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Abstract

Finite–element simulations were performed to determine the influence of a

radial distribution of capacitance on the impedance of ideally polarized disk

electrodes. The characteristic length associated with this form of distribu-

tion was found to be the period of the distribution. This work showed that

while a capacitance distribution causes frequency dispersion, this effect is

seen only at frequencies that are much higher than those associated with

the disk-geometry-induced frequency dispersion. Thus, a constant-phase-

element associated with a surface distribution of time constants cannot be

attributed to a distribution of capacitance.

Keywords: Frequency Dispersion, capacitance, impedance spectroscopy

1. Introduction

Impedance measurements on solid electrodes often yield constant–phase–

element(CPE) behavior over a large range of frequencies. A CPE describes

a distribution of time constants which can be physically categorized as oc-
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curring either normal to or along the electrode surface [1].

Hirschorn et al.[2, 3] used a measurement model incorporating a series of

elements to show that a power-law distribution of resistivity through an ox-

ide film gives rise to CPE behavior. This model has been used to determine

the film thickness of oxides on stainless steel and aluminum electrodes[4]. It

has also been used to determine physical properties of human skin[4, 5] and

polymer coatings[6].

Distributions of solution resistance are observed in planar disk electrode

experiments. Huang et al. showed that the geometry of a disk electrode

within an insulating plane leads to frequency dispersion on blocking elec-

trodes at frequencies greater than dimensionless frequency ωC0r0/κ=1 [7].

Jorcin et al. [1] confirmed these results experimentally with the use of local

electrochemical impedance spectroscopy.

Surface roughness of the electrode, once believed to contribute to the

cause for frequency dispersion [8], will also yield a distribution of ohmic

resistance. Alexander et al.[9] showed that surface roughness at the micron

scale leads to frequency dispersion at frequencies larger than those due to

the disk geometry if the radius of the disk is greater than the characteristic

length, frP , where fr is the roughness factor and P is the period of the

roughness. The period of the roughness may represent the average width of

the rough grooves. The disk radius will in most cases be greater than this

characteristic dimension except in cases of very large roughness factors such

as those that yield porous electrode behavior. This result contradicts the

theory that surface roughness may be a source of CPE behavior over a large

range of frequencies.

Another proposed cause of frequency dispersion is the surface distribu-

tion of capacitance [10]. Brug et al. developed a formula which relates the
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parameters of the CPE to an effective double layer capacitance [11]. They

postulated that the distribution was due to a variation in capacitance across

the electrode surface.

In 1978, Leek and Hampson [10] calculated the frequency dispersion us-

ing a circuit element ladder with different capacitance values per surface area

of electrode. They concluded that surface heterogeneity was an important

factor contributing to frequency dispersion. In 1992, Pajkossy and Nyikos

[12] used a self-similar capacitance distribution to show that frequency dis-

persion in the form of constant–phase–element behavior cannot be explained

by a capacitance distribution since the CPE behavior is only observed for

physically impossible variations in capacitance. Also in 1992, Kurtkya and

de Levie [13] conducted numerical simulations to explain that the frequency

dispersion due to nonuniform capacitance is caused by the shift of the cur-

rent lines with frequency from locations of high impedance to locations of

low impedance.

The objective of this work is to explore, by use of finite-element models,

whether a surface distribution of capacitance could provide a valid physical

explanation for CPE behavior over a broad range of frequencies and to

determine the characteristic frequency and dimension associated with this

form of surface heterogeneity.

2. Impedance Calculations

Two disk electrode configurations were simulated, including a disk elec-

trode embedded within an insulating plane, and a recessed disk electrode.

