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Dirac concentrations in a chemostat model of adaptive

evolution

Alexander Lorz∗† Benôıt Perthame ∗† Cécile Taing ∗†

October 27, 2015

Abstract

We consider parabolic systems of Lotka-Volterra type that describe the evolution
of phenotypically structured populations. Nonlinearities appear in these systems to
model interactions and competition phenomena leading to selection. In this paper,
the equation on the structured population is coupled with a differential equation on
the nutrient concentration that changes as the total population varies.

We review different methods aimed at showing the convergence of the solutions
to a moving Dirac mass. Setting first two frameworks based on weak or strong regu-
larity assumptions in which we study the concentration of the solution, we state BV
estimates in time on appropriate quantities and derive a constrained Hamilton-Jacobi
equation to identify the Dirac locations.

Key-words: Adaptive evolution; Asymptotic behaviour; Chemostat; Dirac concentra-
tions; Hamilton-Jacobi equations; Lotka-Volterra equations; Viscosity solutions.

AMS Class. No: 35B25, 35K57, 47G20, 49L25, 92D15.

1 Introduction

We survey several methods developed to study concentration effects in parabolic equations
of Lotka-Volterra type. Furthermore, we extend the theory to a coupled system motivated
by models of chemostat where we observe very rare mutations for a long time. These
equations have been established with the aim of describing how speciation occurs in bi-
ological populations, taking into account competition for resources and mutations in the
populations. There is a large literature on the subject where the mutation-competition
principles are illustrated in various mathematical terms: for instance in [23, 28, 35] for an
approach based on the study of the stability of differential systems, in [30, 29, 45] for the
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evolutionary games theory, in [14] for the study of stochastic individual based models, or
in [6, 36, 42] for the study of integro-differential models. We choose here the formalism
using parabolic partial differential equations, widely developed in [5, 7, 21, 41] to describe
the competition dynamics in a chemostat.

The chemostat is a bioreactor to which fresh medium containing nutrients is contin-
uously added, while culture liquid is continuously removed to keep the culture volume
constant. This device is used as an experimental ecosystem in evolutionary biology to
observe mutation and selection processes driven by competition for resources. From the
mathematical point of view, the theoretical description of the population dynamics in a
chemostat leads to highly nonlinear models and questions of long term behaviour and
convergence to an evolutionary steady state naturally arise (see [1, 19, 24, 39, 44]).

Our aim is to study a generalization of the chemostat model introduced in [34] with
a representation of mutations by a diffusion term. In this model, each individual in the
population is characterized by a quantitative phenotypic trait x ∈ Rd and nε(t, x) denotes
the population density at time t with the trait x. We study the following equations

ε∂tnε(x, t) = nεR(x, Sε(t)) + ε2∆nε(x, t), x ∈ Rd, t ≥ 0, (1)

εβ
d

dt
Sε(t) = Q(Sε(t), ρε(t)), (2)

ρε(t) :=

∫
Rd
nε(x, t)dx,

where the function R(x, Sε) represents a trait-dependent birth-death rate and Sε denotes
the nutrient concentration which changes over time with rate Q. Here ε is a small param-
eter which allows to consider very rare mutations and large times of order ε−1. The idea
of a ε−1 rescaling in the space and time variables goes back to [31, 32] to study propa-
gation for systems of reaction-diffusion PDE. The parameter β, introduced first in [34],
gives a time scale which, as β → 0, leads to the equation Q(ρ, S) = 0 and in this case,
under suitable assumptions, we deduce the existence of a function f by Implicit Function
Theorem such that S = f(ρ) and the concentration results are known to hold [7, 33].

Such models can be derived from stochastic individual based models in the limit of large
populations (refer to [16, 17]).

A possible way to express mathematically the emergence of the fittest traits among
the population is to prove that nε concentrates as a Dirac mass centred on some point
x̄ (or a sum of Dirac masses) when ε vanishes, which means the phenotypic selection of
a quantitative trait denoted by x̄ in long times. The main results of the paper can be
summarized as

Theorem 1.1. For well-prepared initial data and two classes of assumptions (monotonic
in one dimension or concavity in multi-dimensions), then the concentration effect holds

nε(t, x) −→
ε→0

ρ̄(t)δ(x− x̄(t)) in the sense of measure,
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where the pair (x̄(t), ρ̄(t)) can be determined thanks to a constrained Hamilton-Jacobi
equation given later on.

In order to describe these concentration effects and following earlier works on similar
issues [7, 5, 13, 33, 18, 41], we will use the Hopf-Cole transformation defining uε(t, x) =
εlnnε(t, x) and derive a Hamilton-Jacobi equation. Then we obtain by passing to the limit
ε → 0 a constrained Hamilton-Jacobi equation, whose solutions have a maximum value
of 0. The point is that the concentration locations in the limit ε → 0 can be identified
among the maximum points of these solutions. This method, introduced in [24] and used
for instance in [42, 43] is very general and has been extended to various systems (see for
the case of reaction-diffusion systems).

Singular perturbation problems in PDEs is a classical subject that has been studied
from different viewpoints. For instance a seminal paper on parabolic equations involving
measures is [11]. Also the above rescaling in parabolic equations or systems has been
deeply studied in reaction-diffusion equations (see [4, 25]) leading to front propagation
where a state invades another as in the Fishher-KPP equation where the stable state
nε = 1 invades the unstable state nε = 0. This is also the case of Ginzburg-Landau
equations (see [8]) where the quadratic observable nε = |uε|2 takes asymptotically the
value 1. This is different from our case, as one can see in the above theorem and since we
essentially derive L1 bounds from the presented model.

To prove the main convergence results of this paper, we will adapt the method introduced
in [7, 5, 34] to find BV estimates for the appropriate quantities as a first step. Then we
will use the theory of viscosity solutions to Hamilton-Jacobi equations (see [2, 3, 20, 27]
for general introduction to this theory) to obtain the Dirac locations. In the first part we
will proceed with assumptions of weak regularity of the growth rate in a first instance and
then we will resume the study under concavity assumptions.

The paper is organized as follows. We first state (section 2) the framework of the general
weak theory and its main results. We start the study by establishing BV estimates on ρ2

ε

and Sε in section 3. Section 4 is devoted to the analysis of the solutions to the constrained
Hamilton-Jacobi equations. We first prove some regularity results for uε. Then we study
the asymptotic behaviour of uε and deduce properties of the concentration points. In
section 5 we set the simple case of our results when the dimension d equals 1 and prove
concentration effects. In section 6 we review the d-dimensional framework where we assume
uniform concavity of the growth-rate and initial conditions. We establish again the BV
estimates in this specific case and prove the uniform concavity of uε. The regularity
obtained for uε allow us to derive the dynamics of the concentration points in the form of
a canonical equation. We complete these results by numerics in section 7.

