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We consider parabolic systems of Lotka-Volterra type that describe the evolution of phenotypically structured populations. Nonlinearities appear in these systems to model interactions and competition phenomena leading to selection. In this paper, the equation on the structured population is coupled with a differential equation on the nutrient concentration that changes as the total population varies.

We review different methods aimed at showing the convergence of the solutions to a moving Dirac mass. Setting first two frameworks based on weak or strong regularity assumptions in which we study the concentration of the solution, we state BV estimates in time on appropriate quantities and derive a constrained Hamilton-Jacobi equation to identify the Dirac locations.

Introduction

We survey several methods developed to study concentration effects in parabolic equations of Lotka-Volterra type. Furthermore, we extend the theory to a coupled system motivated by models of chemostat where we observe very rare mutations for a long time. These equations have been established with the aim of describing how speciation occurs in biological populations, taking into account competition for resources and mutations in the populations. There is a large literature on the subject where the mutation-competition principles are illustrated in various mathematical terms: for instance in [START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF][START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF][START_REF] Meszena | Link between population dynamics and dynamics of darwinian evolution[END_REF] for an approach based on the study of the stability of differential systems, in [START_REF] Hofbauer | Evolutionary game dynamics[END_REF][START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF][START_REF] Smith | Evolution and the Theory of Games[END_REF] for the evolutionary games theory, in [START_REF] Champagnat | Mathematical study of stochastic models of evolution belonging to the ecological theory of adaptive dynamics[END_REF] for the study of stochastic individual based models, or in [START_REF] Barles | Concentrations and constrained hamilton-jacobi equations arising in adpative dynamics[END_REF][START_REF] Mirrahimi | Phénomènes de concentration dans certaines EDPs issues de la biologie[END_REF][START_REF] Raoul | Etude qualitative et numérique d'équations aux dérivées partielles issues des sciences de la nature[END_REF] for the study of integro-differential models. We choose here the formalism using parabolic partial differential equations, widely developed in [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Desvillettes | On mutation selection dynamics[END_REF][START_REF] Perthame | Transport equations in biology[END_REF] to describe the competition dynamics in a chemostat.

The chemostat is a bioreactor to which fresh medium containing nutrients is continuously added, while culture liquid is continuously removed to keep the culture volume constant. This device is used as an experimental ecosystem in evolutionary biology to observe mutation and selection processes driven by competition for resources. From the mathematical point of view, the theoretical description of the population dynamics in a chemostat leads to highly nonlinear models and questions of long term behaviour and convergence to an evolutionary steady state naturally arise (see [START_REF] Azmy | Rate distributions and survival of the fittest: a formulation on the space of measures[END_REF][START_REF] Champagnat | Convergence to equilibrium in competitive Lotka-Volterra equations and chemostat systems[END_REF][START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a hamilton-jacobi approach[END_REF][START_REF] Mirrahimi | Population formulation of adaptative meso-evolution: theory and dynamics[END_REF][START_REF] Smith | The theory of the chemostat: dynamics of microbial competition[END_REF]).

Our aim is to study a generalization of the chemostat model introduced in [START_REF] Lorz | Long-term behaviour of phenotypically structured models[END_REF] with a representation of mutations by a diffusion term. In this model, each individual in the population is characterized by a quantitative phenotypic trait x ∈ R d and n ε (t, x) denotes the population density at time t with the trait x. We study the following equations

ε∂ t n ε (x, t) = n ε R(x, S ε (t)) + ε 2 ∆n ε (x, t), x ∈ R d , t ≥ 0, (1) 
εβ d dt S ε (t) = Q(S ε (t), ρ ε (t)), (2) 
ρ ε (t) := R d n ε (x, t)dx,
where the function R(x, S ε ) represents a trait-dependent birth-death rate and S ε denotes the nutrient concentration which changes over time with rate Q. Here ε is a small parameter which allows to consider very rare mutations and large times of order ε -1 . The idea of a ε -1 rescaling in the space and time variables goes back to [START_REF] Freidlin | Functional Integration and Partial Differential Equations[END_REF][START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF] to study propagation for systems of reaction-diffusion PDE. The parameter β, introduced first in [START_REF] Lorz | Long-term behaviour of phenotypically structured models[END_REF], gives a time scale which, as β → 0, leads to the equation Q(ρ, S) = 0 and in this case, under suitable assumptions, we deduce the existence of a function f by Implicit Function Theorem such that S = f (ρ) and the concentration results are known to hold [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF]. Such models can be derived from stochastic individual based models in the limit of large populations (refer to [START_REF] Champagnat | Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models[END_REF][START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF]).

A possible way to express mathematically the emergence of the fittest traits among the population is to prove that n ε concentrates as a Dirac mass centred on some point x (or a sum of Dirac masses) when ε vanishes, which means the phenotypic selection of a quantitative trait denoted by x in long times. The main results of the paper can be summarized as Theorem 1.1. For well-prepared initial data and two classes of assumptions (monotonic in one dimension or concavity in multi-dimensions), then the concentration effect holds

n ε (t, x) -→ ε→0 ρ(t)δ(x -x(t))
in the sense of measure, where the pair (x(t), ρ(t)) can be determined thanks to a constrained Hamilton-Jacobi equation given later on.

In order to describe these concentration effects and following earlier works on similar issues [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Carrillo | Adaptive dynamics via hamilton-jacobi approach and entropy methods for a juvenile-adult model[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF][START_REF] Perthame | Transport equations in biology[END_REF], we will use the Hopf-Cole transformation defining u ε (t, x) = εlnn ε (t, x) and derive a Hamilton-Jacobi equation. Then we obtain by passing to the limit ε → 0 a constrained Hamilton-Jacobi equation, whose solutions have a maximum value of 0. The point is that the concentration locations in the limit ε → 0 can be identified among the maximum points of these solutions. This method, introduced in [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a hamilton-jacobi approach[END_REF] and used for instance in [START_REF] Raoul | Etude qualitative et numérique d'équations aux dérivées partielles issues des sciences de la nature[END_REF][START_REF] Raoul | Local stability of evolutionary attractors for continuous structured populations[END_REF] is very general and has been extended to various systems (see for the case of reaction-diffusion systems).

Singular perturbation problems in PDEs is a classical subject that has been studied from different viewpoints. For instance a seminal paper on parabolic equations involving measures is [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF]. Also the above rescaling in parabolic equations or systems has been deeply studied in reaction-diffusion equations (see [START_REF] Barles | Wavefront propagation for reaction diffusion systems of pde[END_REF][START_REF] Evans | A pde approach to geometric optics for certain semilinear parabolic equations[END_REF]) leading to front propagation where a state invades another as in the Fishher-KPP equation where the stable state n ε = 1 invades the unstable state n ε = 0. This is also the case of Ginzburg-Landau equations (see [START_REF] Bethuel | Progress in Nonlinear Differential Equations and Their Applications[END_REF]) where the quadratic observable n ε = |u ε | 2 takes asymptotically the value 1. This is different from our case, as one can see in the above theorem and since we essentially derive L 1 bounds from the presented model.