The calculations were performed in COMSOL Multiphysics 4.3 using cylin-

drical coordinates for a quarter of a circle domain, provided in Figure 1(a),
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500 cm

(a)

0.24 cm

(b)

Figure 1: Finite-element mesh for the disk electrode simulations. a) Axi-symmetric do-

main used to represent disk electrode experiments; b) mesh showing a detailed view of a

recessed electrode. The outer domain is shown in Figure 1(a).
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Figure 2: Capacitance distribution as a function of radial position based on a square wave

represented by a Fourier series with a period of 60 µm.

which represented the electrolyte. Calculations were performed for electrode

radii of 0.12 cm, 0.24 cm, and 0.48 cm. The counterelectrode was located at√
r2 + y2=500 cm, making the domain size at least 1000 times larger than

the radius of the disk (see Alexander et al.[9]). This geometry was chosen

to ensure that the counterelectrode could be considered to be infinitely far

from the working electrode. A free triangular mesh was used with a greater

density of elements near the working electrode.

A capacitance distribution was simulated by a Fourier series that rep-

resented a square wave distribution, as shown in Figure 2 as a function of

radial position. The Fourier series[14] was expressed as

C0(r) = 〈C〉+

∞∑
n=1

(Cmax − Cmin) cos (2nπr/P ) (1)

where the constants Cmax and Cmin represented the maximum and mini-

mum capacitance. The average capacitance of the electrode surface 〈C〉 was

calculated as

〈C0〉 =
2

r20

∫ r0

0
C0rdr (2)
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where r0 is the radius of the disk and C0 is given by equation (1). The

capacitance as a function of the radial position was integrated over the

surface of the electrode and then divided by the area of the electrode. The

period P of the square wave may be representative of an elemental grain size

in which the capacitance is assumed to be relatively uniform across a grain

and then jump to another value at an adjacent grain. Simulations were

performed with 5, 10, 20, and 40 terms of the Fourier series. Numerical

artifacts were observed at high frequencies when the series was truncated

at 5 and 10 terms. As more terms were added to the series the artifacts

shifted to higher frequencies and with 20 terms in the series this behavior

was eliminated from the simulated frequency range. The Fourier series was

therefore truncated after 20 terms.

The electrode was assumed to be purely capacitive, i.e., the contribu-

tions of slow reaction kinetics and mass-transfer were neglected. The po-

tential distribution within the electrolyte domain was solved using Laplace’s

equation

∇2Φ = 0. (3)

The potential comprises steady-state and oscillating components and may

be expressed as

Φ = Φ̄ + Re
{

Φ̃exp(jωt)
}

(4)

The potential of the electrode surface may also be expressed in the same

manner as

V = V̄ + Re
{
Ṽ exp(jωt)

}
(5)

The normal oscillating current density at the surface of the electrode was

expressed as

ĩ = jωC0(r)(Ṽ − Φ̃) (6)
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where Ṽ is the potential perturbation at the electrode and Φ̃ is the com-

plex oscillating potential within the electrolyte. The value of the potential

perturbation will not affect the impedance response, but, for all of the stim-

ulations presented in this work, a value of 10 mV was used. The oscillating

potential was constrained to be equal to zero at the counterelectrode. The

impedance was calculated as

Z(ω) =
Ṽ

ĩ
(7)

for a specified range of frequencies.

Frequency dispersion in impedance measurements may occur for blocking

electrodes that yield a nonuniform current distribution across the working

electrode surface. A dimensionless frequency K may be expressed as the

ratio of ohmic resistance and interfacial impedance as

K = ωC0Re (8)

such that frequency dispersion is induced at K ≥ 1. In the case of a blocking

disk electrode within an insulating plane, the ohmic resistance in units of

Ωcm2 is given by[15]

Re =
πr0
4κ

(9)

such that the dimensionless frequency is

K =
π

4

ωC0r0
κ

(10)

The frequency at which dispersion occurs is found at K = 1 as

fc =
2κ

π2C0r0
(11)

Equation 11 may be used to estimate the frequency at which the disk ge-

ometry will begin to influence the impedance response.
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3. Results and Discussion

Impedance simulations are presented to show the influence of a hetero-

geneous surface capacitance on disk electrodes. Results are shown first for

a recessed electrode configuration and then a disk electrode within an insu-

lating plane. Dimensionless results are used to determine the characteristic

lengths and frequencies associated with a radially-periodic distribution of

capacitance.

