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Abstract

Introduction: White matter (WM) magnetic resonance imaging (MRI) hyperintensities are common in Alzheimer’s
disease (AD), but their pathophysiological relevance and relationship to genetic factors are unclear. In the present
study, we investigated potential apolipoprotein E (APOE)-dependent effects on the extent and cognitive impact of
WM hyperintensities in patients with AD.

Methods: WM hyperintensity volume on fluid-attenuated inversion recovery images of 201 patients with AD (128
carriers and 73 non-carriers of the APOE ε4 risk allele) was determined globally as well as regionally with voxel-
based lesion mapping. Clinical, neuropsychological and MRI data were collected from prospective multicenter trials
conducted by the German Dementia Competence Network.

Results: WM hyperintensity volume was significantly greater in non-carriers of the APOE ε4 allele. Lesion distribution
was similar among ε4 carriers and non-carriers. Only ε4 non-carriers showed a correlation between lesion volume
and cognitive performance.

Conclusion: The current findings indicate an increased prevalence of WM hyperintensities in non-carriers compared
with carriers of the APOE ε4 allele among patients with AD. This is consistent with a possibly more pronounced
contribution of heterogeneous vascular risk factors to WM damage and cognitive impairment in patients with AD
without APOE ε4-mediated risk.
Introduction
White matter (WM) hyperintensities (WMHs) resulting
from small vessel vasculopathy are commonly observed
on T2-weighted magnetic resonance imaging (MRI) scans
of elderly persons [1]. In patients with Alzheimer’s disease
(AD), WMH load has been reported to be increased
compared with demographically similar subjects without
dementia [2-10], in line with strong neuropathological
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evidence that cerebrovascular disease is more common in
AD than in synucleinopathies and frontotemporal demen-
tia or in the absence of neurodegenerative disease [11].
The pathogenesis of WM damage in AD is likely to be

multifactorial and to involve non-specific vascular risk
factors as well as endothelial injury mediated by amyloid
deposition [12]. Vascular risk factors such as hypertension
are known to increase both the prevalence and progres-
sion of WMHs [13], as well as of AD microscopic lesions,
such as amyloid plaques and neurofibrillary tangles [14].
Recently, a significant contribution of AD-specific mecha-
nisms to WMHs was indicated in a prospective cohort
derived from the Baltimore Longitudinal Study of Aging
Autopsy Program [15]. In that study, several measures of
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AD pathology, such as Braak score and composite AD
pathology score, correlated with WMH volume at autopsy
[15]. Furthermore, patients diagnosed with amyloid angiopa-
thy show an accelerated progression of WMH volume [7,16].
Conversely, there is evidence that WMHs contribute to the
risk of AD largely independently of cerebral amyloid-β (Aβ)
deposition, suggesting that potentially heterogeneous WM
damage may lower the threshold for a diagnosis of AD in
the presence of amyloid pathology [17].
Depending on their location and severity, WM lesions

can affect various cognitive domains by disrupting fiber
tract integrity or prompting retrograde neuronal degen-
eration. Although WMH increase the risk of global cog-
nitive decline (for example [18]), cognitive functions
most consistently impaired by disseminated subcortical
and periventricular WM damage are speed of informa-
tion processing and executive function [5,7,19-21].
To what extent the mechanisms of WM damage relate to

genetic factors remains unclear. The purpose of the present
study was to examine potential apolipoprotein E (APOE)-
dependent effects on the distribution and cognitive impact
of WMHs in patients with AD. We hypothesized that if
WMHs indicate a separate vascular aspect of AD pathology,
they should be increased in APOE ε4 risk allele non-
carriers, whereas the opposite prediction would be made if
WMHs predominantly mediate genetic risk of APOE.

Methods
Ethics statement
The study was approved by the Central Institutional
Review Board (IRB) of the German Dementia Network
located at the University of Erlangen and by each of
the local IRBs of the participating centers (that is, the
IRBs of Charité - Universitätsmedizin Berlin and the
medical faculties of the universities of Bonn, Erlangen-
Nuremberg, Freiburg, Göttingen, Hamburg and Heidelberg
and Ludwig-Maximilians-University Munich). All subjects
gave their informed consent to participate in the study.

Subjects
Two hundred one patients who fulfilled the National
Institute of Neurological and Communicative Disorders
and Stroke–Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) criteria of probable AD
[22] (128 carriers of the APOE ε4 allele and 73 non-
carriers) were included in the study. Among the 128
carriers of the ε4 allele, 39 were homozygous (19.4% of
sample overall). Of the 201 patients, 168 (113 ε4 carriers
and 55 non-carriers) had a diagnosis of probable AD
[22] when the data were collected, 32 subjects (15 ε4
carriers and 17 non-carriers) had mild cognitive im-
pairment (MCI) at the time of analysis and converted
to AD within the following 1.4 ± 0.6 years (ε4 carriers:
1.3 ± 0.5 years, non-carriers: 1.5 ± 0.7 years). Only 15 of
201 subjects were carriers of the ε2 allele (7.5%). Be-
cause of lack of power, effects of ε2 carrier status were
not investigated.
The NINDS-ADRDA criteria lack precise guidelines