2 The weak theory: assumptions and main results

First of all, we give some assumptions to set a framework for the general weak theory. We
use the same assumptions as [34].
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For the Lipschitz continuous functions R and Q, we assume that there are constants
S0 > 0, KQ > 0, K1 > 0 and K1 > 0 such that

Q(0, ρ) > 0, max
ρ≥0

Q(S0, ρ) = 0, QS(S, ρ) ≤ −KQ, Qρ(S, ρ) ≤ −KQ, (3)

0 < K1 ≤ RS(x, S) ≤ K1, (4)

sup
0≤S≤S0

‖R(·, S)‖W 2,∞(Rd) ≤ K2. (5)

We complete the system with the initial conditions S0, n0
ε such that

Sm < S0 < S0, n0(x) > 0, ∀x ∈ Rd, 0 < ρm ≤ ρ0
ε :=

∫
Rd
n0
ε(x)dx ≤ ρM , (6)

where ρm, ρM and Sm are defined below.

We add to these assumptions a smallness condition on β which can be written as

min
0 ≤ ρ ≤ ρM ,
Sm ≤ S ≤ S0

|QS |
|Qρ|

≥ 4β max
0 ≤ ρ ≤ ρM ,
Sm ≤ S ≤ S0

K1ρM
|QS |

, (7)

with the definition of ρM stated below.
Note that from assumption (3), we directly obtain the bounds

nε(t, x) > 0, 0 < Sε(t) ≤ S0. (8)

First we recall the following lemma, whose proof is given in [34]:

Lemma 2.1. Under the assumptions (3)-(6), there are constants ρm, ρM and Sm > 0
such that

0 < ρm ≤ ρε(t) ≤ ρM and Sm ≤ Sε(t) ≤ S0,

where the value Sm < S0 is defined by Q(Sm, ρM ) = 0.

This result is required to prove the following theorem.

Theorem 2.2. Assuming also (7), ρε(t) and Sε(t) have locally bounded total variation
uniformly in ε. Consequently, there are limit functions ρm ≤ ρ ≤ ρM , Sm ≤ S ≤ S0 such
that, after extraction of a subsequence, we have

Sεk(t) −→
εk→0

S̄(t) and ρεk(t) −→
εk→0

ρ̄(t), a.e.,

and
Q(ρ̄, S̄) = 0 a.e.
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The next section is devoted to the proof of Theorem 2.2. Contrary to what we could
expect, the establishment of the BV estimates will be more complicated than in the
previous works (see [7, 33]) where the nutrients are represented by an integral term as∫
ψ(x)nε(t, x)dx. Here the main challenge comes from the equation (2) that we also have

to consider to obtain BV estimates on Sε. An other difficulty comes from the parameter
β. For β large, it seems that we cannot derive BV estimates with our approach and we
expect oscillations of Sε and ρε. This is the case for inhibitory integrate-and-fire models
(see [12]) where delays generate periodic solutions. In the following proofs, C denotes a
constant which may change from line to line.

3 BV estimates on ρ2
ε(t) and Sε(t)

3.1 Bounds for ρε

We follow the lines of [34] to give the bounds ρm and ρM . By integrating the equation (1)
and using the assumptions (4) and (5), we arrive to the inequalities

ε
d

dt
ρε ≤ ρε(K2 +K1Sε),

and

ε
d

dt
lnρε ≤ K2 +K1S0.

Notice that Q(Sε, ρε) ≤ −KQρε + Q(0, 0) from the assumptions in (3). By adding the
equation (2) to the inequation above, we arrive to

ε
d

dt
(lnρε + βSε) ≤ K2 +K1S0 +Q(0, 0)−KQρε (9)

≤ K2 +K1S0 +Q(0, 0)−
KQ

eβS0
elnρε+βSε . (10)

It follows that, for C2 the root in lnρε + βSε of the right hand side,

lnρε ≤ lnρε + βSε ≤ max(lnρ0
M + βS0, C2).

Hence the upper bound ρM for ρε(t).

Thanks to this upper bound, we obtain the lower bound Sm on Sε(t) since, by using the
assumption (3) on Q, we remark that

εβ
d

dt
Sε(t) = Q(Sε(t), ρε(t)) ≥ Q(Sε(t), ρM ).

Then there is a unique value Sm such that Q(Sm, ρM ) = 0, and from the initial condi-
tions (6), we deduce that Sm ≤ Sε(t) for t ≥ 0.
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Next, let us look for the lower bound. It follows, from the integration of (1) as above,
that we have

ε
d

dt
lnρε ≥ −K2 +K1Sm.

By subtracting (2) and still using (3), we obtain

ε
d

dt
(lnρε − βSε) ≥ −K2 +K1Sm −Q(Sε, ρε)

≥ −K2 −Q(0, 0) +KQρε

≥ −K2 −Q(0, 0) +KQe
lnρε−βSεeβSm . (11)

Taking C3 the root in lnρε − βSε of the right hand side in (11), we have the lower bound

ρε(t) ≥ min(ρ0
m, C3),

which ends the proof of the Lemma 2.1.

3.2 Local BV estimates

To find local BV bounds for ρε and Sε which are uniform in ε > 0, we apply the method
described in [34] that we explain in detail in this section.

Let us first define Jε := Ṡε and Pε := ρ̇ε. With these definitions, we have the equations

εPε =

∫
nεR(x, Sε(t)) dx, εβJε = Q(ρε(t), Sε(t)). (12)

Defining αε and γε as

αε(t) :=

∫
nεRS(ρε(t), Sε(t)) dx and γε(t) :=

∫
nεR

2 dx,

we differentiate both equations above, then we obtain the following equations on Jε and
Pε:

εṖε = Jε

∫
nεRS(ρε(t), Sε(t)) dx+

∫
∂tnεR(ρε(t), Sε(t)) dx

= αε(t)Jε + ε

∫
nε∆Rdx+

1

ε
γε(t), (13)

εβJ̇ε = QSJε +QρPε. (14)

However at this stage we cannot obtain directly the BV bounds on ρε and Sε we expect.
Thus we consider a linear combination of Pε and Jε. Let µε(t) be a function we will
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determine later. By combining the equalities above, we obtain the following equation on
Pε + µεJε:

ε
d

dt
(Pε + βµεJε) = αεJε + ε

∫
nε∆Rdx+ βµ̇εJε + µε(QSJε +QρPε) +

1

ε
γε

= µεQρ(Pε + βµεJε) + (εβµ̇ε − βQρµ2
ε + µεQS + αε)Jε

+ ε

∫
nε∆Rdx+

1

ε
γε. (15)

First we prove the following result:

Lemma 3.1. Considering the solution µε of the differential equation

εβµ̇ε = −β|Qρ|µ2
ε + µε|QS | − αε,

there exist constants 0 < µm < µM such that, choosing initially µm < µε(0) < µM , we
have:

µm ≤ µε(t) ≤ µM , ∀t ≥ 0.

