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Abstract  

 Over the last few years, particle sizing techniques in multiphase flows based on optical 

technologies emerged as standard tools but the main disadvantage of these techniques is their 

dependence on the visibility of the measurement volume and on the focal distance. Thus, it is 

important to promote alternative techniques for particle sizing, and, moreover, able to work in 

hostile environment. This paper presents a single-particle sizing technique at a millimeter scale 

based on the measurement of the variation of the electrolyte resistance (ER) due to the passage of 

an insulating sphere between two electrodes immerged in a conductive solution. A theoretical 

model was proposed to determine the influence of the electrode size, the interelectrode distance, the 

size and the position of the sphere, on the electrolyte resistance. Experimental variations of ER due 

to the passage of spheres and measured by using a home-made electronic device are also presented 

in this paper. The excellent agreement obtained between the theoretical and experimental results 

allows validation of both model and experimental measurements. In addition, the technique was 

shown to be able to perform accurate measurements of the velocity of a ball falling in a liquid. 
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1. Introduction  

 Many industrial processes highlight the importance of multiphase flows, in particular those 

involving two phases where a gaseous, liquid or solid phase is dispersed at various scales in a 

continuous liquid phase. Examples of such processes are encountered in a wide variety of technical 

applications, including inkjet printers, deposition and coating, direct injection internal-combustion-

engines, gas turbines, etc. The dispersed phase can lead to homogeneous or separated flows, 

suspensions or bubbly flows, etc. Among the two-phase systems, those with dispersed discrete 

particles play an important role, for example in the pharmaceutical and cosmetic industries. Hence, 

it is essential to seek reliable techniques to characterize the particles in mixtures because they have 

a direct impact on product quality [1].  

 The various methods for particle sizing in multiphase flows have been reviewed in [2-5]. 

Recently, the techniques based on optical technologies have emerged as standard tools because of 

their numerous advantages such as a high spatial resolution, a moderate temporal resolution, and a 

large range of applicability. They are widely used for dense multiphase flows in industrial processes 

and in microstructures as well, for example for biological cell counting and sizing [6-11]. In 

addition to complex and expensive equipments, the main disadvantage of these techniques is their 

dependence on the visibility of the measurement volume and on the focal distance. Moreover, they 

are difficult to adapt to hostile environments, for example at high temperature and/or high pressure.  

 Since particles of different size can be physically separated, non-optical techniques for 

particle sizing have also been developed like sieving, gravitational sedimentation, centrifuging, etc 

[12-14]. Sensors for particle sizing have been developed using electrostatic and acoustic techniques 

[15-17]. The most popular technique based on electrical measurement is the electrical sensing zone 

method (Electrozone Counter or Coulter Principle), in which particles are suspended in an 

electrolyte and forced to flow through a small orifice. The change in electrical resistivity of the 

solution between two electrodes placed on either side of the orifice allows the particle size to be 
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determined [18-20]. This method has been applied to many applications but its main disadvantage is 

that particles may get trapped in the orifice and cause plugging. 

 During the past thirty years, the electrochemical noise (EN) technique has been developed in 

our laboratory to study two-phase flows using electrodes immerged in a conductive electrolyte. 

Indeed, the presence of discrete entities (gas bubbles, oil droplets, solid particles…) near a working 

electrode generates fluctuations of current, potential, and also fluctuations of the electrolyte 

resistance (ER) between the reference electrode and the working electrode that are provoked by 

changes in the current distribution (screening effects) [21-25]. The analysis of the EN signals in 

both time and frequency domains allows a more precise identification of the elementary events at 

the origin of noise, which is not possible with classical electrochemical methods, such as impedance 

spectroscopy or cyclic voltammetry, that give information averaged in time and over the electrode 

surface. This technique has been successfully applied to determine the size and departure rate of 

bubbles on a gas-evolving electrode [21-22], to determine the electrical charge exchanges between 

conductive beads and a current collector [23], to get a detailed view of the approach and residence 

of microcapsules close to the electrode during composite plating [24], or to characterize the 

composition of oil-brine mixtures in a flow-loop cell [25]. 