To prove the main convergence results of this paper, we will adapt the method introduced in [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Long-term behaviour of phenotypically structured models[END_REF] to find BV estimates for the appropriate quantities as a first step. Then we will use the theory of viscosity solutions to Hamilton-Jacobi equations (see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF] for general introduction to this theory) to obtain the Dirac locations. In the first part we will proceed with assumptions of weak regularity of the growth rate in a first instance and then we will resume the study under concavity assumptions.

The paper is organized as follows. We first state (section 2) the framework of the general weak theory and its main results. We start the study by establishing BV estimates on ρ 2 ε and S ε in section 3. Section 4 is devoted to the analysis of the solutions to the constrained Hamilton-Jacobi equations. We first prove some regularity results for u ε . Then we study the asymptotic behaviour of u ε and deduce properties of the concentration points. In section 5 we set the simple case of our results when the dimension d equals 1 and prove concentration effects. In section 6 we review the d-dimensional framework where we assume uniform concavity of the growth-rate and initial conditions. We establish again the BV estimates in this specific case and prove the uniform concavity of u ε . The regularity obtained for u ε allow us to derive the dynamics of the concentration points in the form of a canonical equation. We complete these results by numerics in section 7.

The weak theory: assumptions and main results

First of all, we give some assumptions to set a framework for the general weak theory. We use the same assumptions as [START_REF] Lorz | Long-term behaviour of phenotypically structured models[END_REF].

For the Lipschitz continuous functions R and Q, we assume that there are constants

S 0 > 0, K Q > 0, K 1 > 0 and K 1 > 0 such that Q(0, ρ) > 0, max ρ≥0 Q(S 0 , ρ) = 0, Q S (S, ρ) ≤ -K Q , Q ρ (S, ρ) ≤ -K Q , (3) 
0 < K 1 ≤ R S (x, S) ≤ K 1 , (4) 
sup

0≤S≤S 0 R(•, S) W 2,∞ (R d ) ≤ K 2 . ( 5 
)
We complete the system with the initial conditions S 0 , n 0 ε such that

S m < S 0 < S 0 , n 0 (x) > 0, ∀x ∈ R d , 0 < ρ m ≤ ρ 0 ε := R d n 0 ε (x)dx ≤ ρ M , (6) 
where ρ m , ρ M and S m are defined below.

We add to these assumptions a smallness condition on β which can be written as

min 0 ≤ ρ ≤ ρ M , S m ≤ S ≤ S 0 |Q S | |Q ρ | ≥ 4β max 0 ≤ ρ ≤ ρ M , S m ≤ S ≤ S 0 K 1 ρ M |Q S | , (7) 
with the definition of ρ M stated below. Note that from assumption (3), we directly obtain the bounds

n ε (t, x) > 0, 0 < S ε (t) ≤ S 0 . (8) 
First we recall the following lemma, whose proof is given in [START_REF] Lorz | Long-term behaviour of phenotypically structured models[END_REF]:

Lemma 2.1. Under the assumptions (3)-( 6), there are constants ρ m , ρ M and S m > 0 such that

0 < ρ m ≤ ρ ε (t) ≤ ρ M and S m ≤ S ε (t) ≤ S 0 ,
where the value S m < S 0 is defined by

Q(S m , ρ M ) = 0.
This result is required to prove the following theorem.

Theorem 2.2. Assuming also [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF], ρ ε (t) and S ε (t) have locally bounded total variation uniformly in ε. Consequently, there are limit functions ρ m ≤ ρ ≤ ρ M , S m ≤ S ≤ S 0 such that, after extraction of a subsequence, we have

S ε k (t) -→ ε k →0 S(t) and ρ ε k (t) -→ ε k →0 ρ(t), a.e., and 
Q(ρ, S) = 0 a.e.
The next section is devoted to the proof of Theorem 2.2. Contrary to what we could expect, the establishment of the BV estimates will be more complicated than in the previous works (see [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF]) where the nutrients are represented by an integral term as ψ(x)n ε (t, x)dx. Here the main challenge comes from the equation ( 2) that we also have to consider to obtain BV estimates on S ε . An other difficulty comes from the parameter β. For β large, it seems that we cannot derive BV estimates with our approach and we expect oscillations of S ε and ρ ε . This is the case for inhibitory integrate-and-fire models (see [START_REF] Brunel | Fast global oscillations in networks of integrateand-fire neurons with low firing rates[END_REF]) where delays generate periodic solutions. In the following proofs, C denotes a constant which may change from line to line.

3 BV estimates on ρ 2 ε (t) and S ε (t)

Bounds for ρ ε

We follow the lines of [START_REF] Lorz | Long-term behaviour of phenotypically structured models[END_REF] to give the bounds ρ m and ρ M . By integrating the equation ( 1) and using the assumptions (4) and ( 5), we arrive to the inequalities

ε d dt ρ ε ≤ ρ ε (K 2 + K 1 S ε ), and ε d dt lnρ ε ≤ K 2 + K 1 S 0 .
Notice that Q(S ε , ρ ε ) ≤ -K Q ρ ε + Q(0, 0) from the assumptions in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]. By adding the equation (2) to the inequation above, we arrive to

ε d dt (lnρ ε + βS ε ) ≤ K 2 + K 1 S 0 + Q(0, 0) -K Q ρ ε (9) 
≤ K 2 + K 1 S 0 + Q(0, 0) - K Q e βS 0 e lnρε+βSε . (10) 
It follows that, for C 2 the root in lnρ ε + βS ε of the right hand side,

lnρ ε ≤ lnρ ε + βS ε ≤ max(lnρ 0 M + βS 0 , C 2 ).
Hence the upper bound ρ M for ρ ε (t).

Thanks to this upper bound, we obtain the lower bound S m on S ε (t) since, by using the assumption (3) on Q, we remark that

εβ d dt S ε (t) = Q(S ε (t), ρ ε (t)) ≥ Q(S ε (t), ρ M ).
Then there is a unique value S m such that Q(S m , ρ M ) = 0, and from the initial conditions [START_REF] Barles | Concentrations and constrained hamilton-jacobi equations arising in adpative dynamics[END_REF], we deduce that S m ≤ S ε (t) for t ≥ 0.

Next, let us look for the lower bound. It follows, from the integration of (1) as above, that we have

ε d dt lnρ ε ≥ -K 2 + K 1 S m .
By subtracting (2) and still using (3), we obtain

ε d dt (lnρ ε -βS ε ) ≥ -K 2 + K 1 S m -Q(S ε , ρ ε ) ≥ -K 2 -Q(0, 0) + K Q ρ ε ≥ -K 2 -Q(0, 0) + K Q e lnρε-βSε e βSm . ( 11 
)
Taking C 3 the root in lnρ ε -βS ε of the right hand side in [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF], we have the lower bound

ρ ε (t) ≥ min(ρ 0 m , C 3 ),
which ends the proof of the Lemma 2.1.

