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Abstract 
The ecological importance and diversity of pico/nano-planktonic algae remains poorly 

studied in marine waters, in part because many are tiny and without distinctive morphological 

features. Amongst green algae, Mamiellophyceae such as Micromonas or Bathycoccus are 

dominant in coastal waters while prasinophytes clade VII, yet not formerly described, appear 
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to be major players in open oceanic waters. The pigment composition of 14 strains 

representative of different sub-clades of clade VII was analyzed using a method that 

improves the separation of loroxanthin and neoxanthin. All the prasinophytes clade VII 

analyzed here showed a pigment composition similar to that previously reported for RCC287 

corresponding to pigment group prasino-2A. However we detected in addition astaxanthin for 

which it is the first report in prasinophytes. Among the strains analyzed the pigment signature 

are qualitatively similar within sub-clades A and B.  In contrast, RCC3402 from sub-clade C 

(Picocystis) lacks loroxanthin, astaxanthin and antheraxanthin, but contains alloxanthin, 

diatoxanthin and monadoxanthin, that are usually found in diatoms or cryptophytes. For sub-

clades A and B, loroxanthin was lowest at highest light irradiance suggesting a light–

harvesting role of this pigment in clade VII as in Tetraselmis.   

 

Keywords : phytoplankton, picoplankton, prasinophytes, pigments, HPLC 

 

The paraphyletic group of prasinophytes is an assemblage of free-living unicellular 

microalgae present in both marine and freshwater habitats (Leliaert et al. 2012). Molecular 

phylogenetic, ultra-structural, and biochemical approaches have helped taxonomists to re-

organize gradually the group into new classes and clades (Guillou et al. 2004, Marin and 

Melkonian 2010, Subirana et al. 2013, Lemieux et al. 2014a). Currently the prasinophytes are 

divided into nine groups known as clades I to IX, based on phylogenetic analyses of the 

nuclear 18S (nuclear-encoded small subunit rRNA) gene (Fawley et al. 2000, Guillou et al. 

2004, Viprey et al. 2008). These clades may correspond to true classes, or be composed of a 

small number of species or of environmental sequences only. For example, 

Chlorodendrophyceae (Massjuk 2006) known previously as prasinophytes clade IV was 
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recently raised to the class level and added to the “core of chlorophytes” (Fucikova et al. 

2014). Clade V corresponds to the order Pycnococaceae with two major species, 

Pseudoscourfieldia marina and Pycnococcus provasolii which are probably two forms of a 

single life cycle (Fawley et al. 1999, Guillou et al. 2004).  Clades VIII and IX are composed 

entirely by environmental sequences without representatives in culture (Viprey et al. 2008). 

Clade II, previously corresponding to the order Mamiellales, was raised recently to the class 

level as Mamiellophyceae (Marin and Melkonian 2010) and contains three important genera 

of marine pico-phytoplankton: Micromonas (Butcher 1952),  Bathycoccus (Eikrem and 

Throndsen 1990) and Ostreococcus (Chrétiennot-Dinet et al. 1995). 

In coastal waters, Mamiellophyceae appear largely dominant, especially within the 

pico-plankton, with the genus Micromonas making the highest contribution and followed to a 

lesser extent by Bathycoccus (Throndsen, J. and Kristiansen 1991, Not et al. 2004, Collado-

Fabri et al. 2011, Balzano et al. 2012). In contrast in the open ocean, another group of 

prasinophytes, clade VII, with cell size in the 3 to 5 µm range, has been found to make an 

important contribution to the pico-plankton community in regions such as the Equatorial 

Pacific and Mediterranean Sea (Moon-van der Staay et al. 2000, Viprey et al. 2008, Shi et al. 

2009). The distribution of clade VII in typically oceanic mesotrophic waters makes this an 

interesting group. Prasinophyte clade VII contains several cultured strains mostly from 

tropical and sub-tropical waters but also from temperate regions. Although it has not been 

described formerly yet. Guillou et al.  (2004) divided this group into three well-supported 

sub-clades, A, B and C, the latter being formed by Picocystis salinarum, a small species 

found in saline lakes (Lewin et al. 2000, Roesler et al. 2002, Krienitz et al. 2012).   

Traditionally, pigment signature has been used to determine the taxonomy of algae 

groups present in the water column (Jeffrey et al. 2011). This approach has been largely 

superseded by molecular approaches (Liu et al. 2009) but pigments remain an important 
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phenotypic characteristic that allowed to point out the importance of green algae in specific 

regions of Pacific Ocean, Mediterranean Sea or Arctic Ocean  (Obayashi and Tanoue 2002, 

Miki et al. 2008, Gutiérrez-Rodríguez et al. 2010, Coupel et al. 2014). The  study of pigments 

in different types of prasinophytes has revealed a diversity of photosynthetic signatures in 

this group. Prasinophytes can be divided into three major groups based on their carotenoid 

composition (Egeland et al. 1997, Garrido et al. 2009). Group 1 contains the basic set of 

carotenoids present in Chlorophyceae: neoxanthin, violaxanthin, lutein, zeaxanthin, 

antheraxanthin and β-β-carotene. Group 2 consists of the basic set of carotenoids plus 

loroxanthin (2A) and siphonaxanthin (2B). Group 3 contains prasinoxanthin (3A) and 

uriolide, micromonal, micromonol and dihydrolutein (3B) in addition to the main pigments 

found in group 1 (Jeffrey et al. 2011). 