 The objective of this work was to assess the possibility to use the electrochemical noise as 

an alternative technique for particle sizing in two-phase flows. As a preliminary step, single 

particles were used in this first paper. Numerical simulations were performed to study the influence 

on the ER of an insulating sphere passing through two electrodes immerged in a conductive 

electrolyte and an experimental work was carried out to validate the simulation results. 

 

2. Theoretical simulation 

 In order to determine the influence of the presence of an insulating sphere on the ER 

measured between two electrodes immersed in a conductive electrolyte, a theoretical model has 

been developed using COMSOL Multiphysics 4.1 software. As shown in Fig. 1, two disks of 
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diameter de represent the two electrodes positioned face-to-face. The electrolyte is contained in a 

cuboid of dimensions lx, D, lz, where D is the distance between the two electrodes, and dp is the 

diameter of the sphere that will descend along the z-axis in the experimental section. The lx and lz 

values are chosen large enough (100 mm) compared to the diameter of the electrodes and the 

interelectrode distance, so that they have no significant influence on the simulation results. 

 To calculate the ER (impedance at high frequency) an electrical model was chosen in this 

work instead of an electrochemical model to simplify the simulation. This model is valid as long as 

the concentration and the temperature of the electrolyte, and hence its conductivity, , are constant. 

A difference of potential is applied between the two electrodes and the ER is calculated from the 

resulting current on the electrodes. Only the primary current and potential distributions were 

considered in this work since kinetic and mass transport phenomena can be neglected at the high 

frequency, typically 100 kHz, at which the ER is measured. The potential, , can be calculated at 

any point between the two electrodes using the Laplace equation: 

 ²  = 0 (1) 

The first integration of this equation allows the current density, J, to be determined: 

 J = -    (2) 

 The following boundary conditions were applied in the simulation: 

i) the normal component of the current, - n.J, was equal to 0 at any point of all the insulating 

surfaces of the sphere and around the electrodes, as well as on the boundaries of the cuboid. 

ii) a difference of potential, Vapp, of 30 mV was applied between the two electrodes (+30 mV was 

applied to one electrode and 0 mV to the other one that was considered to be the grounded 

electrode).  

 The value of the electrolyte conductivity,  = 28 S/m (resistivity of 3.6  cm), was taken as 

that of the electrolyte used in the experimental part presented below. 

 As an example, Fig. 2 presents the potential and current density distributions in the presence 

of an insulating sphere. To improve the accuracy of the simulation, the calculations were performed 

using the finite element method with a more precise mesh on the surface of both electrodes. It may 
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be noted in Fig. 2b that the current lines are strongly deflected close to the electrode edges and 

around the sphere. 

 The ER measured between the two electrodes was determined from the ratio Vapp/I, where I 

is the current flowing between the electrodes. I was calculated by integrating the current density on 

the surface of the non-grounded electrode. The variation of the ER, Re, due to the presence of the 

sphere is then:  

 eaepe RRR   (3) 

where Rep and Rea are the ER in the presence and in the absence of the sphere between the 

electrodes, respectively. The normalized ER variation, Re,norm, defined as: 

 100
)(

ea

eaep
norme, 


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R

RR
R  (4) 

depends on 6 parameters, the position (x, y, z) of the sphere centre, the sphere diameter dp, the 

electrode diameter de, and the interelectrode distance D. The influence of these parameters on 

Re,norm is presented in the following sections in order to assess the possibility to determine the 

sphere diameter in single-particle sizing experiments, in which de and D are fixed parameters. 