on how to consider “silent” vascular lesions in the case
of an AD-typical clinical course of dementia [22]. Ac-
cording to the new diagnostic recommendations of the
National Institute on Aging-Alzheimer’s Association
workgroup, patients should not be diagnosed with prob-
able AD in the “presence of multiple or extensive in-
farcts or severe white matter hyperintensity burden” [23]
(p. 266). Severe WMH burden, in turn, is classified as
hyperintensity volume on MRI greater than 25% of WM
and thus considered indicative of vascular dementia on
the basis of the National Institute of Neurological Disor-
ders and Stroke–Association Internationale pour la
Recherche et l’Enseignement en Neurosciences (NINDS-
AIREN) criteria [24,25]. To achieve high specificity for
AD in the present study, we excluded patients with MRI
evidence of severe cerebrovascular disease according to
the new AD diagnostic guidelines and NINDS-AIREN
criteria [23-25]—that is, with strategic territorial and
cortical watershed infarctions or extensive small vessel
disease defined by multiple lacunar infarctions, bilateral
thalamic lesions or greater than 25% WMH burden.
Thus, a threshold greater than 10 cm3 was set, which
has previously been applied to define severe dissemi-
nated WM cerebrovascular disease [26,27] and has been
found to approximate 25% of WM [28]. A threshold of
10 cm3 also distinguishes subjects with severe (that is,
grade 3) WMH burden from subjects with less pro-
nounced WM damage according to the well-established
semiquantitative Fazekas scale [26,28,29]. As a result, 18
patients (eight ε4 carriers and ten non-carriers) were
excluded on the basis of lesion volume greater than
10 cm3. In order to detect a potential bias due to exclu-
sion of subjects with severe lesion burden, we investi-
gated characteristics of this subgroup and also repeated
the analysis of APOE-dependent effects for the entire
group of 201 subjects.
The characteristics of the 183 patients with AD (120

ε4 carriers and 63 non-carriers) included in the main
analysis according to the new AD diagnostic guidelines
and NINDS-AIREN criteria [23-25] are listed in Tables 1
and 2. The characteristics of the subgroup (n = 18) ex-
cluded from the main analysis because of severe lesion
volume and of the entire group (n = 201) are presented
in Table 2 (WMH data), Additional file 1: Table S1 and
Additional file 2: Table S2 (demographic and clinical
variables). Clinical evaluation of patients consisted of
a complete neurological and psychiatric examination.
Cognitive status was assessed with the Mini Mental
State Examination (MMSE) and the Clinical Dementia
Rating (CDR) scale. Global CDR score and CDR Sum of



Table 1 Characteristics of patients with probable Alzheimer’s disease according to new diagnostic guidelinesa

APOE ε4 carriers (n = 120) APOE ε4 non-carriers (n = 63) Group comparison P-valuesb

Total number of patients N = 183

Age (yr) 70.4 ± 6.4 70.4 ± 8.7 0.97

Age at onset (yr) 67.6 ± 7.2 66.8 ± 12.2 0.96

Duration of disease (mo) 31.3 ± 24.7 30.5 ± 25.4 0.84

Males/females, n (ratio) 57/63 (1:1.1) 28/35 (1:1.3) 0.70

Education (yr) 9.1 ± 1.8 9.4 ± 2.2 0.30

Systolic blood pressure (mmHg) 139.3 ± 17.0c 141.1 ± 16.9d 0.54

Systolic blood pressure ≥140 mmHg (yes/no) 57/42 (1.4 : 1) 32/23 (1.4 : 1) 0.95

Diastolic blood pressure (mmHg) 81.6 ± 8.7c 83.8 ± 7.9d 0.14

Diastolic blood pressure ≥90 mmHg (yes/no) 33/66 (1:2) 20/35 (1:1.8) 0.78

Antihypertensive medication (yes/no) 31/87 (1 : 2.8)e 20/39 (1 : 2)f 0.18

Coronary heart disease (yes/no) 7/111 (1 : 15.9)e 5/56 (1 : 9.3)g 0.57

Diabetes (yes/no) 16/102 (1 : 6.4)e 6/53 (1 : 8.8)f 0.45

Hypercholesterolemia (yes/no) 15/100 (1 : 6.7)h 7/47 (1 : 6.7)i 0.99

BMI 24.5 ± 3.9j 24.2 ± 4.9i 0.85

CDR SOB 4.3 ± 1.4 4.3 ± 1.6 0.92

MMSE (score) 23.8 ± 3.2k 24.5 ± 2.9 0.51

Delayed verbal recall (score) 2.1 ± 2.0j 2.8 ± 2.2 0.02

Verbal learning 12.1 ± 4.3j 12.4 ± 4.4 0.87

Trail Making Test A (s) 96.6 ± 57.0l 96.1 ± 52.3 0.60

Constructive -apraxia 9.0 ± 2.3k 9.0 ± 1.8 0.59

Boston Naming Test 12.6 ± 2.4k 12.8 ± 2.4 0.80
aAPOE, Apolipoprotein E; BMI, Body mass index; CDR SOB, Clinical Dementia Rating Sum of Boxes; MMSE, Mini Mental State Examination. Data are presented as
mean ± SD or ratio. bP-values are based on Student’s t-test. Available data: cn = 99, dn = 55, en = 118, fn = 59, gn = 61, hn = 115, in = 54, jn = 99, kn = 119, ln = 116.
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Boxes (CDR SOB) were determined; the latter was
assessed by assigning a severity score in six domains
(memory, orientation, judgment and problem solving,
community affairs, home and hobbies). CDR SOB
scores show greater variability than global CDR scores.
Current diagnoses of diabetes (based on fasting glucose
levels ≥7 mmol/L or treatment), hypertension (based on
systolic blood pressure >140 mmHg or diastolic blood
pressure >90 mmHg or antihypertensive medication),
treatment with cholesterol-lowering medication and
self-reported coronary heart disease were assessed in
Table 2 White matter hyperintensity characteristicsa