Furthermore, we have the following estimate concerning the negative part of the linear
combination:(

Pε(t) + βµ(t)Jε(t)
)
− ≤

(
Pε(0) + βµ(0)Jε(0)

)
−e
−KQµm

ε
t + εC(1− e

−KQµm
ε

t). (16)

From the estimate of the Lemma 3.1, we can deduce the local BV bounds uniform in
ε we expect. We start with Pε. Adding αε

Pε
βµε

to (13) and using (5) and Lemma 2.1, we
find

ε
d

dt
Pε + αε

Pε
βµε

= αε

(
Jε +

Pε
βµε

)
+ ε

∫
nε∆Rdx+

1

ε
γε ≥ −αε

(
Jε +

Pε
βµε

)
−
− Cε.

Notice that 0 < K1ρε(t) ≤ αε(t) ≤ K̄1ρM . By considering the negative parts of Pε and
using (4) and (16), we arrive to the inequality

ε
d

dt
(Pε)− + αε

(Pε)−
βµε

≤ αε
(
Jε +

Pε
βµε

)
−

+ Cε

≤ αε (Pε(0) + βµε(0)Jε(0))−
e
−µmKQ

ε
t

βµm
+ εαεC(1− e

−µmKQ
ε

t) + Cε

≤ K̄1ρM (Pε(0) + βµε(0)Jε(0))−
e
−µmKQ

ε
t

βµm
+ Cε. (17)

With this inequality, the BV bounds follow. Since εPε is bounded, by integrating the
inequality above, we have
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∫ T

0
αε(t) (Pε(t))− dt ≤ C1(T ) + εC2(T ), ∀T ≥ 0.

Consequently, we obtain

K1

∫ T

0
ρε

(
d

dt
ρε

)
−
dx =

K1

2

∫ T

0

(
d

dt
ρ2
ε

)
−
dx ≤ C1(T ) + εC2(T )

2
, ∀T ≥ 0.

Since ρε(t) is bounded, we have finally that ρ2
ε has local bounded variations. Therefore up

to an extraction, there exists a function ρ̄ on (0,∞) satisfying

ρε −→ ρ̄ in L1
loc(0,∞).

And since we have the lower bound ρε ≥ ρm by Lemma 1.1, we obtain the bound for the
negative part of the derivative of ρε:∫ T

0
(
d

dt
ρε)−dx ≤

C1 + C2ε

2K1ρm
.

Finally, it remains to study Sε. To do so, we rewrite (14) as

εβ
d

dt
Jε = QSJε +QρPε = QSJε +Qρ

˙(ρ2
ε)

2ρε
. (18)

With our assumptions (3) on the Lipschitz function Q, we have

εβ
d

dt
(−Jε) = QS(−Jε)−Qρ

˙(ρ2
ε)

2ρ
≤ QS(−Jε) + LQ

| ˙(ρ2
ε)|

2ρm
, (19)

and

εβ
d

dt
(Jε)− ≤ −KQ(Jε)− + LQ

| ˙(ρ2
ε)|

2ρm
. (20)

The term εJε is bounded because of our assumptions on Q. So, integrating this equation,
we have, for T > 0, ∫ T

0
(Jε)− ≤ C +

LQ
2ρmKQ

∫ T

0
| ˙(ρ2

ε)|, (21)

and we deduce that
∫ T

0 (Jε)− is uniformly bounded from our previous results on ρ2
ε.

And then, since Sε is uniformly bounded, we conclude that there exists a function S̄(t)
such that, after extraction of a subsequence,

Sε −→ S̄ in L1
loc(0,∞) and Q(Sε, ρε) −→

ε→0
Q(S̄, ρ̄) a.e.

To conclude, it follows that ε ddtSε converges in measure to 0 as ε vanishes and thus,
Q(S̄, ρ̄) = 0.
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3.3 Proof of Lemma 3.1

Our goal is to choose a function µε(t) which solves the differential equation

εβµ̇ε = −β|Qρ|µ2
ε + µε|QS | − αε. (22)

We use the same argument as in [34]. Therefore we concentrate on the main ideas.

Note that, because the solution might blow up to −∞ in finite time, we need to prove
that solutions of (22) which remain strictly positive for all times. To do so, we first notice
that the zeroes of −β|Qρ|µ2

ε + µε|QS | − αε are

µε,±(t) :=
1

2β|Qρ|
(
|QS | ±

√
Q2
S − 4αεβ|Qρ|

)
.

and from the smallness condition (7), both zeros are positive.

We need to find two constants 0 < µm < µM such that, choosing initially µm < µε(0) <
µM , then we have for all times

0 < µm ≤ µε(t) ≤ µM . (23)

This condition is satisfied with the following constants

µM :=
1

β
max

ρm ≤ ρ ≤ ρM ,
Sm ≤ S ≤ S0

|QS |
|Qρ|

, (24)

and µm defined as

max
t
µε,−(t) ≤ µm := min

t
µε,+(t), (25)

which defines a positive constant because of the smallness condition for β (7).

Coming back to equation (15), we arrive to

ε
d

dt
(Pε + βµJε) ≥ −µ |Qρ| (Pε + βµJε) + ε

∫
nε∆Rdx ≥ −µ|Qρ|(Pε + βµJε)− εC,

and we conclude that, for all t ≥ 0,

(
Pε(t) + βµ(t)Jε(t)

)
− ≤

(
Pε(0) + βµ(0)Jε(0)

)
−e
−KQµm

ε
t + εC(1− e

−KQµm
ε

t), (26)

which concludes the proof of the Lemma 3.1.

9



4 Concentration and constrained Hamilton-Jacobi equation

In order to prove the concentration of nε in a sum of Dirac masses as ε vanishes, we
perform the change of unknown nε(t, x) = euε(t,x)/ε and we study the regularity properties
of uε(t, x). With the definition of uε, we obtain the following equation which is equivalent
to (1):  ∂tuε(t, x) = |∇uε|2 +R(x, Sε(t)) + ε∆uε,

uε(t = 0, x) = u0
ε(x) := εlnn0

ε.
(27)

We complete assumption (6) on the initial data with

u0
ε(x) ≤ A−K2

√
1 + |x|2, ||∇u0

ε|| ≤ B, ∀x ∈ Rd, (28)

with A,B > 0.

We prove in this section the following result

Theorem 4.1. Under the assumptions (3)-(7) and (28), then after extraction of a subse-
quence (uε)ε converges locally uniformly to a Lipschitz continuous viscosity solution u to
the constrained Hamilton-Jacobi equation ∂tu(t, x) = |∇u|2 +R(x, S̄(t)),

maxx∈Rd u(t, x) = 0, ∀t ≥ 0.
(29)

In the simple case when dimension d is equal to 1 and when R(x, S) is monotonic in x
for all S, n concentrates in one single point.

We first prove that uε is equi-bounded, then the equi-continuity, and finally we explain
how to pass to the limit in (27).