3.1. Capacitance Distribution on Recessed Electrodes

A recessed electrode model was used to isolate the effect of surface het-

erogeneity on the impedance response of blocking electrodes. The simulated

impedance response of a recessed disk electrode with the square wave capac-

itance distribution shown in Figure 2 is presented in Figure 3 as a function of

frequency with the period of distribution as a parameter. The minimum and

maximum capacitance values expressed in Equation 1 were set to 1µF/cm2

and 10µF/cm2 respectively to represent a surface with an oxide film and a

bare metal surface. The conductivity of the solution was 10−5 S/cm. The

impedance was representative of an ideal capacitor at frequencies below

100 kHz, shown by the vertical lines that are perpendicular to the real axis.

The figure inset shows a magnified view of the impedance at high frequen-

cies. As the period of the capacitance distribution increases, the frequency

at which dispersion begins decreases.

The simulated real impedance as a function of frequency is presented in

Figure 4(a) with the period of the capacitance distribution as a parameter.

The low–frequency limit of the real impedance increased as the period of

the distribution increased. The high–frequency limit, which represents the

ohmic resistance, was unaffected by the distribution of capacitance.
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Figure 3: The impedance in Nyquist format of a recessed disk electrode with the square

wave capacitance distribution shown in Figure 2 and the period of distribution as a pa-

rameter.

9



1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 59 1 . 5 2

9 1 . 5 4

9 1 . 5 6

9 1 . 5 8

P  =  1 5  µm

U n i f o r m  C a p a c i t a n c e

P  =  3 0  µm

P  =  6 0  µm

Z r /
 kΩ

cm
2

f  /  H z
(a)

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 51 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

 P e r i o d  =  6 0  µm  
 P e r i o d  =  3 0  µm
 P e r i o d  =  1 5  µm
 C a v g  =  5 . 5  µF / c m 2

 C m i n  =  1  µF / c m 2

 C m a x  =  1 0  µF / c m 2

-Z j / Ω
cm

2

f  /  H z
(b)

Figure 4: The simulated impedance as a function of frequency of a recessed disk electrode

with a square wave capacitance distribution and the period of distribution as a parameter:

a) the real part of the impedance; b) the imaginary part of the impedance.
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The imaginary impedance may be expressed as a function of the surface–

averaged capacitance as

〈Z〉 =
−1

ω〈C0〉
(12)

Similar expressions may be formed for the maximum and minimum values of

the capacitance. The impedance calculated from surface–averaged as well as

the maximum and minimum capacitance values are compared to the simu-

lated imaginary impedance in Figure 4(b) as a function of frequency with the

period of the distribution as a parameter. The imaginary impedance at low

frequencies coincided with the impedance based on the surface–averaged ca-

pacitance. Deviation from the surface–averaged impedance occurred at high

frequencies where the impedance asymptotically approached the impedance

associated with the minimum capacitance value.

The deviation from the expected impedance response may be explained

by the current and potential distribution along the electrode surface, which

is presented in Figure 5. In the case of blocking electrodes, the solution

resistance controls the current distribution at high frequencies while the

interfacial impedance controls at low frequencies. The potential distribu-

tion at low frequencies is represented by the color gradient in Figure 5(a).

The streamlines corresponded to the path of the modulus of the oscillating

current expressed, for a given frequency, as

|̃i| =
√
ĩr
2

+ ĩj
2

(13)

in which ĩr and ĩj represent the real and imaginary parts of the oscillating

current. The false color representation of potential distribution was adjusted

to emphasize the variations near the electrode surface. The regions of the

electrode surface with higher capacitance have a lower impedance and the
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(a)

(b)

Figure 5: The current paths near the surface of a recessed electrode exhibiting a square–

wave distribution of capacitance obtained as
√
ĩ2r + ĩ2j : a) at 10 mHz; b) at 100 kHz. The

potential distribution within the electrolyte adjacent to the rough surface is shown by the

false–color representation.
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current flows more easily through these points. Despite the nonuniform cur-

rent distribution, the impedance response at low frequencies was indicative

of a pure capacitor with a value of the averaged surface capacitance. The

potential distribution along the electrode surface at 100 kHz, presented in

Figure 5(b), was more uniform.