Mean,
mm3

SD SE

Patients with white matter hyperintensity (WMH) volume ≤10 cm3 (n = 183)

APOE ε4 carriers (n = 120) 1,857 2,026 185

APOE ε4 non-carriers (n = 63) 2,873 2,780 350

Patient group overall (including subjects with severe WMH volume, n = 201)

APOE ε4 carriers (n = 128) 2,659 3,810 337

APOE ε4 non-carriers (n = 73) 4,940 6,616 774
aAPOE, Apolipoprotein E; SD, Standard deviation; SE, Standard error.
the majority of subjects (Table 1, Additional file 1: Table
S1 and Additional file 2: Table S2).
We used data collected from prospective multicenter

trials conducted by the German Dementia Competence
Network [30]. The study cohort was identified retro-
spectively from among these trial subjects. Patients
included in the present study were recruited in eight
German centers. Additional inclusion criteria were the
availability of neuropsychological test results, APOE
genotyping, a high-resolution three-dimensional fast T1-
weighted gradient echo sequence and a fluid-attenuated
95% confidence interval Group comparison
P-valueLower Upper

1,491 2,223 0.01

2,173 3,573

1,993 3,325 0.01

3,396 6,483
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inversion recovery (FLAIR) sequence. Furthermore, data
were included only after quality control of the MRI
scans, which consisted of a test of image homogeneity
covariance and noise estimation using voxel-based
morphometry (VBM) with the VBM8 toolbox [31] as
well as visual inspection. Seven patients had to be ex-
cluded because of motion or susceptibility artifacts.
Other exclusion criteria were stroke, motor symptoms
associated with other neurodegenerative diseases such as
Lewy body dementia, and cognitive impairment second-
ary to recognizable diseases such as head injury, multiple
sclerosis or normal pressure hydrocephalus. In addition,
subjects with clinically relevant depression, defined as a
score of 4 or more on the depressive symptom subscale
of the Neuropsychiatric Inventory (NPI) [32], were
excluded.

Neuropsychological testing
The neuropsychological battery included immediate and
delayed recall of word lists, the Boston Naming Test
(a test of word retrieval), drawing of increasingly com-
plex figures (constructional praxis) and free recall of
drawings from the cognitive battery designed by the
Consortium to Establish a Registry for Alzheimer’s
Disease [33]. Subjects were also assessed with the Trail
Making Test (TMT) parts A and B, which are sensitive
to speed of information processing, mental flexibility
and executive function. Because of floor effects, results
for the TMT B were not included in further analyses.
Performance on the TMT A and the delayed verbal re-
call task were selected for analyses of correlations with
MRI measures of tissue damage. TMT A performance
was chosen for further analysis because of its established
association with disseminated WM damage [34], and the
delayed verbal recall task was selected because of its par-
ticular sensitivity to AD pathology.

Structural image parameters
MRI examinations were conducted using 1.5-T whole-
body units. Siemens scanners (MAGNETOM Vision,
Symphony or Sonata; Siemens Healthcare, Erlangen,
Germany) were used at six centers, and Philips scanners
(Gyroscan Intera; Philips Medical Systems, Eindhoven,
Netherlands) were employed at the remaining two cen-
ters. T1-weighted scanning was performed with a sagittal
magnetization prepared rapid gradient echo sequence
on the Siemens scanners and a three-dimensional fast
T1-weighted gradient echo sequence on the Philips
scanners. The repetition time (TR) varied between 9.3
and 20 milliseconds, and the echo time (TE) between
3.93 and 4.38 milliseconds, between centers. The flip
angle was approximately 15°, slice thickness from 1 to
1.2 mm, matrix between 256 × 256 pixels and 512 ×
512 pixels, and field of view between 250 × 250 mm and
300 × 300 mm. FLAIR images were obtained with TE
ranging from 100 to 110 milliseconds and TR from
9,000 to 10,000 milliseconds between centers. Inver-
sion recovery time was 2,500 milliseconds. Images
were two-dimensional with a slice thickness between 5
and 6 mm, matrix between 204 × 256 pixels and 220 ×
512 pixels, and field of view between 191 × 240 mm
and 256 × 256 mm.

Lesion probability maps
Lesion maps were automatically calculated for each sub-
ject with the Lesion Segmentation Toolbox (LST) [35],
an extension of the VBM8 toolbox [36], implemented
within SPM8 (Statistical Parametric Mapping; Wellcome
Trust Centre for Neuroimaging, London, UK [37]) and
MATLAB version 8 software (MathWorks, Natick, MA,
USA). Individual FLAIR images were corrected for MRI
field inhomogeneity and coregistered to the respective
T1-weighted images. Each voxel of the individual native
T1-weighted image was assigned to gray matter (GM),
WM or cerebrospinal fluid (CSF). Based on the tissue
specific FLAIR intensity values, the LST algorithm de-
rives an initial lesion map by identifying hyperintense
outliers as potential lesions. Using a Markov random
fields–based lesion-growing algorithm, the final lesion
maps are computed in an iterative process.

