not form covalent complexes. This is
for instance the case of lanthanides with some halides. It will be interesting
to examine whether coupling diffusion can be described within the classic
chemical model [40] in which an ionic complex is regarded as a true chemical
complex.
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Appendix

The coefficients appearing in eq. (20) are as follows,

d1 =
N∑
k=0

DkβkCs
k [(2k + φk)Ψk + 2CsΨ

′
k] ,

d2 =
N∑
k=0

DkβkCs
k
{
[(k − 1)(k + φk) + Csφ

′
k]Ψk + Cs(2k + φk)Ψ

′
k + Cs

2Ψ′′
k

}
,

ds =
N∑
k=0

DkβkCs
k [(k + φk)Ψk + CsΨ

′
k] (32)

where a prime denotes differentiation w.r.t. Cs, i.e. f ′ ≡ ∂f/∂Cs, and we
have introduced the following definitions

φk ≡ ∂ ln γk
∂ lnCS

− zk
D+ +D−

[
D+

(
1 +

∂ ln γ+
∂ lnCS

)
−D−

(
1 +

∂ ln γ−
∂ lnCS

)]
Ψk ≡ Γk

/ N∑
n=0

βnΓnCs
n (33)

Note that, in these relations, βkCs
k, Γk, φk and Ψk are quantities without

dimension.
The derivatives in these equations involve differentiation of individual

activity coefficients w.r.t. the salt concentration Cs. They may be calculated
for a given model of deviations from ideality, either analytically (if possible)
or numerically.
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