Local BV estimates

To find local BV bounds for ρ ε and S ε which are uniform in ε > 0, we apply the method described in [START_REF] Lorz | Long-term behaviour of phenotypically structured models[END_REF] that we explain in detail in this section.

Let us first define J ε := Ṡε and P ε := ρε . With these definitions, we have the equations

εP ε = n ε R(x, S ε (t)) dx, εβJ ε = Q(ρ ε (t), S ε (t)). ( 12 
)
Defining α ε and γ ε as

α ε (t) := n ε R S (ρ ε (t), S ε (t)) dx and γ ε (t) := n ε R 2 dx,
we differentiate both equations above, then we obtain the following equations on J ε and P ε :

ε Ṗε = J ε n ε R S (ρ ε (t), S ε (t)) dx + ∂ t n ε R(ρ ε (t), S ε (t)) dx = α ε (t)J ε + ε n ε ∆Rdx + 1 ε γ ε (t), ( 13 
)
εβ Jε = Q S J ε + Q ρ P ε . (14) 
However at this stage we cannot obtain directly the BV bounds on ρ ε and S ε we expect. Thus we consider a linear combination of P ε and J ε . Let µ ε (t) be a function we will determine later. By combining the equalities above, we obtain the following equation on

P ε + µ ε J ε : ε d dt (P ε + βµ ε J ε ) = α ε J ε + ε n ε ∆Rdx + β με J ε + µ ε (Q S J ε + Q ρ P ε ) + 1 ε γ ε = µ ε Q ρ (P ε + βµ ε J ε ) + (εβ με -βQ ρ µ 2 ε + µ ε Q S + α ε )J ε + ε n ε ∆Rdx + 1 ε γ ε . ( 15 
)
First we prove the following result:

Lemma 3.1. Considering the solution µ ε of the differential equation

εβ με = -β|Q ρ |µ 2 ε + µ ε |Q S | -α ε , there exist constants 0 < µ m < µ M such that, choosing initially µ m < µ ε (0) < µ M , we have: µ m ≤ µ ε (t) ≤ µ M , ∀t ≥ 0.
Furthermore, we have the following estimate concerning the negative part of the linear combination:

P ε (t) + βµ(t)J ε (t) -≤ P ε (0) + βµ(0)J ε (0) -e -K Q µm ε t + εC(1 -e -K Q µm ε t ). ( 16 
)
From the estimate of the Lemma 3.1, we can deduce the local BV bounds uniform in ε we expect. We start with P ε . Adding α ε Pε βµε to (13) and using (5) and Lemma 2.1, we find

ε d dt P ε + α ε P ε βµ ε = α ε J ε + P ε βµ ε + ε n ε ∆Rdx + 1 ε γ ε ≥ -α ε J ε + P ε βµ ε - -Cε. Notice that 0 < K 1 ρ ε (t) ≤ α ε (t) ≤ K1 ρ M .
By considering the negative parts of P ε and using ( 4) and ( 16), we arrive to the inequality

ε d dt (P ε ) -+ α ε (P ε ) - βµ ε ≤ α ε J ε + P ε βµ ε - + Cε ≤ α ε (P ε (0) + βµ ε (0)J ε (0)) - e -µmK Q ε t βµ m + εα ε C(1 -e -µmK Q ε t ) + Cε ≤ K1 ρ M (P ε (0) + βµ ε (0)J ε (0)) - e -µmK Q ε t βµ m + Cε. (17) 
With this inequality, the BV bounds follow. Since εP ε is bounded, by integrating the inequality above, we have

T 0 α ε (t) (P ε (t)) -dt ≤ C 1 (T ) + εC 2 (T ), ∀T ≥ 0.
Consequently, we obtain

K 1 T 0 ρ ε d dt ρ ε - dx = K 1 2 T 0 d dt ρ 2 ε - dx ≤ C 1 (T ) + εC 2 (T ) 2 , ∀T ≥ 0.
Since ρ ε (t) is bounded, we have finally that ρ 2 ε has local bounded variations. Therefore up to an extraction, there exists a function ρ on (0, ∞) satisfying

ρ ε -→ ρ in L 1 loc (0, ∞).
And since we have the lower bound ρ ε ≥ ρ m by Lemma 1.1, we obtain the bound for the negative part of the derivative of ρ ε :

T 0 ( d dt ρ ε ) -dx ≤ C 1 + C 2 ε 2K 1 ρ m .
Finally, it remains to study S ε . To do so, we rewrite [START_REF] Champagnat | Mathematical study of stochastic models of evolution belonging to the ecological theory of adaptive dynamics[END_REF] as

εβ d dt J ε = Q S J ε + Q ρ P ε = Q S J ε + Q ρ (ρ 2 ε ) 2ρ ε . (18) 
With our assumptions (3) on the Lipschitz function Q, we have

εβ d dt (-J ε ) = Q S (-J ε ) -Q ρ (ρ 2 ε ) 2ρ ≤ Q S (-J ε ) + L Q | (ρ 2 ε )| 2ρ m , (19) 
and

εβ d dt (J ε ) -≤ -K Q (J ε ) -+ L Q | (ρ 2 ε )| 2ρ m . (20) 
The term εJ ε is bounded because of our assumptions on Q. So, integrating this equation, we have, for T > 0,

T 0 (J ε ) -≤ C + L Q 2ρ m K Q T 0 | (ρ 2 ε )|, (21) 
and we deduce that T 0 (J ε ) -is uniformly bounded from our previous results on ρ 2 ε . And then, since S ε is uniformly bounded, we conclude that there exists a function S(t) such that, after extraction of a subsequence,

S ε -→ S in L 1 loc (0, ∞) and Q(S ε , ρ ε ) -→ ε→0 Q( S, ρ) a.e.
To conclude, it follows that ε d dt S ε converges in measure to 0 as ε vanishes and thus, Q( S, ρ) = 0.

Proof of Lemma 3.1

Our goal is to choose a function µ ε (t) which solves the differential equation

εβ με = -β|Q ρ |µ 2 ε + µ ε |Q S | -α ε . (22) 
We use the same argument as in [START_REF] Lorz | Long-term behaviour of phenotypically structured models[END_REF]. Therefore we concentrate on the main ideas. Note that, because the solution might blow up to -∞ in finite time, we need to prove that solutions of ( 22) which remain strictly positive for all times. To do so, we first notice that the zeroes of -β|Q

ρ |µ 2 ε + µ ε |Q S | -α ε are µ ε,± (t) := 1 2β|Q ρ | |Q S | ± Q 2 S -4α ε β|Q ρ | .
and from the smallness condition ( 7), both zeros are positive. We need to find two constants 0 < µ m < µ M such that, choosing initially µ m < µ ε (0) < µ M , then we have for all times

0 < µ m ≤ µ ε (t) ≤ µ M . ( 23 
)
This condition is satisfied with the following constants

µ M := 1 β max ρ m ≤ ρ ≤ ρ M , S m ≤ S ≤ S 0 |Q S | |Q ρ | , (24) 
and µ m defined as

max t µ ε,-(t) ≤ µ m := min t µ ε,+ (t), (25) 
which defines a positive constant because of the smallness condition for β [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF].