Voxel-based morphometry with T1-weighted magnetic
resonance imaging
Processing of high-resolution T1-weighted images was
based on the unified segmentation model [38] and con-
ducted with SPM8 and MATLAB version 8 software.
The method incorporates an iterated scheme combining
bias correction; segmentation into WM, GM and CSF;
and registration of prior images to stereotactic space.
During the normalization procedure, images were inter-
polated to isotropic 1 × 1 × 1-mm voxels. The VBM8
toolbox was used to extend this model with a partial
volume estimation and the application of a spatially
adaptive non-local means filter [39] for bias correction.
During normalization to stereotactic space, linear affine
registration and linear deformation corresponding to a
high-dimensional DARTEL normalization [40] were per-
formed as implemented in VBM8. GM probability maps
were then modulated (that is, intensity-corrected for
local volume changes during normalization) to increase
their sensitivity to the distribution of GM and WM
volume, followed by smoothing with a 12-mm full width
at half-maximum kernel.

APOE ε4 genotyping
APOE genotyping involved isolation of leukocyte DNA
with the Qiagen blood isolation kit according to the in-
structions of the manufacturer (Qiagen, Hilden, Germany).
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Subsequently, the presence of ε2, ε3 and/or ε4 alleles
was determined using restriction isotyping by gene
amplification and HhaI cleavage as described by Hixson
and Vernier [41].

Statistical analysis
Effects of APOE ε4 genotype status on white matter
hyperintensity
To test the hypothesis that APOE ε4 status is related to
WMH, we estimated an analysis of variance (ANOVA)
model with APOE ε4 status (APOE ε4 non-carrier versus
APOE ε4 carrier) as the factor of interest and age, sex,
education level, disease classification and total intracra-
nial volume (determined on T1-weighted MRI in native
space, that is, prior to normalization) as covariates
(Table 2 and Additional file 3: Table S3, model 1).
For a limited number of subjects with available data

(n = 129 with WMH volume ≤10 cm3), a second model
was specified that also accounts for a variety of vascular
risk factors, disease duration and MMSE performance
(Table 2 and Additional file 3: Table S3, model 2).
To assess the robustness of our findings, we also analyzed

group differences between APOE ε4 carriers and non-
carriers with the non-parametric Mann–Whitney U test.
APOE effects on WMH volume were investigated in a

binary fashion (presence of at least one ε4 allele versus
absence of ε4). In a secondary analysis, effects on
WMH load were investigated with regard to ε4 dose
(ε4 homozygosity or heterozygosity or absence of ε4
allele) (Additional file 4: Table S4).
To control for potential center effects on MRI mea-

sures, centers were included as additional covariates in
all analyses involving WMH volume (SPSS for Windows,
Version 22.0.0, 2013; IBM, Armonk, NY, USA).

Cognitive impact of white matter hyperintensities
To test if WMH is associated with executive functioning
and speed of information processing, functions typically
impaired by disseminated WM damage (for example, see
[34]), we estimated an ANOVA model with TMT A
performance as the dependent variable and age, sex,
education level, disease classification, total intracranial
volume, APOE ε4 status, categorical variables for centers
and WMH volume as covariates.

White matter hyperintensity distribution
The statistical analysis of lesion distribution was per-
formed with the non-parametric mapping module in
MRIcron (version 7/2012; http://www.nitrc.org/frs/?
group_id=152) [42]. To investigate potential group
differences between carriers and non-carriers of the
APOE ε4 allele, non-parametric Brunner-Munzel tests
were conducted. A permutation-based threshold of
P < 0.05 was chosen (1,000 permutations). The analysis
was limited to voxels classified as hyperintensities in a
minimum of 15% of the sample (n = 27).

Regional gray matter volume
SPM8 was used to analyze group differences with one-
way ANOVA and to investigate effects on neuropsycho-
logical performance with multiple regression analyses.
Age, sex, education level, total intracranial volume, cen-
ter and stage of disease (MCI or dementia) were in-
cluded as confounding variables on a voxel-by-voxel
basis. Effects were reported as significant when they
exceeded a conservative whole-brain voxel-level family-
wise error (FWE)–corrected threshold of P < 0.05.
Additional region of interest (ROI) analyses were

performed with P < 0.05 set as the voxel-level FWE-
corrected significance level for the hippocampus and the
prefrontal and posterior parietal cortices, based on pre-
vious findings of APOE-dependent volume effects in
patients with early AD [43,44]. For this purpose, hippo-
campal and posterior parietal and superior frontal masks
were created with the Harvard-Oxford probabilistic atlas
of human cortical and subcortical areas [45]. Masks
were visually inspected.

Results
Sample characteristics
As indicated in Table 1 and Additional file 2: Table S2,
APOE ε4 carriers and non-carriers were well balanced
with respect to a wide range of demographic and clinical
variables. With the exception of delayed verbal recall
(P = 0.02), we did not find any significant group differ-
ences for neuropsychological measures, suggesting that
both groups were at comparable stages of dementia.
Thus, these variables are unlikely to have confounded
observed differences in WMH volume.