4.1 An upper bound for uε

We first set the upper bound for uε. Let T > 0 be given. Defining ū(t, x) = A + Ct −
K2

√
1 + |x|2 with C = K2(1 +K2), we have

∂tū− ε∆ū− |∇ū|2 −R(x, Sε(t)) ≥ C + εK2
d− 1√
1 + |x|2

−K2
2 −K2 ≥ 0.

Since ū(0, x) ≥ u0
ε(x) from initial data (28), we conclude that ū is a super-solution and

uε(t, x) ≤ A+ CT −K2

√
1 + |x|2, for all t ∈ [0, T ].
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4.2 Lipschitz bound in space

We first prove that uε is uniformly Lipschitz continuous in space on [0, T ]×Rd. We define
for h small wε(t, x) = uε(t, x + h) − uε(t, x). Since the initial condition u0

ε are uniformly
continuous, given δ > 0, for h small enough, we have |wε(0, x)| < δ

2 . From (27), we arrive
to

∂twε(t, x)− ε∆wε(t, x)− (∇uε(t, x+ h) +∇uε(t, x)) · ∇wε(t, x)

= R(x+ h, Sε(t))−R(x, Sε(t)) ≤ K2h. (30)

Thus by the maximum principle we deduce that

|wε(t, x)| ≤ |max
Rd

wε(0, x)|+K2|h|t ≤ (||∇u0
ε||L∞(Rd) +K2t)|h|.

We conclude that uε is uniformly Lipschitz in space on [0, T ]× Rd and set

L(t) = sup
ε≤ε0,0≤s≤t,x∈Rd

||∇uε(t, x)||L∞ . (31)

4.3 Local bounds for uε

We already know from the first step that uε is locally bounded from above. We show that
it is also bounded from below on compact subsets of [0,∞) × Rd. Let 0 < T and r > 0.
For all t ∈ [0, T ] and x ∈ B(0, r), we recall that uε(t, x) ≤ A + CT − K2

√
1 + |x|2 and

thus ∫
|x|>r

e
uε
ε dx <

∫
|x|>r

e
A+CT−K2|x|

ε <
ρm
2
,

for 0 < ε < ε0, ε0 small enough and r large enough. We also have from Lemma 3.1 that
ρε ≥ ρm, then for 0 < ε < ε0 and r large enough, we obtain

ρm
2
<

∫
|x|≤r

e
uε
ε ≤ Bre

max
Br

uε
ε .

This implies

max
Br

uε ≥ εln
ρm

2|Br|
.

Using the Lipschitz bound (31) we obtain

uε(t, x) > εln
ρm

2|Br|
− 2L(t)r, ∀x ∈ Rd.

Hence we have the local lower bound on uε.
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4.4 The equi-continuity in time

For given T, η and r > 0, we fix (s, x) ∈ [0, T [×B(0, r2) and define

ξε(t, y) = uε(s, x) + η + E|y − x|2 +D(t− s), for (t, y) ∈ [s, T ]×B(0, r),

where E and D are constants to be determined. We prove in this section the uniform
continuity in time. The idea of the proof is to find constants E and D large enough such
that, for any x ∈ R(0, r2), and for all ε < ε0

uε(t, y) ≤ ξε(t, y) = uε(s, x) + η+E|y−x|2 +D(t− s), ∀(t, y) ∈ [0, T ]×B(0, r), (32)

and

uε(t, y) ≥ φε(t, y) := uε(s, x)−η−E|y−x|2−D(t−s), ∀(t, y) ∈ [0, T ]×B(0, r). (33)

Then by taking y = x, we have the uniform continuity in time on compact subsets of
[0,∞)× Rd. We prove here inequality (32), the proof of (33) is analogous.

First we prove that ξε(t, y) > uε(t, y) on [s, T ] × ∂B(0, r), for all η,D and x ∈ B(0, r2).
Since uε are locally uniformly bounded according to Sections 4.1 and 4.3, by taking E
large enough such that

E ≥
8||uε||L∞([0,T ]×B(0,r))

r2
,

we obtain

ξε(t, y) ≥ uε(t, x) + η + 2||uε||L∞([0,T ]×B(0,r)) +D(t− s)
≥ ||uε||L∞([0,T ]×B(0,r))

≥ uε(t, y).

Next we prove that, for E large enough, ξε(s, y) ≥ uε(s, y) for all y ∈ B(0, r). We argue
by contradiction. Assume that there exists η > 0 such that for all constants E > 0 there
exists yE ∈ B(0, r) such that

uε(s, yE)− uε(s, x) > η + E|yE − x|2.

This implies

|yE − x| ≥
√

2M

E
,

where M is a uniform upper bound for ||uε||L∞([0,T ]×B(0,r)). For E → ∞, we have that
|yE − x| → 0. Since uε are uniformly continuous in space, this is a contradiction.

Finally, from assumption (5), if D is large enough, ξε is a super-solution to (29) in
[s, T ]×B(0, r),

uε(t, y) ≤ uε(s, x) + η + E|y − x|2 +D(t− s), ∀(t, y) ∈ [0, T ]×B(0, r).

With the proof of (33) which is similar, we deduce that the sequence uε is uniformly
continuous in time on compact subsets of [0,∞)× Rd.
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4.5 Passing to the limit

We proceed as in [5] to prove the convergence of (27) to (29) as ε goes to 0. Considering
the regularity results above, the point at this step is to pass to the limit in the term
R(x, Sε). To avoid the complications of the discontinuity, we define

φε(t, x) := uε(t, x)−
∫ t

0
R(x, Sε(s))ds,

and it follows that φε satisfies the equation:

∂tφε(t, x)− ε∆φε(t, x)− |∇φε(t, x)|2 − 2∇φε(t, x).

∫ t

0
∇R(x, Sε(s))ds

= ε

∫ t

0
∆R(x, Sε(s))ds+ |

∫ t

0
∇R(x, Sε(s))ds|2. (34)

As Sε(t) converges to S̄(t) for all t ≥ 0 and R(x, I) is a Lipschitz continuous function, we
have

lim
ε→0

∫ t

0
R(x, Sε(s))ds =

∫ t

0
R(x, S̄(s))ds,

lim
ε→0

∫ t

0
∇R(x, Sε(s))ds =

∫ t

0
∇R(x, S̄(s))ds,

lim
ε→0

∫ t

0
∆R(x, Sε(s))ds =

∫ t

0
∆R(x, S̄(s))ds,

for all t ≥ 0. Furthermore the limit functions
∫ t

0 R(x, S̄(s))ds,
∫ t

0 ∇R(x, S̄(s))ds and∫ t
0 ∆R(x, S̄(s))ds are locally uniformly continuous.

After extraction of a subsequence by the Arzela-Ascoli Theorem, uε(t, x) converges lo-
cally uniformly to the continuous function u(t, x) as ε vanishes. Consequently φε(t, x)
converges locally uniformly to the continuous function φ(t, x) = u(t, x) −

∫ t
0 R(x, S̄(s))ds

and φ is a viscosity solution to the equation

∂tφ(t, x)− |∇φ(t, x)|2 − 2∇φ(t, x).