Coming back to equation [START_REF] Champagnat | The canonical equation of adaptive dynamics: A mathematical view[END_REF], we arrive to

ε d dt (P ε + βµJ ε ) ≥ -µ |Q ρ | (P ε + βµJ ε ) + ε n ε ∆Rdx ≥ -µ|Q ρ |(P ε + βµJ ε ) -εC,
and we conclude that, for all t ≥ 0,

P ε (t) + βµ(t)J ε (t) -≤ P ε (0) + βµ(0)J ε (0) -e -K Q µm ε t + εC(1 -e -K Q µm ε t ), (26) 
which concludes the proof of the Lemma 3.1.

Concentration and constrained Hamilton-Jacobi equation

In order to prove the concentration of n ε in a sum of Dirac masses as ε vanishes, we perform the change of unknown n ε (t, x) = e uε(t,x)/ε and we study the regularity properties of u ε (t, x). With the definition of u ε , we obtain the following equation which is equivalent to (1):

   ∂ t u ε (t, x) = |∇u ε | 2 + R(x, S ε (t)) + ε∆u ε , u ε (t = 0, x) = u 0 ε (x) := εlnn 0 ε . (27) 
We complete assumption ( 6) on the initial data with

u 0 ε (x) ≤ A -K 2 1 + |x| 2 , ||∇u 0 ε || ≤ B, ∀x ∈ R d , (28) 
with A, B > 0.

We prove in this section the following result Theorem 4.1. Under the assumptions (3)-( 7) and [START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF], then after extraction of a subsequence (u ε ) ε converges locally uniformly to a Lipschitz continuous viscosity solution u to the constrained Hamilton-Jacobi equation

   ∂ t u(t, x) = |∇u| 2 + R(x, S(t)), max x∈R d u(t, x) = 0, ∀t ≥ 0. ( 29 
)
In the simple case when dimension d is equal to 1 and when R(x, S) is monotonic in x for all S, n concentrates in one single point.

We first prove that u ε is equi-bounded, then the equi-continuity, and finally we explain how to pass to the limit in [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF].

An upper bound for u ε

We first set the upper bound for u ε . Let T > 0 be given. Defining ū(t,

x) = A + Ct - K 2 1 + |x| 2 with C = K 2 (1 + K 2 ), we have ∂ t ū -ε∆ū -|∇ū| 2 -R(x, S ε (t)) ≥ C + εK 2 d -1 1 + |x| 2 -K 2 2 -K 2 ≥ 0.
Since ū(0, x) ≥ u 0 ε (x) from initial data (28), we conclude that ū is a super-solution and

u ε (t, x) ≤ A + CT -K 2 1 + |x| 2 , for all t ∈ [0, T ].

Lipschitz bound in space

We first prove that u ε is uniformly Lipschitz continuous in space on [0, T ] × R d . We define for h small w ε (t, x) = u ε (t, x + h) -u ε (t, x). Since the initial condition u 0 ε are uniformly continuous, given δ > 0, for h small enough, we have |w ε (0, x)| < δ 2 . From [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], we arrive to

∂ t w ε (t, x) -ε∆w ε (t, x) -(∇u ε (t, x + h) + ∇u ε (t, x)) • ∇w ε (t, x) = R(x + h, S ε (t)) -R(x, S ε (t)) ≤ K 2 h. ( 30 
)
Thus by the maximum principle we deduce that

|w ε (t, x)| ≤ | max R d w ε (0, x)| + K 2 |h|t ≤ (||∇u 0 ε || L ∞ (R d ) + K 2 t)|h|.
We conclude that u ε is uniformly Lipschitz in space on [0, T ] × R d and set

L(t) = sup ε≤ε 0 ,0≤s≤t,x∈R d ||∇u ε (t, x)|| L ∞ . (31) 

Local bounds for u ε

We already know from the first step that u ε is locally bounded from above. We show that it is also bounded from below on compact subsets of [0, ∞) × R d . Let 0 < T and r > 0. For all t ∈ [0, T ] and x ∈ B(0, r), we recall that u ε (t, x) ≤ A + CT -K 2 1 + |x| 2 and thus

|x|>r e uε ε dx < |x|>r e A+CT -K 2 |x| ε < ρ m 2 ,
for 0 < ε < ε 0 , ε 0 small enough and r large enough. We also have from Lemma 3.1 that ρ ε ≥ ρ m , then for 0 < ε < ε 0 and r large enough, we obtain

ρ m 2 < |x|≤r e uε ε ≤ B r e max Br uε ε .

This implies max

Br

u ε ≥ εln ρ m 2|B r | .
Using the Lipschitz bound [START_REF] Freidlin | Functional Integration and Partial Differential Equations[END_REF] we obtain

u ε (t, x) > εln ρ m 2|B r | -2L(t)r, ∀x ∈ R d .
Hence we have the local lower bound on u ε .

The equi-continuity in time

For given T, η and r > 0, we fix (s, x) ∈ [0, T [×B(0, r 2 ) and define

ξ ε (t, y) = u ε (s, x) + η + E|y -x| 2 + D(t -s), for (t, y) ∈ [s, T ] × B(0, r),
where E and D are constants to be determined. We prove in this section the uniform continuity in time. The idea of the proof is to find constants E and D large enough such that, for any x ∈ R(0, r 2 ), and for all ε < ε 0

u ε (t, y) ≤ ξ ε (t, y) = u ε (s, x) + η + E|y -x| 2 + D(t -s), ∀(t, y) ∈ [0, T ] × B(0, r), (32) 
and

u ε (t, y) ≥ φ ε (t, y) := u ε (s, x) -η -E|y -x| 2 -D(t -s), ∀(t, y) ∈ [0, T ] × B(0, r). ( 33 
)
Then by taking y = x, we have the uniform continuity in time on compact subsets of [0, ∞) × R d . We prove here inequality [START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF], the proof of ( 33) is analogous.

First we prove that ξ ε (t, y) > u ε (t, y) on [s, T ] × ∂B(0, r), for all η, D and x ∈ B(0, r 2 ). Since u ε are locally uniformly bounded according to Sections 4.1 and 4.3, by taking E large enough such that

E ≥ 8||u ε || L ∞ ([0,T ]×B(0,r)) r 2 ,
we obtain

ξ ε (t, y) ≥ u ε (t, x) + η + 2||u ε || L ∞ ([0,T ]×B(0,r)) + D(t -s) ≥ ||u ε || L ∞ ([0,T ]×B(0,r))
≥ u ε (t, y).