White matter hyperintensity volume
The data show significantly lower WMH volumes in
APOE ε4 carriers than in non-carriers (Tables 2 and 3,
Additional file 3: Table S3). As evidenced by our extended
statistical model (model 2), (n = 129), this effect cannot be
explained by vascular risk factors or the status of disease
as captured by disease duration, classification as MCI or
dementia and MMSE performance (Table 3, Additional
file 3: Table S3). The significant difference in WMH
volume between APOE ε4 carriers and non-carriers was
confirmed by the non-parametric Mann–Whitney U test
(P < 0.02 for patients with WMH ≤10 cm3 (n = 183) and
P < 0.01 including subjects with higher WMH (n = 201)).
Elevated diastolic blood pressure had a significant

impact on WMH volume. Other vascular risk factors,
disease duration and MMSE performance were not sig-
nificantly related to WMH volume (Table 3, Additional
file 3: Table S3).

http://www.nitrc.org/frs/?group_id=152
http://www.nitrc.org/frs/?group_id=152


Table 3 Effects on total white matter hyperintensity
volume (analysis of variance model with APOE ε4 status
(non-carrier versus carrier as factor of interest) in subjects
with white matter hyperintensitya ≤10 cm3

Model 1 (n = 183) Model 2 (n = 129)

f(1, 169) P-value f(1, 107) P-value

APOE ε4 carrier status 8.9 0.01 9.1 0.01

Age 39.7 0.01 42.6 0.01

Sex 1.5 0.22 2.4 0.13

Education 0.69 0.41 0.03 0.86

Disease classification 1.4 0.24 1.7 0.20

Total intracranial volume 4.9 0.03 9.2 0.01

Duration of disease 0.07 0.80

MMSE scoreb 0.004 0.95

Systolic blood pressure 0.16 0.69

Diastolic blood pressure 10.4 0.01

Antihypertensive medication 0.40 0.53

Coronary heart disease 0.004 0.95

Cholesterol medication 0.49 0.49

Diabetes medication 0.006 0.94
aResults for site covariates are not reported. bMMSE, Mini Mental State
Examination.
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When subjects were classified according to dose of the
ε4 allele (homozygosity for ε4, heterozygosity, absence
of ε4 allele), APOE-dependent effects on WMH volume
remained significant (Additional file 4: Table S4) and
were attributable to the difference between ε4 carriers
and non-carriers. WMH load did not differ between het-
erozygous and homozygous carriers of the ε4 allele
(model 1: f(1, 106) = 0.31, P = 0.58; model 2: f(1, 64) =
0.26, P = 0.61).

Distribution of white matter hyperintensity
Cumulative WMH maps (Figure 1A, B) and lesion sub-
traction maps (Figure 1C, D) indicated that WMHs were
distributed similarly among ε4 carriers and non-carriers.
On the basis of voxel-wise permutation testing, differ-
ences in lesion volume reached statistical significance
proximate to both anterior horns and the left posterior
horn of the lateral ventricles as well as the splenium of
the corpus callosum. The largest cluster was located
near the posterior horn of the left lateral ventricle (max-
imum z-value 3.82, threshold at 3.00) (Figure 2). Lesion
density was highest in the periventricular regions in both
groups (Figure 1A, B).

Gray matter volume distribution
Carriers of the ε4 allele showed a tendency toward re-
duced volume in the right hippocampus compared with
non-carriers, whereas ε4 non-carriers exhibited a tendency
toward decreased volume in the right superior frontal
gyrus compared with carriers (Table 4, Figure 3A and 3B).

Correlation between neuropsychological performance
and white matter hyperintensity volume
Performance on the TMT A was similar between carriers
and non-carriers of the APOE ε4 allele (Table 1 and
Additional file 2: Table S2) and exhibited a trend-level
association with total WMH volume in the group overall
(in subjects with WMH volume ≤10 cm3: f(1, 164) = 3.5;
P = 0.064). In the subgroup of ε4 non-carriers, WMH
load showed a significant negative effect on TMT A per-
formance (f(1, 49) = 4.6; P = 0.036), contrary to its effect
in ε4 carriers (f(1, 102) = 0.32; P = 0.57).

Correlation between neuropsychological performance
and gray matter volume distribution
In both APOE subgroups, performance on the TMT A
correlated with GM volume in the parietal and temporal
regions; ε4 carriers also showed effects in frontal cortex
(Table 5, Figure 3C and 3D).
Delayed verbal recall performance correlated with hip-

pocampal volume in the group of ε4 carriers (Table 5,
Figure 3E). There were no correlations between recall per-
formance and GM volume in the group of non-carriers.

Discussion
In the present study, we provide evidence that WM
damage in patients with AD is more pronounced in
non-carriers of the APOE ε4 allele than in carriers.
Though ε4 carriers and non-carriers were well matched
for disease severity, WMH volume was greater and
showed a cognitive impact in the group of non-carriers.
Voxel-based permutation testing confirmed greater peri-
ventricular WMH volume in non-carriers, in line with
the observed difference in global lesion load and a peri-
ventricular focus of WMHs in both APOE subgroups.
These findings are consistent with WM lesion mecha-
nisms of structural damage and cognitive impairment in
AD that complement those related to APOE genetic risk.

Cognitive impact of white matter hyperintensities
In the group of APOE ε4 non-carriers, correlations
occurred between global WMH volume and perform-
ance on the TMT, which is sensitive to deficits of
attention, executive function and speed of information
processing [46]. In elderly subjects, associations of im-
pairment in these domains with WMHs have frequently
been reported [21,34,47-50]. Though strategic locations
for lesions linked to reduced processing speed and ex-
ecutive deficits have recently been identified in WM as
well as in subcortical structures [34,47], these are widely
distributed, indicating complex network demands [51] as
well as susceptibility to small-vessel ischemic disease.