∫ t

0
∇R(x, S̄(s))ds = |

∫ t

0
∇R(x, S̄(s))ds|2. (35)

Then u is a solution to the following equation in the viscosity sense

∂tu(t, x) = |∇u|2 +R(x, S̄(t)).

It remains to prove that maxx∈Rd u(t, x) = 0 for all t ≥ 0. We argue by contradic-
tion. Assume that there exists a > 0 such that for some t > 0 and x ∈ Rd we have
0 < a ≤ u(t, x). It follows that, from the continuity of u, u(t, y) ≥ a

2 on B(x, r) for some
r > 0, and then nε(t, y)→∞ as ε goes to 0, which is a contradiction to the statements of
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Lemma 2.1. Thus we have maxx∈Rd u(t, x) ≤ 0 for all t ≥ 0.

From the section 4.3, we have for 0 < ε < ε0 and for some r > 0 large enough

lim
ε→0

∫
|x|≤r

nε(t, x)dx >
ρm
2
, t ≥ 0. (36)

Furthermore, recall that, from section 4.1, we have

uε(t, x) ≤ A+ Ct−K2

√
1 + |x|2 ≤ A+ Ct−K2|x|, ∀t ≥ 0, x ∈ Rd.

Then it follows that, for r large enough

lim
ε→0

∫
|x|≥r

nε(t, x)dx ≤ lim
ε→0

e
A+Ct−K2|x|

ε dx = 0.

We argue by contradiction again. Assume that u(t, x) < 0 for all t ≥ 0 and |x| < r. It
implies that limε→0 nε(t, x) = 0 and thus limε→0

∫
|x|<r nε(t, x)dx = 0. This is a contradic-

tion with (36) and it follows that maxx∈Rd u(t, x) = 0 for all t ≥ 0.

It is an open problem to know if the full sequence uε converges and it is equivalent to the
question of uniqueness of the solution to the Hamilton-Jacobi equation. We will consider
in section 5 a special case where uniqueness holds.

In the next section we derive some properties of the concentration points that also hold
in the concavity framework (section 6) and will be useful in what follows.

4.6 Properties of the concentration points

We prove in the rest of this section the following theorem

Theorem 4.2. Let assumption (5) hold. For any u0 ∈ W 1,∞(Rd), the solution to (29)
is semi-convex in x for any t > 0, i.e. there exists a C(t) such that, for any unit vector
ξ ∈ Rd, we have the following inequality

∂2

∂ξ2
u ≥ −C.

Consequently, u(t, ·) is differentiable in x at maximum points and we have

∇u(t, x̄(t)) = 0

where x̄(t) is a maximum point of u(t, ·).
Furthermore, for all Lebesgue points of S̄ we have

R(x̄(t), S̄(t)) = 0.

14



First step: the semi-convexity. To increase readability we use the notation uξ := ∂uε
∂ξ , uξξ :=

∂2uε
∂ξ2

for a unit vector ξ. We obtain from equation (27)

∂

∂t
uξ = 2∇uε · ∇uξ +Rξ(x, Sε(t)) + ε∆uξ, (37)

and
∂

∂t
uξξ = 2∇uε · ∇uξξ + 2|∇uξ|2 +Rξξ(x, Sε(t)) + ε∆uξξ. (38)

Notice that |∇uξ| ≥ |uξξ| because uξξ = ∇uξ · ξ. Therefore the function w := uξξ satisfies

∂

∂t
w ≥ 2∇uε · ∇w + 2w2 −K2 + ε∆w,

from the assumption (5). The semi-convexity follows from the comparison principle with
the subsolution given by the solution to the ODE ẏ = 2y2 −K2, y(0) = −∞.

Second step: ∇u(t, x̄(t)) = 0. The semi-convexity implies that u is differentiable at its
maximum points. Therefore we have for t > 0

∇u(t, x̄(t)) = 0.

Moreover, we also have the property that, for any sequence (tk, xk) of x- differentiability
point of u which converges to (t, x̄(t)), we have

∇u(tk, xk)→ 0 as k →∞.

In fact, we deduce that, for h, r > 0, h, r → 0

1

rh

∫ t+h

t

∫ x̄(t)+r

x̄(t)−r
|∇u(s, y)|2dsdy → 0,

and
1

rh

∫ t

t−h

∫ x̄(t)+r

x̄(t)−r
|∇u(s, y)|2dsdy → 0.

We obtain these convergence results by applying Lebesgue’s dominated convergence The-
orem to the integral ∫ 1

0

∫ 1

−1
|∇u(t+ hτ, x(t) + rσ)|2dτdσ

given by a change of variable, combined with the local Lipschitz continuity of u.

Third Step: Proof of R(x̄(t), S̄(t)) = 0. We first integrate the equation on rectangles
(t, t+ h)× (x̄(t)− r, x̄(t) + r). We obtain
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∫ x̄(t)+r

x̄(t)−r
[u(t+h, y)−u(t, y)]dy =

∫ t+h

t

∫ x̄(t)+r

x̄(t)−r
R(y, S̄(s))dsdy+

∫ t+h

t

∫ x̄(t)+r

x̄(t)−r
|∇u(s, y)|2dsdy.

By the semi-convexity, we have

0 ≥ u(t, y) ≥ u(t, x̄(t))− C|y − x̄(t)|2 = O(r2),

and also u(t+ h, y) ≤ 0. We deduce

1

rh

∫ t+h

t

∫ x̄(t)+r

x̄(t)−r
R(y, S̄(s))dsdy +

1

rh

∫ t+h

t

∫ x̄(t)+r

x̄(t)−r
|∇u(s, y)|2dsdy ≤ 1

rh
O(r2).

Therefore we obtain

1

rh

∫ t+h

t

∫ x̄(t)+r

x̄(t)−r
R(y, S̄(s))dsdy ≤ 1

rh
O(r2).

We conclude that at any Lebesgue point of S̄ we have

R(x̄(t), S̄(t)) ≤ 0.

Next, we prove the opposite inequality. By integrating on the rectangle (t − h, t) ×
(x̄(t)− r, x̄(t) + r).∫ x̄(t)+r

x̄(t)−r
(u(t, y)− u(t− h, y))dy ≥

∫ x̄(t)+r

x̄(t)−r
u(t, y)dy,

and

1

rh

∫ t

t−h

∫ x̄(t)+r

x̄(t)−r
R(y, S̄(s))dsdy +

1

rh

∫ t

t−h

∫ x̄(t)+r

x̄(t)−r
|∇u(s, y)|2dsdy ≥ O(r)

h
.

Hence, we have that, at any Lebesgue point of S̄,

R(x̄(t), S̄(t)) ≤ 0.

Hence the statement of Theorem 4.2.