 

2.1. Influence of the position of the insulating sphere  

 Fig. 3 shows the Re and Re values for an insulating sphere of 6 mm in diameter positioned 

at several positions along the vertical z axis and various x positions (y = 0) between two electrodes 

of diameter de = 5 mm and an interelectrode distance D = 20 mm. Because of the symmetry of the 

problem, the variations of Re as a function of x or z are identical; for example, Re = 6.3664  for z = 

0 and x = 5 mm, and for x = 0 and z = 5 mm. It can be noticed that Re starts increasing much 

before the sphere passes in front of the electrodes in the z or x direction, at a distance about three 

times larger than the electrode diameter, indicating that the current lines are modified on long 

distances by the presence of the sphere. The maximum value of Re is obtained when the centre of 

the sphere is positioned exactly on the axis of the two electrodes (x = z = 0), where the screening 
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effect is the most important. Consistently, the variation of Re is symmetrical around the origin z = 0. 

It must be noted that, despite a sphere diameter slightly larger than the electrode diameter, the 

maximum value of the ER increase due to the presence of the sphere is rather low: Re = 46.1 m 

at z = 0, which gives a normalized ER increase Re,norm = 0.73%. 

 Fig. 4 shows the ER values when the sphere is not at the same distance of both electrodes 

(y  0). The highest values are obtained when the sphere is moved closer to one of the electrodes 

(Fig. 4a) because of a stronger constriction of the current lines between the sphere and the closest 

electrode. For this reason, the maximum value of the ER variations is obtained when the sphere is in 

contact with one of the electrodes (Re = 1.16  for y = 7 mm and x = 0). It should be noticed that 

when the centre of the sphere is on the axis of the disk electrodes (x = z = 0), the ER values are 

relatively close together in the middle of the channel (Re = 53 m 15% for |y| <2 mm), as shown 

in Fig. 4b. This indicates that in single-particle sizing experiments, it is important to force the 

particle to flow at approximately the same distance of both electrodes since in that case Re,norm 

depends on x, z, and dp only. 

 

2.2. Influence of the insulating sphere diameter dp  

 The influence of the diameter of the insulating sphere on the ER increase was investigated 

for spheres centred at the origin O (x = y = z = 0). The normalized ER variations, which are given in 

Fig.5 for three interelectrode distances, increase with the sphere diameter, the upper limit 

corresponding to the case where the sphere touches both electrodes (Re,norm = 99%, 156%, and 

179% for D = dp = 10, 15, and 20 mm, respectively). The analytical dependence of Re,norm on the 

sphere diameter is not trivial; two behaviours can be observed in Fig. 5, one for dp < D/2, the other 

one for dp > D/2 where the Re,norm increase with dp is stronger. A power law can be observed in 

Fig. 5 for small spheres and all three interelectrode distances: 

 bdadR ppnorme, )(   (5) 
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where a = 0.039, 0.0087, and 0.0031 for D = 10, 15, and 20 mm, respectively, and b = 3.05  0.05 

in all 3 cases, according to the linear fitting performed on the (log dp, log Re,norm) data. In the study 

of the ER variation induced by a spherical bubble in contact with an infinite electrode [26] or a disk 

electrode [27,28], a power close to 3 was already obtained for the exponent of the sphere diameter. 

 

2.3. Influence of the interelectrode distance D  

 Fig. 6a shows the ER values as a function of the interelectrode distance for spheres of 

various diameters centred at the origin O. Two regions may be distinguished. In Region 1, which 

corresponds to spheres of diameter smaller than the electrode diameter, the current lines can flow 

directly from one electrode to the other without being too much deviated by the presence of the 

insulating sphere, so that Re increases with the interelectrode distance. In contrast, the current lines 

are strongly constricted close to the electrodes for bigger spheres (dp > de, Region 2). As a 

consequence, Re starts decreasing when D increases up to a value of about 2 dp, where Re increases 

as for the smaller spheres. 

 The normalized ER increment due to the presence of the sphere is given in Fig. 6b in a log-

log scale. In Region 2, as soon as D is larger than 2 dp, a power law can be observed: 

 dDcDR  )(norme,  (6) 

where the exponent d is very close to 4. For the smaller spheres (Region 1), a power law may also 

be observed, but at values of D much higher than 2 dp and with an exponent slightly lower than 4. 