The modulus of the oscillating current density along the electrode surface

is presented in Figure 6 as a function of radial position. The low–frequency

current response, presented in Figure 6(a), showed a variation of current

proportional to the variation in surface capacitance and small values of cur-

rent. The high frequency response, presented in Figure 6(b), showed much

higher values of current however the distribution was much more uniform

with only variations at locations where the capacitance changes from one

value to the other which can be attributed to the finite number of terms in

the Fourier series.

A phase angle dependent only on the imaginary part of the impedance

was defined by Alexander et al. [9] as

ϕdZj =
dlog(Zj)

dlog(f)
× 90◦. (14)

As compared to other definitions of phase angle, the imaginary–impedance–

derived phase angle is more sensitive to the onset of frequency dispersion.

The imaginary–impedance–derived phase angle is presented in Figure 7(a)

as a function of frequency with the period of distribution as a parameter.

The effect of a varying capacitance along the surface of the electrode did

not influence the imaginary impedance at low frequencies as indicated by

a phase angle, φdZj = -90◦. However, frequency dispersion did occur in

all cases at high frequencies with a minimum phase angle of approximately

−50◦. The deviation from the expected capacitive behavior occurred at
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Figure 6: Normal current distribution at the electrode surface due to a nonuniform capac-

itance distribution with a period of 60µm of a recessed electrode as a function of radial

position: a) current distribution at 10mHz; b) current distribution at the high frequency

limit of the simulations f = 100 kHz.
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Figure 7: Imaginary–impedance–derived phase angle calculated from the impedance data

in Figure 4: a) phase angle as a function of frequency; b) phase angle as a function of

dimensionless frequency based on the averaged capacitance and the period of the distri-

bution.
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lower frequencies as the period of the distribution increased. If the period

of the distribution is taken as the grain size within a polycrystalline sur-

face, grain sizes on the order of 1µm and less should not lead to frequency

dispersion at frequencies less than 1 kHz.

A dimensionless frequency can be expressed for the distribution of capac-

itance by amending Equation 8 to include the surface–averaged capacitance

expressed as

K = ω〈C0〉Re,C (15)

where Re,C represents the ohmic resistance associated with the nonuniform

capacitance distribution. The ohmic resistance associated with the capaci-

tance distribution is proportional to the difference between the asymptotic

values of the real impedance at high and low frequency. The ohmic resis-

tance per unit area associated with a radially distributed capacitance may

be approximated as

Re,C ≈
P

κ
(16)

where P represents the period of the distribution. According to Equation

10, the dimensionless frequency may now be expressed as

K4P/πr0 =
ω〈C0〉P

κ
(17)

The impedance was scaled by the approximated ohmic resistance as Zκ/P .

The imaginary–impedance–derived phase angle is presented in Figure 7(b)

as a function of dimensionless frequency. The results were superposed, con-

firming that the period is the appropriate characteristic length to use to

describe surface heterogeneity of capacitance. The characteristic frequency

at which a non-uniform capacitance began to influence the impedance was

determined to be K4P/πr0 = 1.
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Figure 8: The ratio of the calculated effective capacitance and the surface–averaged input

capacitance as a function of dimensionless frequency K4P/πr0 with the period of the

distribution as a parameter for recessed disk electrodes.