5 The monomorphic case in dimension d = 1

In the case when dimension d equals 1 and R(x, S) is monotonic in x for each S, we have
the expected convergence toward a single Dirac mass under the additional assumption
(which holds for instance when R is monotonic in x)

∀Sm < S < S0, there is a unique X(S) ∈ R such that R(X(S), S) = 0. (39)
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Theorem 5.1. Assume (3)-(7), that u0
ε are uniformly continuous in Rd and (39). Then,

the solution nε to (1), still after extraction of a subsequence, converges in the weak sense
of measures

nεk(t, x) −→ n(t, x) := ρ̄(t)δ(x− x̄(t)), (40)

and we also obtain the relations

x̄(t) = X
(
S(t)

)
, R

(
x̄(t), S(t)

)
= 0 a.e.

Moreover, the full sequence nε converges when R has one of the following form, for some
functions b > 0, d > 0, F > 0,

R(x, S) = b(x)− d(x)F (S) with F ′(S) < 0, (41)

or
R(x, S) = b(x)F (S)− d(x) with F ′(S) > 0. (42)

We do not prove this result in detail. It is a consequence of the following observation.
As the measure n defined in (40) satisfies the condition supp n(t, ·) ⊂ {u(t, ·)} from the
properties obtained in the previous section (see details in [7, 5]), n is monomorphic. Indeed,
from the condition (39) the set {u(t, ·)} is reduced to an isolated point for all t ≥ 0. The
uniqueness of the solution when R is written as (41) or (42) is entirely explained in [7].
The idea of the proof is to consider for instance the function

φ(t, x) = u(t, x)− b(x)

∫ t

0
F (S(σ))dσ,

and, by noticing that φ satisfies the equation

∂tφ(t, x) = −d(x) + |∇(φ(t, x) + b(x))

∫ t

0
F (S(σ))dσ|,

to derive an estimate on the derivative of the difference between two different solutions φ1

and φ2 with the same initial data. By considering the different quantities at the maximum
points of u(t, ·), it comes that there exists a constant C > 0 such that

d

dt
||φ1 − φ2||∞ ≤ C||φ1 − φ2||∞,

and the uniqueness follows.

6 The concavity framework in Rd

In this section we are going to assume more regularity in order to prove the convergence
of nε to a Dirac mass in the sense of measure. The specific feature of this framework is
that uniform concavity of the growth rate and initial data induce uniform concavity of
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the solutions uε to the Hamilton-Jacobi equations, which implies that uε has only one
maximum point. The main technical difficulty is that uniform bounds are not possible
because of the quadratic growth at infinity. Therefore, following the work [33], we start
with assumptions on R ∈ C2:

max
x∈Rd

R(x, Sm) = 0 = R(0, Sm), (43)

−K2|x|2 ≤ R(x, S) ≤ K0 −K2|x|2, (44)

0 < K1 ≤ RS(x, S) ≤ K1, (45)

− 2K2 ≤ D2R(x, S) ≤ −2K2. (46)

We also need the uniform concavity of the initial data

n0
ε = e

u0ε
ε , (47)

− L0 − L1|x|2 ≤ u0
ε ≤ L0 − L1|x|2, (48)

− 2L1 ≤ D2u0
ε ≤ −2L1, (49)

and we add some compatibility conditions

4L
2
1 ≤ K2 ≤ K2 ≤ 4L2

1. (50)

For this section, we will need

D3R(·, S) ∈ L∞(Rd), (51)

D3u0
ε ∈ L∞(Rd) uniformly in ε, (52)

n0
ε(x) −→ ρ̄0δ(x− x̄0) weakly in the sense of measures. (53)

We keep the same assumptions on Q and Sε as in the previous section. Next we are
going to prove the following result:

Theorem 6.1. Under assumptions (44)-(50) and the assumptions on Q, ρε and Sε have
locally bounded total variations uniformly in ε. Therefore there exist functions ρ and S
such that, after extraction of a subsequence, we have

Sεk(t) −→
εk→0

S̄(t) and ρεk(t) −→
εk→0

ρ̄(t), a.e.

Furthermore we have weakly in the sense of measures for a subsequence nε

nε(t, x) −→
ε→0

ρ(t)δ(x− x(t)), (54)

and the pair (x̄(t), S(t)) also satisfies

R(x̄(t), S(t)) = 0, a.e. (55)
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As a first step, we will give estimates on uε. Next, we will adapt the proof of the section
3 to give BV estimates on ρε and Sε and then pass to the limit as ε goes to 0. Finally we
prove the following theorems:

Theorem 6.2. Assuming (43)-(53), x̄(t) is a W 1,∞(R+,Rd)-function and its dynamics
is described by the equation

ẋ(t) = (−D2u(t, x̄(t)))−1 · ∇xR(x̄(t), S̄(t)), x̄(0) = x0 (56)

with u(t, x) given below in (71) and x0 in (53). Furthermore, S̄(t) is a W 1,∞(R+)-function.
From this equation, it follows that S̄(t) is a decreasing function and

S̄(t) −→
t→∞

Sm, x̄(t) −→
t→∞

0. (57)

6.1 Uniform concavity of uε

Again we use the Hopf-Cole transformation defining uε = εlnnε and we obtain the same
equation as in Section 4 ∂tuε(t, x) = |∇uε|2 +R(x, Sε(t)) + ε∆uε,

uε(t = 0, x) = u0
ε(x) := εlnn0

ε.
(58)

We focus now on the study of the properties of the sequence uε.

We first prove the following lemma

Lemma 6.3. Under assumptions (44) and (50), we have for t ≥ 0 and for x ∈ Rd

− L0 − L1|x|2 − ε(2dL1)t ≤ uε(t, x) ≤ L0 − L1|x|2 + (K0 + 2dεL1)t. (59)

Proof. First we achieve an upper bound for uε. By defining uε(t, x) := L0−L1|x|2 +C0(ε)t
with C0(ε) := K0 + 2dεL1, we obtain from assumptions (44), (48) and (50) that uε(t =
0) ≥ u0

ε and

∂tuε − |∇uε|2 −R(x, Iε)− ε∆uε ≥ C0(ε)− 4L
2
1|x|2 −K0 +K2|x|2 − 2dεL1 ≥ 0.

Then by a comparison principle, we conclude that uε(t, x) ≤ L0 −L1|x|2 + (K0 + 2dεL1)t
for all t ≥ 0 and x ∈ Rd.

Next for the lower bound, we define uε(t, x) := −L0 − L1|x|2 − εC1t with C1 := 2dL1.
Thus we have uε(t = 0) ≤ u0

ε and

∂tuε − |∇uε|2 −R(x, Iε)− ε∆uε ≤ −εC1 − 4L2
1|x|2 +K2|x|2 + ε2dL1 ≤ 0.