Next we prove that, for E large enough, ξ ε (s, y) ≥ u ε (s, y) for all y ∈ B(0, r). We argue by contradiction. Assume that there exists η > 0 such that for all constants E > 0 there exists y E ∈ B(0, r) such that

u ε (s, y E ) -u ε (s, x) > η + E|y E -x| 2 .

This implies

|y E -x| ≥ 2M E ,
where M is a uniform upper bound for ||u ε || L ∞ ([0,T ]×B(0,r)) . For E → ∞, we have that |y E -x| → 0. Since u ε are uniformly continuous in space, this is a contradiction.

Finally, from assumption (5), if D is large enough, ξ ε is a super-solution to (29) in [s, T ] × B(0, r),

u ε (t, y) ≤ u ε (s, x) + η + E|y -x| 2 + D(t -s), ∀(t, y) ∈ [0, T ] × B(0, r).
With the proof of (33) which is similar, we deduce that the sequence u ε is uniformly continuous in time on compact subsets of [0, ∞) × R d .

Passing to the limit

We proceed as in [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF] to prove the convergence of ( 27) to [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF] as ε goes to 0. Considering the regularity results above, the point at this step is to pass to the limit in the term R(x, S ε ). To avoid the complications of the discontinuity, we define

φ ε (t, x) := u ε (t, x) - t 0 R(x, S ε (s))ds,
and it follows that φ ε satisfies the equation:

∂ t φ ε (t, x) -ε∆φ ε (t, x) -|∇φ ε (t, x)| 2 -2∇φ ε (t, x). t 0 ∇R(x, S ε (s))ds = ε t 0 ∆R(x, S ε (s))ds + | t 0 ∇R(x, S ε (s))ds| 2 . ( 34 
)
As S ε (t) converges to S(t) for all t ≥ 0 and R(x, I) is a Lipschitz continuous function, we have lim After extraction of a subsequence by the Arzela-Ascoli Theorem, u ε (t, x) converges locally uniformly to the continuous function u(t, x) as ε vanishes. Consequently φ ε (t, x) converges locally uniformly to the continuous function φ(t, x) = u(t, x) -t 0 R(x, S(s))ds and φ is a viscosity solution to the equation

∂ t φ(t, x) -|∇φ(t, x)| 2 -2∇φ(t, x). t 0 ∇R(x, S(s))ds = | t 0 ∇R(x, S(s))ds| 2 . ( 35 
)
Then u is a solution to the following equation in the viscosity sense

∂ t u(t, x) = |∇u| 2 + R(x, S(t)).
It remains to prove that max x∈R d u(t, x) = 0 for all t ≥ 0. We argue by contradiction. Assume that there exists a > 0 such that for some t > 0 and x ∈ R d we have 0 < a ≤ u(t, x). It follows that, from the continuity of u, u(t, y) ≥ a 2 on B(x, r) for some r > 0, and then n ε (t, y) → ∞ as ε goes to 0, which is a contradiction to the statements of Lemma 2.1. Thus we have max x∈R d u(t, x) ≤ 0 for all t ≥ 0.

From the section 4.3, we have for 0 < ε < ε 0 and for some r > 0 large enough lim

ε→0 |x|≤r n ε (t, x)dx > ρ m 2 , t ≥ 0. (36) 
Furthermore, recall that, from section 4.1, we have

u ε (t, x) ≤ A + Ct -K 2 1 + |x| 2 ≤ A + Ct -K 2 |x|, ∀t ≥ 0, x ∈ R d .
Then it follows that, for r large enough

lim ε→0 |x|≥r n ε (t, x)dx ≤ lim ε→0 e A+Ct-K 2 |x| ε dx = 0.
We argue by contradiction again. Assume that u(t, x) < 0 for all t ≥ 0 and |x| < r. It implies that lim ε→0 n ε (t, x) = 0 and thus lim ε→0 |x|<r n ε (t, x)dx = 0. This is a contradiction with [START_REF] Mirrahimi | Phénomènes de concentration dans certaines EDPs issues de la biologie[END_REF] and it follows that max x∈R d u(t, x) = 0 for all t ≥ 0.

It is an open problem to know if the full sequence u ε converges and it is equivalent to the question of uniqueness of the solution to the Hamilton-Jacobi equation. We will consider in section 5 a special case where uniqueness holds.

In the next section we derive some properties of the concentration points that also hold in the concavity framework (section 6) and will be useful in what follows.

Properties of the concentration points

We prove in the rest of this section the following theorem Theorem 4.2. Let assumption (5) hold. For any u 0 ∈ W 1,∞ (R d ), the solution to (29) is semi-convex in x for any t > 0, i.e. there exists a C(t) such that, for any unit vector ξ ∈ R d , we have the following inequality

∂ 2 ∂ξ 2 u ≥ -C.
Consequently, u(t, •) is differentiable in x at maximum points and we have ∇u(t, x(t)) = 0 where x(t) is a maximum point of u(t, •). Furthermore, for all Lebesgue points of S we have R(x(t), S(t)) = 0.

First step: the semi-convexity. To increase readability we use the notation u ξ := ∂uε ∂ξ , u ξξ :=

∂ 2 uε
∂ξ 2 for a unit vector ξ. We obtain from equation ( 27)

∂ ∂t u ξ = 2∇u ε • ∇u ξ + R ξ (x, S ε (t)) + ε∆u ξ , (37) 
and

∂ ∂t u ξξ = 2∇u ε • ∇u ξξ + 2|∇u ξ | 2 + R ξξ (x, S ε (t)) + ε∆u ξξ . ( 38 
) Notice that |∇u ξ | ≥ |u ξξ | because u ξξ = ∇u ξ • ξ. Therefore the function w := u ξξ satisfies ∂ ∂t w ≥ 2∇u ε • ∇w + 2w 2 -K 2 + ε∆w,
from the assumption ( 5). The semi-convexity follows from the comparison principle with the subsolution given by the solution to the ODE ẏ = 2y 2 -K 2 , y(0) = -∞.

Second step: ∇u(t, x(t)) = 0. The semi-convexity implies that u is differentiable at its maximum points. Therefore we have for t > 0 ∇u(t, x(t)) = 0.

Moreover, we also have the property that, for any sequence (t k , x k ) of x-differentiability point of u which converges to (t, x(t)), we have

∇u(t k , x k ) → 0 as k → ∞.
In fact, we deduce that, for h, r > 0, h, r → 0

1 rh t+h t x(t)+r x(t)-r |∇u(s, y)| 2 dsdy → 0, and 1 
rh t t-h x(t)+r x(t)-r |∇u(s, y)| 2 dsdy → 0.
We obtain these convergence results by applying Lebesgue's dominated convergence Theorem to the integral

1 0 1 -1 |∇u(t + hτ, x(t) + rσ)| 2 dτ dσ
given by a change of variable, combined with the local Lipschitz continuity of u.