Since impedance is often used to measure interfacial capacitance, it is

important to ensure that a distribution of capacitance along the surface does

not complicate the use of this technique. The effective capacitance of the

electrode/electrolyte interface may be determined from the imaginary part

of the impedance as

Ceff =
−1

ωZj
(18)

The ratio of the calculated capacitance and the surface–averaged capacitance

is shown in Figure 8 as a function of dimensionless frequency with the period

of the distribution as a parameter. In all cases, the simulated capacitance

closely matched the surface–averaged capacitance of the electrode at low

frequencies.
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3.2. Capacitance Distribution on Disk Electrodes

The impedance of a disk electrode within an insulating plane containing a

heterogenous surface capacitance was simulated to show the coupled effect of

capacitance distribution and non-uniform current distributions due to disk

geometry. The goal of these simulations was to determine if the effect of

capacitance distribution influences the impedance at frequencies lower than

the effect of disk geometry.

The geometry of a disk electrode embedded within an insulating plane

causes frequency dispersion at high frequencies due to the non-uniform cur-

rent distribution at high frequency. As the frequency increases to infinity,

the magnitude of the oscillating component of the modulated current at the

periphery of the disk approaches infinity while the current at the center of

the disk remains finite. The simulated current distribution at an electrode

surface containing the capacitance distribution in Figure 2 is provided as

a function of radial position for 10 mHz in Figure 9(a) and for 100 kHz

in Figure 9(b). The current distribution at low frequencies resembled the

square–wave distribution features. At high frequencies, the effect of the disk

geometry overshadowed the effect of the capacitance distribution since the

current at the periphery approached infinity.

The imaginary–impedance–derived phase angle is provided in Figure

10(a) as a function of frequency. At low frequencies the phase angle was

constant with a value equal to −90◦. Frequency dispersion became ap-

parent at approximately 1 Hz for all periods of capacitance distribution due

to the geometry of the disk. At higher frequencies, dispersion due to the

nonuniform capacitance distribution occurred such that increases in the pe-

riod of the distribution caused the deviation to shift to lower frequencies.

The same results are presented in Figure 10(b) as a function of dimensionless
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Figure 9: Normal current distribution at a disk electrode surface as a function of radial

position: a) current distribution at 10 mHz; b) current distribution at 100 kHz.
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Figure 10: Imaginary–impedance–derived phase angle for a disk electrode within an in-

sulating plane: a) phase angle as a function of frequency; b) phase angle as a function of

dimensionless frequency based on the averaged capacitance.
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frequency in which the period of the distribution was used as the charac-

teristic length. The frequency dispersion due to the surface heterogeneity

was superposed, indicating that the period of the capacitance distribution

is the appropriate characteristic length. The results obtained for a recessed

electrode provided in Figure 7 show only the frequency dispersion due to

the surface distribution of capacitance.

The imaginary–impedance–derived phase angles are presented in Figure

11(a) as a function of frequency with the radius of the disk as a parameter.

The period of the distribution was fixed at 60 µm. Changes in the radius

of the electrode influenced only the frequency dispersion associated with

the geometry of the disk. The imaginary–impedance–derived phase angle is

shown in Figure 11(b) as a function of dimensionless frequency, Equation

10. The frequency dispersion associated with disk geometry was superposed

and the frequency dispersion associated with the capacitance distribution

was not.

Simulations were performed to explore whether the amplitude of the ca-

pacitance distribution may influence the frequency at which the impedance

is influenced. The imaginary–impedance–derived–phase angle was calcu-

lated from simulations on planar disk electrodes with different amplitudes

of capacitance distribution and are presented in Figure 12 as a function of

frequency. As the amplitude of the distribution increased, the deviation from

−90◦ shifted to lower frequencies. However, when the frequency is made di-

mensionless with the use of the period as the characteristic length and the

average value of the capacitance, shown in Figure 12(b), the characteristic

frequency at which dispersion occurred did not change with amplitude and

only the magnitude of the dispersion increased.