Consequently, we obtain that uε(t, x) ≥ −L0−L1|x|2−ε(2dL1)t for all t ≥ 0 and x ∈ Rd.
Hence the estimates on uε.
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The next point is to show that the semi-convexity and the concavity of the initial data
is preserved by equation (1). In other words, we are going to show the following lemma

Lemma 6.4. Under assumptions (44)-(50), we have for t ≥ 0 and x ∈ Rd

− 2L1 ≤ D2uε(t, x) ≤ −2L1. (60)

Proof. For a unit vector ξ, we use the notation uξ := ∇ξuε and uξξ := ∇2
ξξuε to obtain

uξt = Rξ(x, I) + 2∇u · ∇uξ + ε∆uξ,

uξξt = Rξξ(x, I) + 2∇uξ · ∇uξ + 2∇u · ∇uξξ + ε∆uξξ.

By using |∇uξ| ≥ |uξξ| and the definition w(t, x) := minξ uξξ(t, x) we arrive at the inequal-
ity

∂tw ≥ −2K2 + 2w2 + 2∇u · ∇w + ε∆w.

And finally by a comparison principle and assumptions (49) and (50), we obtain

w ≥ −2L1. (61)

Hence the uniform semi-convexity of uε.

To prove the uniform concavity, we first recall that, at every point (t, x) ∈ R+ ×Rd, we
can choose an orthonormal basis such that D2uε(t, x) is diagonal. Thus we can estimate
the mixed second derivatives in terms of uξξ and consequently we have

|∇uξ| = |uξξ|. (62)

By defining w(t, x) := maxξ uξξ(t, x) and using assumptions (46) and (62), we obtain
the following inequality

∂tw ≤ −2K2 + 2w2 + 2∇u · ∇w + ε∆w.

By a comparison principle and assumption we obtain the estimate

w ≤ −2L1, (63)

which ends the proof of Lemma 6.4.

6.2 BV estimates on ρ2
ε, Sε and their limits

We use exactly the same proof as in Section 3 to obtain BV estimates on ρ2
ε and Sε. To

obtain these estimates, an important point was the bounds on εPε. We need to confirm
that εPε is bounded, which was clear in Section 3 thanks to the bounds on the growth
rate. Here the growth rate has a quadratic decrease at infinity, which does not give an
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immediate lower bound on εPε . Furthermore we do not have a lower bound on ρε either
because of the same argument and we cannot obtain directly a BV estimate on Sε as in
Section 3.2. However we derive a lower bound for εPε and we use the uniform concavity
of uε for that purpose.

By definition of Pε, it follows from (44) and (59) that

εPε =

∫
Rd
nεR(x, Sε(t))dx ≥

∫
Rd
e

1
ε

(−L0−L1|x|2−εC1t)(−K2|x|2)dx,

≥ −K2e
1
ε

(−L0−εC1t)

∫
Rd
e−

1
ε
L1|x|2 |x|2dx,

= −K2e
1
ε

(−L0−εC1t) dε

2L1

(√
πε

L1

)d−1

. (64)

And we have a bound for (εPε)−.

We recall inequality (17) that also holds true in this framework

ε
d

dt
(Pε)− + αε

(Pε)−
βµε

≤ K̄1ρM (Pε(0) + βµε(0)Jε(0))−
e
−µmKQ

ε
t

βµm
+ Cε.

Then, we integrate this inequality over [0, T ] for T > 0 and by the same arguments used
in Section 3.1 it follows that ρ2

ε has local BV bounds and therefore there exists a function
ρ such that after extraction of a subsequence

ρε −→ ρ in L1
loc(0,∞).

The next aim is to show that Sε has local BV bounds. We go back to equation (14) and
we recall

εβ
d

dt
Jε = QSJe +QρPε.

Then we have the following inequality

εβ
d

dt
(−Jε) ≤ QS(−Jε) + LQ|Pε| (65)

and

εβ
d

dt
(Jε)− ≤ QS(Jε)− + LQ((Pε)+ + (Pε)−). (66)

By integrating this inequality over [0, T ] for T > 0, using∫ T

0
LQ|Pε| ≤ LQ

(∫ T

0
(ρ̇ε)+ +

∫ T

0
(Pε)−

)
, (67)
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and since ρε is bounded above, we deduce from (17) that

∫ T

0
(Jε)− ≤ C1T + o

ε→0
(1). (68)

To conclude, we can extract a subsequence from Sε which locally converges in L1
loc(0,∞)

to a limit function S.

6.3 The limit of the Hamilton-Jacobi equation

From the estimates obtained above on uε and D2uε, we can deduce that ∇uε is locally
uniformly bounded and thus from (27) for ε < ε0 that ∂tuε is also locally uniformly
bounded. Therefore there exists a function u such that, after extraction of a subsequence
(see [10, 26] for compactness properties), we have for T > 0

uε(t, x) −→
ε→0

u(t, x) strongly in L∞
(

0, T ;W 1,∞
loc (Rd)

)
,

uε(t, x) −−⇀
ε→0

u(t, x) weakly-* in L∞
(

0, T ;W 2,∞
loc (Rd)

)
∩W 1,∞

(
0, T ;L∞loc(Rd)

)
,

and

− L0 − L1|x|2 ≤ u(t, x) ≤ L0 − L1|x|2 +K0t, −2L1 ≤ D2u(t, x) ≤ −2L1 a.e. (69)

u ∈W 1,∞
loc (R+ × Rd). (70)

Then, passing to the limit as ε → 0 in equation (27), we deduce that u satisfies in the
viscosity sense the equation 

∂
∂tu = R

(
x, S(t)

)
+ |∇u|2,

maxRd u(t, x) = 0.
(71)

In particular u is strictly concave, therefore it has exactly one maximum. This proves
n stays monomorphic and characterizes the Dirac location by

max
Rd

u(t, x) = 0 = u
(
t, x̄(t)

)
. (72)

This completes the proof of Theorem 6.1.
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6.4 The canonical equation

In this section, we establish from the regularity properties proved in the previous sections a
form of the so-called canonical equation in the language of adaptive dynamics (see [15, 22]):

ẋ(t) = (−D2u(t, x̄(t)))−1 · ∇xR(x̄(t), S̄(t)).

This equation was formally introduced in [24] and holds true in our framework. The point
of this differential equation is to describe the long time behaviour of the concentration
point x̄(t).

First step: Bounds on third derivatives of uε. For the unit vectors ξ and η, we use the
notation uξ := ∇ξuε, uξη := ∇2

ξηuε and uξξη := ∇3
ξξηuε to derive

∂tuξξη = 4∇uξη · ∇uξ + 2∇uη · ∇uξξ + 2∇u · ∇uξξη +Rξξη + ε∆uξξη.

Let us define
M1(t) := max

x,ξ,η
uξξη(t, x).