All fitted curves shown in Fig. 6b were obtained by a linear fitting performed on the (log D, 

log Re,norm) data. 
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2.4. Influence of the electrode diameter de  

 The influence of the electrode diameter on the ER is shown in Fig. 7 for a sphere of diameter 

6 mm centred at the origin O. As expected, the smaller the electrode, the higher the ER value 

because of a stronger constriction of the current lines close to the electrodes. It should be noted that 

the influence of the sphere is so small, according to the low Re,norm values, that the Re values in the 

absence or in the presence of the sphere would not be distinguishable in Fig. 7. In contrast, Re,norm 

increases with the electrode diameter, indicating that the passage of particles can be more easily 

detected when using electrodes larger than the particle.  

 

2.5. Method for particle sizing 

 Once the electrode diameter and interelectrode distance have been chosen, the ER variation 

Re induced by the passage of a single spherical particle depends on 4 parameters, the position (x, y, 

z) of the particle centre and the particle diameter dp. According to Fig. 4b, the influence of the 

lateral position y on Re is not significant when the particle flows close to the middle of the channel 

between the electrodes, so that Re depends only on x, z and dp under this experimental condition. 

For a given sphere diameter, an empirical expression of Re as a function of z can be determined for 

x = 0 with the help of the plot of Re(z) in a semi-logarithmic scale that indicates a linear z-

dependence of log(Re) for high z values. As shown in Fig. 8a for D = 20 mm and de = 5 mm, 

which are the values used in the experimental work, the following expression with parameters 

obtained by fitting the Re values presented in Fig. 3 (dp = 6 mm) gives an excellent result: 

 
z

z
dzxR

17578.0pe
1043851.01

0081.00668.0
)mm6,,0(




  (z in mm) (7) 

 Because of the symmetry of the problem, the isovalues of Re are located on circles of 

equation “x2+z2 = constant” when y = 0, so that the previous empirical expression can be directly 

extended to any position (x, z) of the sphere centre by replacing 2zz   with 22 zx  : 
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which is confirmed by the excellent agreement in Fig. 8a between the Re values for x  0 and the 

solid red lines obeying Eq. 8. 

 Finally, to derive an expression of Re including the dependency on dp, the power law 

identified in Eq. 5 for de < D/2 was used despite the fact it was obtained for a sphere centred at the 

origin O. Fig.8b shows an excellent agreement between the Re values calculated for dp = 3 mm at 

different x and z values and the solid red lines obeying the following expression with a value of 3.05 

for the exponent of dp. 
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 In single-particle sizing experiments, the diameter dp of the sphere must be determined from 

the experimental transient Re(z) such as those presented below when the sphere flows vertically in 

the channel. Still assuming that y is close to 0, the amplitude Re,max of the transient at z = 0, which 

can be easily determined, depends on x and dp. While a fitting procedure using Eq. 9 could give 

both x and dp values, an easier way consists in considering experiments in which the particle flows 

at a distance x close to 0. Indeed, the influence of x on Re,max is relatively low in that case (for |x| 

<2 mm, Re,max = 43.9 m  5% for dp = 6 mm and 5.4 m  5% for dp = 3 mm). As a 

consequence, the diameter dp can be evaluated with the following expression derived from Eq. 9 

with x = z = 0. This expression will be used below in the experimental part. 