Third

Step: Proof of R(x(t), S(t)) = 0. We first integrate the equation on rectangles (t, t + h) × (x(t) -r, x(t) + r). We obtain We conclude that at any Lebesgue point of S we have

R(x(t), S(t)) ≤ 0.
Next, we prove the opposite inequality. By integrating on the rectangle (t -h, t) × (x(t) -r, x(t) + r).

x(t)+r x(t)-r (u(t, y) -u(t -h, y))dy ≥ x(t)+r x(t)-r u(t, y)dy, and

1 rh t t-h x(t)+r x(t)-r R(y, S(s))dsdy + 1 rh t t-h x(t)+r x(t)-r |∇u(s, y)| 2 dsdy ≥ O(r) h .
Hence, we have that, at any Lebesgue point of S, R(x(t), S(t)) ≤ 0.

Hence the statement of Theorem 4.2.

The monomorphic case in dimension d = 1

In the case when dimension d equals 1 and R(x, S) is monotonic in x for each S, we have the expected convergence toward a single Dirac mass under the additional assumption (which holds for instance when R is monotonic in x)

∀S m < S < S 0 , there is a unique X(S) ∈ R such that R(X(S), S) = 0. ( 39 
)
Theorem 5.1. Assume (3)- [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF], that u 0 ε are uniformly continuous in R d and (39). Then, the solution n ε to (1), still after extraction of a subsequence, converges in the weak sense of measures

n ε k (t, x) -→ n(t, x) := ρ(t)δ(x -x(t)), (40) 
and we also obtain the relations

x(t) = X S(t) , R x(t), S(t) = 0 a.e.
Moreover, the full sequence n ε converges when R has one of the following form, for

functions b > 0, d > 0, F > 0, R(x, S) = b(x) -d(x)F (S) with F (S) < 0, ( 41 
) or R(x, S) = b(x)F (S) -d(x) with F (S) > 0. ( 42 
)
We do not prove this result in detail. It is a consequence of the following observation. As the measure n defined in [START_REF] Mirrahimi | Uniqueness in a class of hamilton-jacobi equations with constraints[END_REF] satisfies the condition supp n(t, •) ⊂ {u(t, •)} from the properties obtained in the previous section (see details in [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]), n is monomorphic. Indeed, from the condition (39) the set {u(t, •)} is reduced to an isolated point for all t ≥ 0. The uniqueness of the solution when R is written as [START_REF] Perthame | Transport equations in biology[END_REF] or ( 42) is entirely explained in [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]. The idea of the proof is to consider for instance the function

φ(t, x) = u(t, x) -b(x) t 0 F (S(σ))dσ,
and, by noticing that φ satisfies the equation

∂ t φ(t, x) = -d(x) + |∇(φ(t, x) + b(x)) t 0 F (S(σ))dσ|,
to derive an estimate on the derivative of the difference between two different solutions φ 1 and φ 2 with the same initial data. By considering the different quantities at the maximum points of u(t, •), it comes that there exists a constant C > 0 such that

d dt ||φ 1 -φ 2 || ∞ ≤ C||φ 1 -φ 2 || ∞ ,
and the uniqueness follows.

6 The concavity framework in R d

In this section we are going to assume more regularity in order to prove the convergence of n ε to a Dirac mass in the sense of measure. The specific feature of this framework is that uniform concavity of the growth rate and initial data induce uniform concavity of the solutions u ε to the Hamilton-Jacobi equations, which implies that u ε has only one maximum point. The main technical difficulty is that uniform bounds are not possible because of the quadratic growth at infinity. Therefore, following the work [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF], we start with assumptions on R ∈ C 2 : max

x∈R d R(x, S m ) = 0 = R(0, S m ), (43) 
-K 2 |x| 2 ≤ R(x, S) ≤ K 0 -K 2 |x| 2 , ( 44 
) 0 < K 1 ≤ R S (x, S) ≤ K 1 , (45) 
-2K 2 ≤ D 2 R(x, S) ≤ -2K 2 . ( 46 
)
We also need the uniform concavity of the initial data

n 0 ε = e u 0 ε ε , (47) 
-L 0 -L 1 |x| 2 ≤ u 0 ε ≤ L 0 -L 1 |x| 2 , (48) 
-2L 1 ≤ D 2 u 0 ε ≤ -2L 1 , (49) 
and we add some compatibility conditions 4L

2 1 ≤ K 2 ≤ K 2 ≤ 4L 2 1 . (50) 
For this section, we will need

D 3 R(•, S) ∈ L ∞ (R d ), (51) 
D 3 u 0 ε ∈ L ∞ (R d ) uniformly in ε, (52) 
n 0 ε (x) -→ ρ0 δ(x -x0 )
weakly in the sense of measures.

We keep the same assumptions on Q and S ε as in the previous section. Next we are going to prove the following result: Theorem 6.1. Under assumptions (44)-( 50) and the assumptions on Q, ρ ε and S ε have locally bounded total variations uniformly in ε. Therefore there exist functions ρ and S such that, after extraction of a subsequence, we have

S ε k (t) -→ ε k →0 S(t) and ρ ε k (t) -→ ε k →0 ρ(t), a.e.
Furthermore we have weakly in the sense of measures for a subsequence n ε

n ε (t, x) -→ ε→0 ρ(t)δ(x -x(t)), (54) 
and the pair (x(t), S(t)) also satisfies

R(x(t), S(t)) = 0, a.e. (55) 
The next point is to show that the semi-convexity and the concavity of the initial data is preserved by equation [START_REF] Azmy | Rate distributions and survival of the fittest: a formulation on the space of measures[END_REF]. In other words, we are going to show the following lemma Lemma 6.4. Under assumptions (44)-(50), we have for t ≥ 0 and

x ∈ R d -2L 1 ≤ D 2 u ε (t, x) ≤ -2L 1 . (60) 
Proof. For a unit vector ξ, we use the notation u ξ := ∇ ξ u ε and u ξξ := ∇ 2 ξξ u ε to obtain

u ξt = R ξ (x, I) + 2∇u • ∇u ξ + ε∆u ξ , u ξξt = R ξξ (x, I) + 2∇u ξ • ∇u ξ + 2∇u • ∇u ξξ + ε∆u ξξ .
By using |∇u ξ | ≥ |u ξξ | and the definition w(t, x) := min ξ u ξξ (t, x) we arrive at the inequality

∂ t w ≥ -2K 2 + 2w 2 + 2∇u • ∇w + ε∆w.
And finally by a comparison principle and assumptions (49) and (50), we obtain

w ≥ -2L 1 . (61) 
Hence the uniform semi-convexity of u ε .