Again, at every (t, x) ∈ R+×Rd, we can choose an orthogonal basis such thatD2(∇ηuε(t, x))
is diagonal. And since −uξξη(t, x) = ∇−ηuξξ(t, x), we have M1(t) = maxx,ξ,η |uξξη(t, x)|.
Then we obtain the following inequality

d

dt
M1 ≤ 4dM1||D2uε||∞ + 2dM1||D2uε||∞ +Rξξη.

As assumption (52) gives a bound on M1(t = 0), by using the Grönwall lemma we obtain
a L∞-bound on the third derivative uniform in ε.

Second step : Maximum point of uε We denote the maximum point of uε(t, ·) by x̄ε(t).
Since we have ∇uε(t, x̄ε(t)) = 0, we obtain

d

dt
∇uε(t, x̄ε(t)) = 0.

Then the chain rule gives

∂

∂t
∇uε(t, x̄ε(t)) +D2

xuε(t, x̄ε(t))ẋε(t) = 0.

and using equation (58), it follows that, for all t ≥ 0, we have

D2
xuε(t, x̄ε(t))ẋε(t) = − ∂

∂t
∇uε(t, x̄ε(t)) = −∇xR(x̄ε(t), Sε(t))− ε∆∇xuε.

Thanks to the uniform bound on D3uε and the regularity on R, we pass to the limit

ẋ(t) = (−D2u(t, x̄(t)))−1 · ∇xR(x̄(t), S̄(t)) a.e.

23



As we have R(x̄(t), S(t)) = 0 and assumption (44), x̄(t) is bounded in L∞(R+). Then it
implies from the canonical equation that x̄(t) is bounded in W 1,∞(R+) and S(t) is also
bounded in W 1,∞(Rd) since S 7→ R(·, S) is invertible by the Implicit Function Theorem.
We differentiate (55) and obtain the following differential equation

ẋ(t) · ∇xR+ Ṡ(t)∇SR = 0.

Third step: Long time behaviour. Using the canonical equation we obtain

d

dt
R(x̄(t), S(t)) = ∇R(x̄(t), S(t))

d

dt
x̄(t) + ∂SR(x̄(t), S(t))

d

dt
S(t)

= ∇R(x̄(t), S(t))(−D2u)−1∇R(x̄(t), S(t)) + ∂SR(x̄(t), S(t))
d

dt
S(t).

Since the left hand side equals 0 from (55), it follows that

d

dt
S(t) =

−1

∂SR(x̄(t), S(t))
∇R(x̄(t), S(t))(−D2u)−1∇R(x̄(t), S(t)) ≤ 0.

We deduce that S̄(t) decreases. Consequently S̄(t) converges and subsequences of x̄(t) also
converge since x̄(t) is bounded. However the possible limits x̄∞ and S̄∞ have to satisfy
∇R(x̄∞, S̄∞) = 0. Then from (43), (45) and (55), we conclude that

S̄(t) −→
t→∞

Sm, x̄(t) −→
t→∞

x̄∞ = 0,

which ends the proof of Theorem 6.2.

7 Numerical results and discussion

We illustrate in this section the evolution of nε, ρε and Sε in time with different values of
β. We choose the following initial data

n0 = Cmassexp(−(x− 0.8)2/ε), (73)

and growth rate R and Q as follows

R(x, S) = 0.2(−0.6 + 0.3S − (x− 0.5)2), (74)

Q(ρ, S) = 10− (1.5 + ρ)S. (75)

The numerics have been performed in Matlab with parameters as follows. We consider
the solution on interval [0, 1]. We use a uniform grid with 1000 points on the segment and
denote by nki and Sk the numerical solutions at grid point xi = i∆x and at time tk = k∆t.
We choose as initial value of the nutrient concentration Sε(t = 0) = 5. We also choose β
to be 2.103, the time step ∆t = 10−4 and Cmass such as the initial mass of the population
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Figure 1: Dynamics of ρε ( ) and Sε (− − −−) (left) and dynamics of the density
nε for β = 2 · 103 and ε = 10−3.
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Figure 2: Dynamics of ρε ( ) and Sε (− − −−) (left) and dynamics of the density
nε for β = 2 · 102 and ε = 10−3

in the computational domain is equal to 1. The equation is solved by an implicit-explicit
finite-difference method.

The Figure 1 shows the dynamics for ε = 1 · 10−3 and the Figure 2 for ε = 5 · 10−4. In
Figure 3, we show the numerical results corresponding to the same data as in Figure 1,
except that we choose β = 2 ·102. We can observe oscillations of ρε and Sε in the first case
(β = 2 · 103), whereas there are very few variations of these quantities when β is smaller.

Some open questions arise from the present study. First it seems that the method
developed in this work does not give TV bounds for the full range [0, β0] for some small β0

since the estimations providing the uniform BV estimates on ρ2 in Section 3.2 are local
and then it is not possible to prove uniform convergence of S(t) as β → 0 on [0,∞) at this
stage. Thus we cannot obtain the asymptotic behaviour of the limit functions as β goes
to 0, while the convergence of ε to 0 describes the dynamics of the presented system in a
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larger time scale, therefore local estimates are enough.

As mentioned in Section 4, the uniqueness of the solution to the Hamilton-Jacobi equa-
tion (71) has up to now been an open problem, apart from very particular cases (see for
instance [6]). However a recent work of S. Mirrahimi and J. Roquejoffre [40] has shown
uniqueness of the constrained Hamilton-Jacobi equation related to the following selection-
mutation model in the concavity framework

ε∂tnε(t, x) = nε(t, x)R(x, Iε(t)) + ε2∆nε(t, x),

Iε(t) =

∫
Rd
ψ(x)nε(t, x)dx,

which could be a first step to prove uniqueness for the presented chemostat model.
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[9] E. Bouin and S. Mirrahimi. A hamilton-jacobi limit for a model of population stuc-
tured by space and trait. Comm. Math. Sci., 13.6:1431–1452, 2015.
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individual stochastic processes to macroscopic models. Theoretical Population Biol-
ogy, 69(3):297–321, 2006.

[17] N. Champagnat, R. Ferrière, and S. Méléard. Individual-based probabilistic models
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PhD thesis, Université Pierre et Marie Curie-Paris VI, 2011.

[37] S. Mirrahimi. Adaptation and migration of a population between patches. Discrete
and Continuous Dynamical System - B (DCDS-B), 18.3:753–768, 2013.

[38] S. Mirrahimi and B. Perthame. Asymptotic analysis of a selection model with space.
To appear in J. Math. Pures Appl.

[39] S. Mirrahimi, B. Perthame, E. Bouin, and P. Millien. Population formulation of
adaptative meso-evolution: theory and dynamics. In J. F. Rodrigues and F. Chalub,
editors, The Mathematics of Darwin’s Legacy, Mathematics and Biosciences in Inter-
action. Springer, 2011.

[40] S. Mirrahimi and J.-M. Roquejoffre. Uniqueness in a class of hamilton-jacobi equa-
tions with constraints. Comptes Rendus Mathématiques, 2015.
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