 328.0
maxe,p )(42.16 Rd   (Re,max in , dp in mm) (10) 

 

3. Experimental 

 All experiments were performed at room temperature in a large glass crystallizing dish of 17 

cm in diameter and 10 cm in height. The two working electrodes were the cross-section of platinum 
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rods of 5 mm in diameter embedded in epoxy resin and mounted flush in two parallel planes of a 

Teflon holder located at the dish centre. The distance between the two electrodes positioned face to 

face was 20 mm. The electrolyte was a 0.7 M H2SO4 solution prepared with deionised water. Its 

conductivity, which depends on the room temperature, was measured before each experiment with a 

conductivity meter (Meterlab CDM230) and adjusted to the value of 28 S/m by adding a few 

droplets of sulfuric acid or water. Nevertheless, the room temperature could change a little bit when 

performing long experiments, which had an effect on the amplitude Re of the experimental 

transients and on the mean value of the ER measured in the absence of sphere. However, this effect 

was not significant on the derived value of Re,norm.  

 Alumina spheres of various diameters, 3, 5, 6, 8, and 10 mm of excellent sphericity 

(tolerance 2.5 m in diameter) from Goodfellow were used as insulating spheres. To ensure that 

the insulating sphere could fall the most exactly possible at a given position between the two 

electrodes, a specific Teflon funnel with a narrow stem of diameter slightly larger than that of the 

sphere was used for each sphere to guide it. Moreover, the lower part of the stem was immerged in 

the solution to avoid any disturbance of the sphere trajectory when contacting the electrolyte.  

 The ER fluctuations were measured using the home-made electronic device shown in Fig. 9 

[24]. The two electrodes were polarized at the same potential using a home-made potentiostat 

applying a 0 mV potential difference between the two electrodes, one acting as the working 

electrode, the other as counter electrode. No reference electrode was used. A sinusoidal voltage 

signal, vhf, of peak-to-peak amplitude about 50 mV and high frequency fhf = 100 kHz was applied 

between the two electrodes to measure the ER. Indeed, at this high frequency, the effect of the 

double layer is eliminated and only the ER has to be considered in the electrochemical impedance. 

The sine wave current response, vhf/Re, measured across the resistor R, was passed through a 

capacitor to remove any residual DC offset, amplified and high-pass filtered at 20 kHz to eliminate 

low-frequency current fluctuations. The signal was then rectified with a diode and low-pass filtered 

at 10 kHz, so that the amplitude of the voltage output signal, vRe
, obeyed the following relationship: 
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R

bvR 
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 (11) 

 The parameters b and d were determined through a calibration procedure in which the 

electrochemical cell was replaced by pure resistors. From Eq. 11, the mean value of the ER, Re, 

could be calculated from the mean value of vRe
 measured during the electrochemical experiments. 

After DC-offset elimination, amplification (gain G3 = -10), and analog low-pass filtering to prevent 

aliasing, the variations of vRe
 due to the passage of spheres were acquired with a real-time data 

acquisition system (Concurrent Computer, Maxion 9100) at different sampling frequencies. The 

variations of the ER, Re, could be derived from the measured variations vRe
 with the equation: 

 
e

3

2
e

e Rv
Gb

R
R   (12) 

obtained by differentiating Eq. 11 for Re variations of small amplitude. Experimental results and 

comparison with theory are presented in the next section for insulating spheres of various diameters 

falling between the two electrodes at a position x and y close to 0. 

 

4. Results and discussion 

 Fig. 10 shows three typical examples of the variations of the output voltage signal vRe
 due to 

the passage of insulating spheres of diameters 10 mm, 6 mm, and 3 mm between the electrodes. The 

sampling frequency was 20 kHz in the first two cases and 1 kHz in the latter case. It is important to 

note the strong influence of the sphere diameter on the amplitude of the transient. For the 3-mm 

spheres, the amplitude of the vRe
 signal was much lower and it was necessary to reduce the 

influence of the background noise by decreasing the cut-off frequency of the low-pass anti-aliasing 

filter. Moreover, to still decrease the amplitude of the background noise, which was essentially due 

to the mains interference (50 Hz and harmonics), a digital low-pass filtering at a cut-off frequency 

of 40 Hz was applied to the measured vRe
 data. The result is the red curve shown in Fig. 10. The 
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corresponding Re variations calculated with Eq. 12 and the experimental values of Re and b are 

presented in Fig. 11 (black curves). Moreover, this figure shows the theoretical curves (in red) fitted 

with Eq. 9 by replacing z with v(t0 - t), where v is the velocity of the sphere and t0 the time instant at 

which the sphere passes at the vertical position z = 0. The agreement is so good between the 

experimental and theoretical curves that it is hardly possible to distinguish them for the spheres of 

10 mm and 6 mm in diameter. The adjusted parameters x, v, t0, and dp are given in Table 1, together 

with characteristic parameters of the hydrodynamic flow. 