Cumulative lesion maps
APOE -4 carriers

APOE -4 non-carriers

Non-carriers > carriers

Carriers > non-carriers

Lesion subtraction maps

0% 30%

0% 75%

0% 75%

0% 30%

B

A

C
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Figure 1 Apolipoprotein E-dependent lesion probability distributions. (A) Cumulative lesion maps in 120 carriers of the apolipoprotein E
(APOE) ε4 allele. (B) Cumulative lesion maps in 63 non-carriers of the APOE ε4 allele. Note that the color scale indicates minimum to maximum
overlap of lesions in Montreal Neurological Institute space as percentage of group size. (C) and (D) Lesion subtraction maps. The cumulative
lesion maps are subtracted from each other without a statistical threshold to allow a direct comparison of lesion probability distributions.

Morgen et al. Alzheimer's Research & Therapy  (2015) 7:27 Page 7 of 14
The observed contribution of WMHs to cognitive im-
pairment in the group of ε4 non-carriers is consistent
with cerebrovascular pathology frequently found in AD
[52]. Whether microvascular disease is, in fact, more
strongly associated with cognitive decline in non-carriers
of the ε4 allele needs to be confirmed in longitudinal
studies. Because of the more extensive WMH load,
retrograde and downstream neuronal damage resulting
from axonal injury are also likely accountable for sub-
stantial GM atrophy in this subgroup [29,53,54].
Of note, frontal atrophy was associated with impaired

TMT performance only among carriers, whereas tem-
poral and parietal GM volume effects were identified in
both groups. The additional involvement of the frontal
cortex in ε4 carriers may reflect a closer link between
cortical AD pathology and cognitive performance in this
subgroup, but it could also be related to the difference
in group size.
Contrary to speed of information processing and ex-

ecutive function as tested by the TMT, verbal delayed re-
call was not associated with WMH load in either group,
and it showed greater impairment in carriers of the
APOE ε4 allele. Furthermore, delayed recall performance
in the group of ε4 carriers correlated with hippocampal
volume, which, in turn, exhibited a trend toward more
pronounced atrophy. The detection of reduced episodic
memory performance and hippocampal volume in APOE
ε4 carriers compared with non-carriers, which corresponds



Statistical comparison:            E4 non-carriers > carriers

z=18

z=3 z=11

z=23

T
530 1 2 4

APOE

Figure 2 Voxel-based statistical group comparison (non-carriers >
carriers). In non-carriers of the apolipoprotein (APOE) ε4 allele, lesions
were more likely to occur at the horns of the lateral ventricles and
the splenium of the corpus callosum than they were in carriers at a
whole-brain permutation-based threshold of P < 0.05 (z = 3.0).

Morgen et al. Alzheimer's Research & Therapy  (2015) 7:27 Page 8 of 14
to a pattern recently reported in a largely overlapping
sample of patients with AD [55], confirms a phenotype
previously identified in AD [43]. In contrast, non-
carriers of the APOE ε4 allele with AD have been found
to exhibit more pronounced executive dysfunction and
more frontoparietal atrophy [43]. Of note, more accen-
tuated executive deficits and frontoparietal atrophy
were also recently reported in subjects with MCI before
conversion to Alzheimer’s dementia [44], and 16 of
these subjects overlapped with the sample of 201 pa-
tients with AD (8%) in our present study. Though more
accentuated executive deficits were not apparent in the
current group of non-carriers, possibly because
Table 4 Regional differences in brain volume between
apolipoprotein E ε4 carriers and non-carriersa

Location MNI coordinates z-value Voxel-level FWE-
corrected P-value
within ROIb

x y z

Carriers > non-carriers

Right hippocampus 30 −33 −5 2.65 0.07

Non-carriers > carriers

Right superior/
middle frontal gyrus

30 14 37 3.34 0.09

aMNI, Montreal Neurological Institute; ROI, Region of interest. bVoxel-level
family-wise error (FWE)–corrected threshold of P < 0.05.
performance on the easier version of the TMT A was
evaluated with limited sensitivity to executive deficits,
a trend toward reduced prefrontal GM volume oc-
curred, in accord with a previously established struc-
tural phenotype [43,44].
The compatibility of APOE-dependent effects on GM

volume detected in this study with previous findings in
patients with AD with established CSF amyloid path-
ology [43] suggests that the sample of patients in our
present study was representative of the AD population.
In the absence of CSF or positron emission tomography
(PET) data on amyloid pathology, the restriction to pa-
tients without strategic lesions or high volume of WMHs
(>10 cm3; that is, Fazekas grade 3 (see Methods section))
helped exclude patients with vascular dementia in our
sample, though it is still conceivable that some patients
without AD pathology were included (see Limitations
subsection below).