To prove the uniform concavity, we first recall that, at every point (t, x) ∈ R + × R d , we can choose an orthonormal basis such that D 2 u ε (t, x) is diagonal. Thus we can estimate the mixed second derivatives in terms of u ξξ and consequently we have

|∇u ξ | = |u ξξ |. (62) 
By defining w(t, x) := max ξ u ξξ (t, x) and using assumptions (46) and (62), we obtain the following inequality

∂ t w ≤ -2K 2 + 2w 2 + 2∇u • ∇w + ε∆w.
By a comparison principle and assumption we obtain the estimate

w ≤ -2L 1 , (63) 
which ends the proof of Lemma 6.4.

6.2 BV estimates on ρ 2 ε , S ε and their limits

We use exactly the same proof as in Section 3 to obtain BV estimates on ρ 2 ε and S ε . To obtain these estimates, an important point was the bounds on εP ε . We need to confirm that εP ε is bounded, which was clear in Section 3 thanks to the bounds on the growth rate. Here the growth rate has a quadratic decrease at infinity, which does not give an immediate lower bound on εP ε . Furthermore we do not have a lower bound on ρ ε either because of the same argument and we cannot obtain directly a BV estimate on S ε as in Section 3.2. However we derive a lower bound for εP ε and we use the uniform concavity of u ε for that purpose.

By definition of P ε , it follows from ( 44) and (59) that

εP ε = R d n ε R(x, S ε (t))dx ≥ R d e 1 ε (-L 0 -L 1 |x| 2 -εC 1 t) (-K 2 |x| 2 )dx, ≥ -K 2 e 1 ε (-L 0 -εC 1 t) R d e -1 ε L 1 |x| 2 |x| 2 dx, = -K 2 e 1 ε (-L 0 -εC 1 t) dε 2L 1 πε L 1 d-1 . ( 64 
)
And we have a bound for (εP ε ) -. We recall inequality ( 17) that also holds true in this framework

ε d dt (P ε ) -+ α ε (P ε ) - βµ ε ≤ K1 ρ M (P ε (0) + βµ ε (0)J ε (0)) - e -µmK Q ε t βµ m + Cε.
Then, we integrate this inequality over [0, T ] for T > 0 and by the same arguments used in Section 3.1 it follows that ρ 2 ε has local BV bounds and therefore there exists a function ρ such that after extraction of a subsequence

ρ ε -→ ρ in L 1 loc (0, ∞).
The next aim is to show that S ε has local BV bounds. We go back to equation ( 14) and we recall

εβ d dt J ε = Q S J e + Q ρ P ε .
Then we have the following inequality

εβ d dt (-J ε ) ≤ Q S (-J ε ) + L Q |P ε | (65) 
and

εβ d dt (J ε ) -≤ Q S (J ε ) -+ L Q ((P ε ) + + (P ε ) -). ( 66 
)
By integrating this inequality over [0, T ] for T > 0, using

T 0 L Q |P ε | ≤ L Q T 0 ( ρε ) + + T 0 (P ε ) -, (67) 
and since ρ ε is bounded above, we deduce from (17) that

T 0 (J ε ) -≤ C 1 T + o ε→0 (1). ( 68 
)
To conclude, we can extract a subsequence from S ε which locally converges in L 1 loc (0, ∞) to a limit function S.

The limit of the Hamilton-Jacobi equation

From the estimates obtained above on u ε and D 2 u ε , we can deduce that ∇u ε is locally uniformly bounded and thus from [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF] for ε < ε 0 that ∂ t u ε is also locally uniformly bounded. Therefore there exists a function u such that, after extraction of a subsequence (see [START_REF] Brézis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF][START_REF] Evans | Partial differential equations[END_REF] for compactness properties), we have for T > 0

u ε (t, x) -→ ε→0 u(t, x) strongly in L ∞ 0, T ; W 1,∞ loc (R d ) , u ε (t, x) -- ε→0 u(t, x) weakly-* in L ∞ 0, T ; W 2,∞ loc (R d ) ∩ W 1,∞ 0, T ; L ∞ loc (R d ) , and 
-L 0 -L 1 |x| 2 ≤ u(t, x) ≤ L 0 -L 1 |x| 2 + K 0 t, -2L 1 ≤ D 2 u(t, x) ≤ -2L 1 a.e. ( 69 
) u ∈ W 1,∞ loc (R + × R d ). (70) 
Then, passing to the limit as ε → 0 in equation ( 27), we deduce that u satisfies in the viscosity sense the equation

   ∂ ∂t u = R x, S(t) + |∇u| 2 , max R d u(t, x) = 0. (71) 
In particular u is strictly concave, therefore it has exactly one maximum. This proves n stays monomorphic and characterizes the Dirac location by max

R d u(t, x) = 0 = u t, x(t) . (72) 
This completes the proof of Theorem 6.1.

The canonical equation

In this section, we establish from the regularity properties proved in the previous sections a form of the so-called canonical equation in the language of adaptive dynamics (see [START_REF] Champagnat | The canonical equation of adaptive dynamics: A mathematical view[END_REF][START_REF] Dieckmann | The dynamical theory of coevolution: a derivation from stochastic ecological processes[END_REF]):

ẋ(t) = (-D 2 u(t, x(t))) -1 • ∇ x R(x(t), S(t)).
This equation was formally introduced in [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a hamilton-jacobi approach[END_REF] and holds true in our framework. The point of this differential equation is to describe the long time behaviour of the concentration point x(t).

First step: Bounds on third derivatives of u ε . For the unit vectors ξ and η, we use the notation u ξ := ∇ ξ u ε , u ξη := ∇ 2 ξη u ε and u ξξη := ∇ 3 ξξη u ε to derive

∂ t u ξξη = 4∇u ξη • ∇u ξ + 2∇u η • ∇u ξξ + 2∇u • ∇u ξξη + R ξξη + ε∆u ξξη . Let us define M 1 (t) := max x,ξ,η u ξξη (t, x).
Again, at every (t, x) ∈ R + ×R d , we can choose an orthogonal basis such that D

2 (∇ η u ε (t, x)) is diagonal. And since -u ξξη (t, x) = ∇ -η u ξξ (t, x), we have M 1 (t) = max x,ξ,η |u ξξη (t, x)|.
Then we obtain the following inequality

d dt M 1 ≤ 4dM 1 ||D 2 u ε || ∞ + 2dM 1 ||D 2 u ε || ∞ + R ξξη .
As assumption (52) gives a bound on M 1 (t = 0), by using the Grönwall lemma we obtain a L ∞ -bound on the third derivative uniform in ε.