 As expected from the experimental procedure, the x values are close to 0. On the other hand, 

considering that the starting point of the sphere fall was far enough of the electrodes, the sphere 

velocity could be assumed to be constant in front of the electrodes. This was confirmed by the 

perfect symmetry of the vRe
 transients. Moreover, according to Table 1, the sphere velocity is 

approximately proportional to the square root of the sphere radius. This results from the fact that the 

drag force of the falling sphere is quadratic with velocity at high Reynolds numbers (Re > 103) [30]. 

Table 1 actually shows high values of the Reynolds number calculated according to the equation:  

 





vd
Re

pe
 (13) 

where e and  are the density and dynamic viscosity of the electrolyte, respectively (e = 1.04 

g cm-3 and  = 1.0 g m-1 s-1). Table 1 also shows the terminal velocity of the falling ball, vter, 

calculated as follows: 

 )1(
3

4 e

d

p
ter 





C

dg
v  (14) 

where g is the acceleration of free fall (g = 9.81 m s-2),  is the density of the falling sphere ( = 

3.95 g cm-3), and Cd is the drag coefficient, which depends on the Reynolds number according to 

the relation: 

 4.0
1

624
d 




ReRe
C  (15) 
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The terminal velocities of these not-so-small spheres (compared to the interelectrode distance) have 

been calculated as if they were in an unbounded fluid. The wall-proximity effects in the near-wall 

region were not handled, so the drag coefficient was probably underestimated, which could explain 

why the terminal velocities had values larger than those of the measured velocities (by a factor of 

about 25%). 

 The estimated values of the sphere diameter, dp, in Table 1 are in good agreement with the 

actual diameter of the spheres, within an error lower than 5%, considering the fact that the position 

of the sphere in the x and y direction was not perfectly controlled during its fall. A non-zero x value 

leads to a lower Re value (Fig. 3) while, in contrast, a non-zero y value leads to a higher value. 

According to the simulations, a y value of about 1 mm explains the overestimated diameter of 

10.488 mm for the 10 mm-diameter sphere. The straightforward Eq. 10 gives the same values for 

the diameter of the spheres. 

 Fig. 11 shows that it would be difficult to characterize spheres of diameter much smaller 

than 3 mm with the present experimental set-up (D = 20 mm, de = 5 mm) without improving the 

measurement of the ER variations by decreasing its background noise. Another solution consists in 

using closer electrodes as, for example, in microreactors. This will be presented in a future paper. 

 Additional experiments were performed with spheres of various sizes. In order to insure the 

reproducibility of the results, at least six experiments were carried out for each sphere diameter. 

From the vRe
 transients measured due to the passage of the insulating spheres on the vertical line 

x = y = 0, the maximum amplitude, Re,max, of the Re transients was estimated. The standard 

deviation of the normalized ER increment, Re,max,norm was then calculated with the formula: 

  



n

RR
n

2
normmax,e,normmax,e, )(

1

1  (16) 

where n is the number of experiments and normmax,e,R  the mean of the Re,max, norm values. Fig. 12 

shows the theoretical and experimental Re,norm values as a function of the sphere diameter. It must 

noticed that the experimental errors are close (about 4-5%) for all sphere diameters, which means 
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that the error was not due to the accuracy of the ER measurements, since otherwise it would be 

more important for the small spheres. This error comes from the fact that the spheres did not always 

fall exactly on the vertical line x = y = 0 between the two electrodes. All experimental Re,max, norm 

values are in close agreement with the theoretical values, as shown in Fig. 12.  