Mechanisms of tissue damage
Carriers of the ε4 allele exhibited lower WMH volume
than non-carriers, but they also showed a trend toward
more prominent hippocampal atrophy, which is an early
focus of AD pathology [56]. ApoE functions as a trans-
port protein for lipids and contributes to the mainten-
ance and repair of cell membranes, but the ε4 isoform
increases the propensity of Aβ as well as neurofibrillary
tangles to be deposited in the brain and reduces Aβ
efflux [57,58]. Selective hippocampal vulnerability in AD
has been related to its cellular architecture, specifically
to synaptic subtype (for example, see [59,60]). Moreover,
the hippocampus is part of the so-called default network
and thus exhibits a high resting-state metabolism, which
promotes the deposition of Aβ [61,62]. In ε4 carriers
without cognitive deficits or with MCI, a compensatory
increase in hippocampal neuronal activity and an abnor-
mally high metabolism in this region have been detected,
the latter of which is likely to accelerate Aβ aggregation
[61,62]. Thus, the APOE ε4 allele may predispose indi-
viduals toward the mediotemporally focused pattern of
neurodegeneration typically associated with AD [56].
Conversely, the high WMH load in non-carriers of the

ε4 allele may mirror a pathogenetic mechanism neces-
sary to develop AD in the absence of APOE ε4-mediated
neurodegeneration. This may be a cumulative effect of
atherosclerosis induced by non-specific vascular risk
factors and also of AD pathology, but it is also likely a
reflection of convergent processes [2-4,63-65]. Evidence
has accumulated that a range of factors, such as blood
pressure, lipid metabolism and insulin sensitivity, influ-
ence levels of amyloid and neurofibrillary deposition and
may affect endothelial integrity [63,65-68].
Arterial hypertension, specifically increased diastolic

blood pressure, was associated with WMH volume in



Figure 3 Gray matter volume effects. (A) and (B) Apolipoprotein (APOE)-dependent gray matter (GM) distribution. Carriers exhibited a tendency
toward more hippocampal atrophy (A), whereas non-carriers showed a tendency toward more prefrontal volume loss (B). (C), (D) and (E) Correlations
between GM volume and cognitive performance. In carriers of the APOE ε4 allele, performance on the Trail Making Test part A (TMT-A) correlated with
GM volume in the right frontal region as well as the bilateral temporal and parietal regions (C). Correlations with TMT-A performance in non-carriers
occurred in the bilateral temporal and parietal regions (D). Carriers exhibited a correlation between delayed verbal recall performance and
hippocampal volume (E), whereas recall performance in non-carriers did not correlate with GM volume. The results are presented at P < 0.005
for whole brain, uncorrected.

Morgen et al. Alzheimer's Research & Therapy  (2015) 7:27 Page 9 of 14



Table 5 Correlations between gray matter volume and Trail Making Test A performance in APOE ε4 carriers and
non-carriers

Location MNI coordinates z-value Cluster-level FWE-corrected P-value

x y z

TMT A

Carriers

Right inferior frontal gyrus 38 22 16 4.28 0.01

Right precuneus 14 −51 25 3.48 0.01

Right supramarginal gyrus 57 −34 33 4.47 0.001

Left supramarginal gyrus −30 −46 37 4.37 0.01

Right superior temporal gyrus 46 −27 15 4.15 0.001

Right middle temporal gyrus 51 −61 −9 3.98 0.01

Left middle temporal gyrus 58 −19 −8 3.47 0.01

Right inferior temporal gyrus 40 −45 −27 4.54 0.001

Left inferior temporal gyrus −34 −54 −9 4.02 0.01

Right fusiform gyrus 32 −61 −5 4.13 0.001

Left fusiform gyrus −32 −52 −9 4.07 0.01

Non-carriers

Right precuneus 8 −48 43 4.31 0.01

Right supramarginal gyrus 39 −34 37 3.36 0.01

Left supramarginal gyrus −44 −31 24 3.53 0.05

Right angular gyrus 54 −54 33 3.89 0.05

Left angular gyrus −42 −42 42 3.65 0.05

Right superior parietal lobule 39 −58 54 3.42 0.05

Right inferior parietal lobule 44 −52 48 3.39 0.05

Right middle temporal gyrus 54 −55 24 3.45 0.05

Left middle temporal gyrus −44 −45 12 3.98 0.05

Delayed verbal recall

Carriers

Right hippocampus 36 −30 −8 2.65 0.08b

Left hippocampus −33 −34 −8 3.49 0.01b

Non-carriers

– – – – –
aMNI, Montreal Neurological Institute. bVoxel-level family-wise error (FWE)–corrected threshold P-values within region of interest.
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our sample. Thus, it is conceivable that WMHs in the
present study indicate synergistic adverse effects of
elevated diastolic blood pressure and amyloid-mediated
endothelial damage. Amyloid is known to accumulate
in blood vessels, as well as in the brain parenchyma,
and thus likely to confer an increased endothelial
vulnerability to hypertension [7]. Conversely, amyloid
deposition may compound endothelial damage induced
by hypertension [66].
WMH may also, at least in part, indicate an additional

factor that lowers the threshold for Alzheimer’s demen-
tia [17]. In accordance with this notion, a recent investi-
gation showed an association of WMHs with several
vascular risk factors, such as high blood pressure, but
not with CSF levels of Aβ42, in patients with probable
AD. In contrast, WMH microbleeds visualized on T2*-
weighted MRI scans were linked to arterial hypertension
as well as to low levels of CSF Aβ1–42 and homozygosity
for the APOE ε4 allele [63]. Moreover, WMH and amyl-
oid positivity based on PET data have been shown to
contribute independently to AD risk [17].
Interestingly, subjects without dementia who have the