Second step : Maximum point of u ε We denote the maximum point of u ε (t, •) by xε (t). Since we have ∇u ε (t, xε (t)) = 0, we obtain

d dt ∇u ε (t, xε (t)) = 0.
Then the chain rule gives

∂ ∂t ∇u ε (t, xε (t)) + D 2 x u ε (t, xε (t)) ẋε (t) = 0.
and using equation (58), it follows that, for all t ≥ 0, we have

D 2 x u ε (t, xε (t)) ẋε (t) = - ∂ ∂t ∇u ε (t, xε (t)) = -∇ x R(x ε (t), S ε (t)) -ε∆∇ x u ε .
Thanks to the uniform bound on D 3 u ε and the regularity on R, we pass to the limit

ẋ(t) = (-D 2 u(t, x(t))) -1 • ∇ x R(x(t), S(t))
a.e.

As we have R(x(t), S(t)) = 0 and assumption (44), x(t) is bounded in L ∞ (R + ). Then it implies from the canonical equation that x(t) is bounded in W 1,∞ (R + ) and S(t) is also bounded in W ∇R(x(t), S(t))(-D 2 u) -1 ∇R(x(t), S(t)) ≤ 0.

We deduce that S(t) decreases. Consequently S(t) converges and subsequences of x(t) also converge since x(t) is bounded. However the possible limits x∞ and S∞ have to satisfy ∇R(x ∞ , S∞ ) = 0. Then from ( 43), ( 45) and (55), we conclude that S(t) -→ t→∞ S m , x(t) -→ t→∞ x∞ = 0, which ends the proof of Theorem 6.2.

Numerical results and discussion

We illustrate in this section the evolution of n ε , ρ ε and S ε in time with different values of β. We choose the following initial data 

n 0 = C mass exp(-(x -0.8) 2 /ε), (73) 
The numerics have been performed in Matlab with parameters as follows. We consider the solution on interval [0, 1]. We use a uniform grid with 1000 points on the segment and denote by n k i and S k the numerical solutions at grid point x i = i∆x and at time t k = k∆t. We choose as initial value of the nutrient concentration S ε (t = 0) = 5. We also choose β to be 2.10 3 , the time step ∆t = 10 -4 and C mass such as the initial mass of the population in the computational domain is equal to 1. The equation is solved by an implicit-explicit finite-difference method.

The Figure 1 shows the dynamics for ε = 1 • 10 -3 and the Figure 2 for ε = 5 • 10 -4 . In Figure 3, we show the numerical results corresponding to the same data as in Figure 1, except that we choose β = 2 • 10 2 . We can observe oscillations of ρ ε and S ε in the first case (β = 2 • 10 3 ), whereas there are very few variations of these quantities when β is smaller. Some open questions arise from the present study. First it seems that the method developed in this work does not give TV bounds for the full range [0, β 0 ] for some small β 0 since the estimations providing the uniform BV estimates on ρ 2 in Section 3.2 are local and then it is not possible to prove uniform convergence of S(t) as β → 0 on [0, ∞) at this stage. Thus we cannot obtain the asymptotic behaviour of the limit functions as β goes to 0, while the convergence of ε to 0 describes the dynamics of the presented system in a larger time scale, therefore local estimates are enough.

As mentioned in Section 4, the uniqueness of the solution to the Hamilton-Jacobi equation (71) has up to now been an open problem, apart from very particular cases (see for instance [START_REF] Barles | Concentrations and constrained hamilton-jacobi equations arising in adpative dynamics[END_REF]). However a recent work of S. Mirrahimi and J. Roquejoffre [START_REF] Mirrahimi | Uniqueness in a class of hamilton-jacobi equations with constraints[END_REF] has shown uniqueness of the constrained Hamilton-Jacobi equation related to the following selectionmutation model in the concavity framework ε∂ t n ε (t, x) = n ε (t, x)R(x, I ε (t)) + ε 2 ∆n ε (t, x),

I ε (t) = R d ψ(x)n ε (t, x)dx,
which could be a first step to prove uniqueness for the presented chemostat model.

  , S(s))ds, for all t ≥ 0. Furthermore the limit functions t 0 R(x, S(s))ds, t 0 ∇R(x, S(s))ds and t 0 ∆R(x, S(s))ds are locally uniformly continuous.

  and growth rate R and Q as followsR(x, S) = 0.2(-0.6 + 0.3S -(x -0.5) 2 ),(74)Q(ρ, S) = 10 -(1.5 + ρ)S.
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 12 Figure 2: Dynamics of ρ ε ( ) and S ε (----) (left) and dynamics of the density n ε for β = 2 • 10 2 and ε = 10 -3

  1,∞ (R d ) since S → R(•, S) is invertible by the Implicit Function Theorem.

	We differentiate (55) and obtain the following differential equation
				ẋ(t) • ∇ x R + Ṡ(t)∇ S R = 0.
	Third step: Long time behaviour. Using the canonical equation we obtain
	d dt	R(x(t), S(t)) = ∇R(x(t), S(t))	d dt	x(t) + ∂ S R(x(t), S(t))	d dt	S(t)
	Since the left hand side equals 0 from (55), it follows that
		d dt	S(t) =	-1 ∂ S R(x(t), S(t))		

= ∇R(x(t), S(t))(-D 2 u) -1 ∇R(x(t), S(t)) + ∂ S R(x(t), S(t)) d dt S(t).

Acknowledgements

The authors have been supported by ANR-13-BS01-0004 funded by the French Ministry of Research (ANR Kibord).

As a first step, we will give estimates on u ε . Next, we will adapt the proof of the section 3 to give BV estimates on ρ ε and S ε and then pass to the limit as ε goes to 0. Finally we prove the following theorems: Theorem 6.2. Assuming (43)-(53), x(t) is a W 1,∞ (R + , R d )-function and its dynamics is described by the equation

with u(t, x) given below in (71) and x 0 in (53). Furthermore,

From this equation, it follows that S(t) is a decreasing function and

(57)

Uniform concavity of u ε

Again we use the Hopf-Cole transformation defining u ε = εlnn ε and we obtain the same equation as in Section 4

We focus now on the study of the properties of the sequence u ε .

We first prove the following lemma Lemma 6.3. Under assumptions (44) and (50), we have for t ≥ 0 and for

Proof. First we achieve an upper bound for u ε . By defining u ε (t, x) := L 0 -L 1 |x| 2 +C 0 (ε)t with C 0 (ε) := K 0 + 2dεL 1 , we obtain from assumptions (44), ( 48) and (50) that u ε (t = 0) ≥ u 0 ε and

Then by a comparison principle, we conclude that u ε (t, x) ≤ L 0 -L 1 |x| 2 + (K 0 + 2dεL 1 )t for all t ≥ 0 and x ∈ R d .

Next for the lower bound, we define u ε (t, x) := -L 0 -L 1 |x| 2 -εC 1 t with C 1 := 2dL 1 . Thus we have u ε (t = 0) ≤ u 0 ε and

Consequently, we obtain that u ε (t, x) ≥ -L 0 -L 1 |x| 2 -ε(2dL 1 )t for all t ≥ 0 and x ∈ R d . Hence the estimates on u ε .