 

5. Conclusions  

 This paper investigates the influence of an insulating sphere on the electrolyte resistance 

between two electrodes immerged in an electrolytic solution, to assess the method as a single-

particle sizing technique at millimeter scale. A theoretical model using the finite element method 

was developed to study the influence of different parameters such as the size and the position of the 

sphere, the diameter of the electrodes and the interelectrode distance. Experiments were performed 

with different insulating spheres using a home-made electronic device. The excellent agreement 

between the experimental and theoretical results allows validation of both the theoretical model and 

the experimental setup able to measure fast electrolyte resistance variations in the millisecond 

range. For the moment, the technique allows particle sizing for spheres of diameter larger than one-

tenth of the interelectrode distance. Improvement may be obtained by reducing the background 

noise of the ER measurement. Apart from particle sizing, this specific electrochemical noise 

technique is able to perform accurate measurements of the sphere velocity without the help of 

optical techniques, which could be interesting in some applications as for viscosity measurements 

with falling balls. Only results with insulating spheres have been shown in this paper but the 

technique also works well with metallic spheres as long as there is a significant difference between 

the liquid and sphere conductivities. The development of a microfluidic platform is in progress in 

our laboratory to extend this technique to the micrometer scale and analyze smaller particles.  
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Figure and Table Captions 

 

Table 1 Parameters obtained by fitting the experimental curves in Fig. 11 with Eq. 9 and 

parameters of the hydrodynamic flow. 

Fig. 1. Geometry of the model (a) and example of meshing (b). D: interelectrode distance, dp: 

diameter of the insulating sphere, de: diameter of the disk electrodes, lx, D, lz dimensions 

of the electrolyte volume. 

Fig. 2. Distribution of potential (a) and current (b) lines in the y-z plane (x = 0) in the presence of 

an insulating sphere (dark circle) between the two electrodes. 

Fig. 3. Variations of Re and Re as a function of the position of the centre of the insulating sphere 

along the vertical Oz axis for y = 0 and different x values (de = 5 mm, D = 20 mm, dp = 

6 mm). 

Fig. 4. Variations of Re and Re as a function of the position of the centre of the insulating sphere 

along the vertical Oz axis for different y values (a), and along the y axis for z = 0 (b) 

(x = 0, de = 5 mm, D = 20 mm, dp = 6 mm). 

Fig. 5. Normalized ER increment Re,norm due to the presence of an insulating sphere of diameter 

dp centred at x = y = z = 0 for 3 interelectrode distances D = 10 mm, 15 mm, and 20 mm 

(de = 5 mm). In red, fitted curves when dp is lower than D/2. 

Fig. 6. Variations of Re (a) and Re,norm (b) as a function of the interelectrode distance for 

insulating spheres of diameter dp centred at x = y = z = 0 (de = 5 mm). In red, fitted curves 

when dp is lower than D/2. Values of D and dp in mm. 

Fig. 7. Variations of Re and Re,norm as a function of the electrode diameter for an insulating 

sphere of diameter dp = 6 mm centred at x = y = z = 0 (D = 20 mm).  

Fig. 8. Values of Re as a function of the position of the centre of the insulating sphere along the 

vertical Oz axis for y = 0 and different x values (de = 5 mm, D = 20 mm):  

(a) dp = 6 mm, solid red lines obey Eq. 8, (b) dp = 3 mm, solid red lines obey Eq. 9. 
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Fig. 9. Experimental setup used for measuring the electrolyte resistance fluctuations due to the 

passage of insulating spheres between two immerged electrodes. 

Fig. 10. vRe
 variations due to the passage of single insulating spheres of diameter 10 mm, 6 mm, 

and 3 mm between the electrodes (de = 5 mm, D = 20 mm). 