APOE ε4 allele have been shown to exhibit increased
WMH volume [69,70]. In contrast, ε4 non-carriers had
greater WMH accumulation in our present sample of
patients with AD. A possible explanation for this appar-
ent disparity may be that ε4 carriers are generally at
increased risk of developing amyloid-induced endothelial
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damage, but that AD in the absence of the ε4 risk allele
is, to a considerable degree, based on substantial and
presumably multifactorial WM injury.
In ε4 non-carriers, a greater complexity or a different

emphasis of factors may confer vulnerability to micro-
vascular damage [71,72]. Recently, genetic variants
conferring risk of WMHs in subjects without dementia,
stroke or clinical cardiovascular disease have become
a focus of genome-wide association studies. A meta-
analysis revealed six novel single-nucleotide polymor-
phisms in one locus on chromosome 17q25 related to
WMH burden [72]. In patients with AD, genetic vari-
ants conveying risk of WMHs may interact with AD
susceptibility genes.
Lesion distribution showed periventricular foci in

carriers and non-carriers of the ε4 allele, again suggest-
ing a convergence of pathological pathways. Ischemic
lesions tend to develop in periventricular watershed
areas perfused by subependymal arteries with few anas-
tomoses, as well as in subcortical regions, indicating
fiber loss secondary to ischemia [7,71]. WM areas espe-
cially vulnerable to amyloid deposition appear to be in
the posterior periventricular region, which is also sus-
ceptible to confluent ischemic lesions [7]. The effect
seen in the corpus callosum is less compatible with
ischemic damage and/or amyloid-mediated vascular in-
jury and may in part reflect low interindividual variabil-
ity and thus high statistical power compared with other
locations (see the study limitations described below).

Limitations
Because data were gathered at several sites, it cannot be
excluded that differences in MRI hardware and protocols
lowered the sensitivity for volume effects. To control for
center effects, center affiliations were used as covariates.
However, some brain areas, particularly along the mid-
sagittal plane, may be especially sensitive to scanning
parameters [73]. Voxel-based lesion symptom mapping
has the general limitation that a minimum number of
voxels in a specific location are required to perform
robust group analyses. Individual variability in lesion
location, and thus in statistical power, are likely to vary
regionally [42,74]. Thus, effects in peripheral locations
may have been missed because lesions showed insuffi-
cient overlap.
Furthermore, the participants of this cohort were rela-

tively homogeneous, which may limit the generalizability
of the results. Because the diagnosis of AD was based on
clinical criteria in the present study, as opposed to CSF-
or PET-based evidence, the restriction to patients with-
out strategic vascular lesions or severe WMH volume
was important to help exclude patients with vascular
dementia. Nevertheless, it cannot be excluded that there
were more subjects with vascular dementia in the group
of APOE ε4 non-carriers than among carriers, also con-
sidering that mean diastolic blood pressure and fre-
quency of antihypertensive medication use were slightly,
though not significantly, higher among ε4 non-carriers
(Table 1 and Additional file 2: Table S2). To limit the
impact of vascular risk factors on the observed group
difference in WMH volume, we controlled for blood
pressure, diabetes and coronary heart disease, as well as
antihypertensive and cholesterol-lowering treatment,
and we found that the APOE-dependent effect on WMH
volume persisted.
Recently, altered CNS insulin signaling associated

with reduced cerebral insulin receptor density has
emerged as a pathogenic factor in AD that may be
modulated by the APOE genotype [75,76]. In the
present study, data on CNS and peripheral insulin
sensitivity were not available. Diabetes, which only
affected a small number of patients, was not linked to
increased WMH volume or to APOE genotype. Con-
sidering that peripheral insulin resistance has been
reported to correlate with WMH load in subjects
without diabetes [77] and that the impact of CNS insu-
lin resistance on WM integrity is not known, mea-
ningful associations between insulin resistance, WM
damage and APOE genotype may have remained
undetected here and should be addressed in future
investigations.

Conclusions
Our finding of an APOE-dependent effect on WMH
load suggests a more prevalent and functionally rele-
vant contribution of WMHs to cognitive impairment
in AD among APOE ε4 non-carriers. Thus, an increased
prevalence of WMHs may reflect a complementary
structural pathway of progression to dementia. The ob-
served effects of APOE risk allele as well as hyperten-
sion on WMH volume emphasize the importance of
attending to microvascular pathology in AD, which so
far has frequently been an exclusion criterion in AD
studies. This may also help to refocus clinical efforts on
cerebrovascular damage in AD. To further elucidate the
role of WMHs in AD, future studies will need to include
CSF or PET markers of AD pathology, peripheral and
CNS measures of insulin sensitivity, and additional
genetic risk variants. Because antihypertensive drugs
may have differential effects on the incidence and pro-
gression of AD via their impact on the metabolism
of Aβ in the brain [78,79], type of antihypertensive
medication needs to be considered in future studies.
Longitudinal investigations are necessary to indicate the
dynamics of WM damage in AD. Ultimately, a more
profound understanding of heterogeneous disease mecha-
nisms in AD may facilitate more targeted therapeutic
approaches.
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Additional files

Additional file 1: Table S1. Characteristics of patients excluded
because of WMH volume >10 cm3 (n = 18).

Additional file 2: Table S2. Characteristics of patients including
subjects with severe WMH volume (n = 201).

Additional file 3: Table S3. Effects on total WMH volume (analysis of
variance model with APOE ε4 status (ε4 non-carrier versus carrier) as factor
of interest) including subjects with WMH volume >10 cm3.

Additional file 4: Table S4. Effects on total WMH volume (analysis of
variance model with dose of APOE ε4 alleles as factor of interest).
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