The ratio of the calculated capacitance and the average capacitance is
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Figure 11: Imaginary–impedance–derived phase angles values calculated from the

impedance data with the disk radius as a parameter: a) imaginary–impedance–derived

phase angle as a function of frequency; b) imaginary–impedance–derived phase angle as a

function of dimensionless frequency K = ω〈C0〉πr0/4κ.
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Figure 12: Imaginary–impedance–derived phase angle calculated from impedance data on

disk electrodes with a radial distribution of capacitance with the amplitude of the square

wave as a parameter: a) phase angle as a function of frequency; b) phase angle as a

function of dimensionless frequency based on the averaged capacitance and the period of

the square wave as the characteristic length.
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Figure 13: The ratio of the calculated effective capacitance and the surface–averaged

input capacitance as a function of dimensionless frequency K4P/πr0 with the period of

the distribution as a parameter for disk electrodes within an insulating plane.

presented as a function of dimensionless frequency in Figure 13 with the

period of the distribution as a parameter. In all cases, the simulated capac-

itance closely matched the averaged–surface capacitance of the electrode at

low frequencies, indicated by a capacitance ratio value equal to 1. At high

frequencies, an initial decrease of the capacitance ratio was caused by the

nonuniform current distribution on the disk surface. At a dimensionless fre-

quency equal to one, a further decrease was observed due to the capacitance

heterogeneity.

The characteristic frequency at which frequency dispersion occurs for a

planar disk electrode exhibiting a distribution of capacitance may be ex-

pressed as

fc,r0 =
2κ

π2〈C0〉r0
(19)
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Figure 14: The frequency K4P/πr0=1 at which the surface heterogeneity influences the

impedance as a function of distribution period and disk radius with κ/〈C0〉 as a parameter.

where 〈C0〉 represents the surface-averaged capacitance. The characteris-

tic frequency at which frequency dispersion begins due to the capacitance

distribution may be expressed as

fc,P =
κ

2π〈C0〉P
(20)

in which the period of the distribution is the characteristic length associated

with the distribution. The frequency at which dispersion begins is presented

in Figure 14 as a function of both the disk radius as well as the period of

the capacitance distribution with the ratio, κ/〈C0〉, as a parameter. The

period of the distribution may be associated with the average width of grain

sizes within a noncrystalline surface. For a 0.5 cm radius electrode in a

system with κ/〈C0〉 = 1 cm/s (corresponding for example, to 〈C0〉 = 20

µF/cm2 and a 0.16 mM sodium chloride concentration) and an average

grain size of 1 µm, the frequency at which dispersion occurs due to the disk
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geometry is 400 mHz while the frequency at which dispersion occurs due to

the nonuniform capacitance is 1.6 kHz. The frequency dispersion due to the

capacitance distribution will always occur at greater frequencies than the

frequency dispersion due to the disk geometry.

4. Conclusions

The role of surface capacitance heterogeneity on solid electrodes was

studied using numerical finite element simulations under the assumption of

blocking electrode behavior. Multiple cell geometries including a recessed

electrode, and an electrode within an insulating plane were used to assess

the effect of a radial distribution of capacitance. It was shown that sur-

face heterogeneity due to non-uniform capacitance only caused frequency

dispersion at frequencies greater than 1 kHz for a period of 1 µm.

Two distinct deviations from ideality were observed for a disk electrode

in an insulating plane containing a periodic distribution of capacitance. The

first is indicative of the effect of the disk geometry, and the second represents

the influence of the surface heterogeneity. The characteristic length associ-

ated with a periodic distribution of capacitance is the period itself. Physi-

cally the period may represent the average width of grain sizes, which is usu-

ally on the order of microns. The characteristic frequency determined by the

second deviation associated with capacitance distribution is fc = κ/2π〈C0〉P

in which the period of the distribution is used as the characteristic length.

Surface heterogeneity due to a nonuniform distribution of capacitance

does not provide a physical explanation for CPE behavior over a broad

range of frequencies. A non-uniform capacitance only causes frequency dis-

persion at frequencies greater than those due to the geometry of a disk
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electrode contained within an insulating plane. The frequency dispersion

due to the surface heterogeneity would only influence the impedance at fre-

quencies lower than those influenced by the disk geometry if the period of

the surface distribution were greater than the radius of the disk, which is

physically impossible.
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