Fig. 11.  Experimental (black) Re variations corresponding to the vRe
 variations shown in Fig. 10 

as a function of the sphere position along the z axis. Theoretical curves (red) calculated 

with Eq. 11 and fitted parameters given in Table 1. 

Fig. 12.  Experimental and theoretical and values of Re,max,norm as a function of the diameter of the 

insulating sphere centred at x = y = z = 0 (de = 5 mm, D = 20 mm). Error bars indicate 

twice the standard deviation of 6 sample measurements. 
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Table 1 

Parameters obtained by fitting the experimental curves in Fig. 11 with Eq. 9 and parameters of the 

hydrodynamic flow.  

 

Sphere diameter (mm) 10 6 3 

x (mm) 0.0867 0.142 0.126 

t0 (s) 3.9738 2.7014 27.799 

v (mm s-1) 632.66 520.53 324.37 

dp (mm) 10.488 6.033 3.128 

radiussphere/v  (mm1/2 s-1)  282.9 300.5 264.8 

Reynolds number, Eq. 13 6580 3250 1010 

Cd, Eq. 15 0.477 0.511 0.607 

vter (mm s-1), Eq. 14 876 656 425 
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(a)  (b)  
 

 
Fig. 1. Geometry of the model (a) and example of meshing (b). D: interelectrode distance, 

dp: diameter of the insulating sphere, de: diameter of the disk electrodes, lx, D, lz 

dimensions of the electrolyte volume. 
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(a) (b) 

  
 

Fig. 2. Distribution of potential (a) and current (b) lines in the y-z plane (x = 0) in the presence of 

an insulating sphere (dark circle) between the two electrodes. 
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Fig. 3. Variations of Re and Re as a function of the position of the centre of the insulating sphere 

along the vertical Oz axis for y = 0 and different x values (de = 5 mm, D = 20 mm, dp = 6 

mm). 
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Fig. 4. Variations of Re and Re as a function of the position of the centre of the insulating sphere 

along the vertical Oz axis for different y values (a), and along the y axis for z = 0 (b) 

(x = 0, de = 5 mm, D = 20 mm, dp = 6 mm). 
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Fig. 5. Normalized ER increment Re,norm due to the presence of an insulating sphere of diameter 

dp centred at x = y = z = 0 for 3 interelectrode distances D = 10 mm, 15 mm, and 20 mm 

(de = 5 mm). In red, fitted curves when dp is lower than D/2. 
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Fig. 6. Variations of Re (a) and Re,norm (b) as a function of the interelectrode distance for 

insulating spheres of diameter dp centred at x = y = z = 0 (de = 5 mm). In red, fitted curves 

when dp is lower than D/2. Values of D and dp in mm. 
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Fig. 7. Variations of Re and Re,norm as a function of the electrode diameter for an insulating 

sphere of diameter dp = 6 mm centred at x = y = z = 0 (D = 20 mm).  
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Fig. 8. Values of Re as a function of the position of the centre of the insulating sphere along the 

vertical Oz axis for y = 0 and different x values (de = 5 mm, D = 20 mm):  

(a) dp = 6 mm, solid red lines obey Eq. 8, (b) dp = 3 mm, solid red lines obey Eq. 9. 
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Fig. 9. Experimental setup used for measuring the electrolyte resistance fluctuations due to the 

passage of insulating spheres between two immerged electrodes. 
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Fig. 10. vRe
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Fig. 11.  Experimental (black) Re variations corresponding to the vRe
 variations shown in Fig. 10 

as a function of the sphere position along the z axis. Theoretical curves (red) calculated 

with Eq. 9 and fitted parameters given in Table 1.  
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Fig. 12.  Experimental and theoretical and values of Re,max,,norm as a function of the diameter of the 

insulating sphere centred at x = y = z = 0 (de = 5 mm, D = 20 mm). Error bars indicate 

twice the standard deviation of 6 sample measurements. 

 