Within clade VII, only three strains have been analyzed until now: two isolates of 

Picocystis salinarum (subclade C) from saline lakes (Lewin et al. 2000, Roesler et al. 2002) 

and the marine strain RCC287 (subclade A; Latasa et al. 2004). A large number of clade VII 

strains are available from the Roscoff Culture Collection (http://roscoff-culture-

collection.org/) originating from a range of environment. The aim of this study was to 

determine the phenotypic characteristics of this important group of marine green algae by 

analyzing the pigment composition of fourteen strains belonging to the three sub-clades (A, 

B, C) of prasinophytes clade VII isolated from a range of oceanic location and depths (Table 

1). We also assessed the effect of three light irradiances on pigment composition for a subset 

of these strains. 

Twelve strains belonging to clade VII (Table 1) were grown at 22oC in in 25 cm2 

culture flasks with 50 ml of K seawater medium (Keller et al. 1987) under 140 µmol photons 

. m-2 . s-1 in continuous light. Two other strains, added later, were grown under the same 

conditions except for light (100 µmol photons . m-2 . s-1 in 12:12 Light:Dark cycle). A subset 
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of nine strains was also grown at two other light levels (14 and 65 µmol photons . m-2 . s-1). 

All strains were acclimated to the light conditions during at least five generations. Prior to 

sample collection, cell concentration was determined by flow cytometry using a Becton 

Dickinson Accuri C6.  Approximatively 50 ml of cultures were collected in late exponential 

or early stationary phase by filtration onto glass fiber GF/F filters (Whatman, Maidstone, 

UK) without vacuum. Total time for filtration did not exceed 10 min and filters were 

removed as soon as the passage of liquid trough it was undetectable. Total volume filtered 

was recorded. Filters were protected from light at all processing stages, immediately frozen in 

liquid nitrogen and stored at -80oC. Pigments were analyzed within one month. Frozen filters 

were extracted with 3 mL of 90% acetone in screw cap glass tubes with polytetra-

fluoroethylene (PTFE) lined caps, placed in an ice-water bath. After 15 min, filters were 

homogenized using a stainless steel spatula for filter grinding. Tubes were placed in an 

ultrasonic bath with water and ice for 5 min. The slurries were then centrifuged 5 minutes at 

4.500 r.p.m. and supernatants filtered through 13 mm diameter polypropylene syringe filters 

(MS PTFE, 0.22 μm pore size) to remove cell and filter debris. Before injection 1 mL of each 

sample extract was added with 0.4 mL of Milli-Q water to avoid peak distortion.  Pigments 

extracted from clade VII strains were analyzed using a modification of Zapata et al. (2000) 

method, described by Garrido et al. (2009) to improve the separation of loroxanthin and 

neoxanthin (Table S1 in the Supporting Information).  Pigment extracts of RCC3402 

(Picocystis) were also analyzed employing a polymeric octadecyl silica column as described 

by Garrido and Zapata (1997). All graphs and analyses were performed with the R software 

using the ggplot2 and FactoMineR libraries (R Development Core Team 2013). 

Intracellular chlorophyll (Chl) a content ranged from 4 to 26 fg per cell in most 

strains except for RCC996 (VIIA) and RCC3402 (Picocystis - clade VIIC) for which it was 

much higher (Table 2). This range agreed with values previously determined for marine 
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microalgae in the same size range (Simon et al. 1994). More recently, in a field survey, 

Giovagnetti et al (2013) found 20-60 fg per cell in nanophytoplankton (>3 μm). Brunet et al 

(2006) estimated a range of 17-168 fg per cell in picoeukaryotes from the DCM and finally, 

DuRand et al. (2002) as well as Not et al. (2004) reported 25 fg per cell in the picoplanktonic 

species Micromonas pusilla. 

All the prasinophytes clade VIIA and B analyzed here showed a very similar pigment 

composition (Table 2).  It did not seem to change drastically between sub-clades A and B, nor 

with the depth of isolation (Fig. 1).  This composition is similar to that reported for RCC287 

by Latasa et al. (2004) corresponding to pigment group prasino-2A. We did not observe 

strong differences (Fig. 1; Table 2) with the data of Latasa et al. (2004): in particular the 

ratios obtained for zeaxanthin and lutein were very similar in both studies despite the slight 

difference in light levels (100 vs. 140 µmol photons . m-2 . s-1 in our study): zeaxanthin, 0.042 

(w/w) versus 0.043 (w/w) and lutein, 0.382 (w/w) versus 0.363 (w/w). However their study 

used a less resolutive method and did not report the presence of loroxanthin and astaxanthin 

in RCC287. For loroxanthin this is probably due to the co-elution of this pigment with 

neoxanthin in the analytic method employed by these authors.  

In our study, only RCC1124 and RCC1871 (both from sub-clade A) did not contain 

loroxanthin within strains belonging sub-clades A and B (Table 2).  Violaxanthin and lutein 

were the most abundant carotenoids for sub-clades A and B. Astaxanthin came as third for 

most other A and B strains except for RCC1871 (sub-clade A) and RCC2339 (sub-clade B) 

for which it was neoxanthin and β-β-carotene, respectively.  Picocystis (RCC3402, clade 

VIIC) had a clearly distinct carotenoid profile compared to sub-clades A and B. It did not 

contain loroxanthin, astaxanthin and antheraxanthin but instead diatoxanthin, alloxanthin and 

monadoxanthin (Fig. 1; Table 2). For this strain, β-β-carotene, monadoxanthin and 

diatoxanthin were the most abundant carotenoids, respectively (Fig. 1; Table 2) and the ratio 
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of accessory pigments to Chl a was much lower than in clades VIIA and B (Fig. 1). The 

presence in Picocystis of these pigments usually found in cryptophytes or diatoms (Takaichi 

2011), that are parts of the so-called red lineage (by opposition to the green lineage to which 

clade VII belongs, Falkowski et al. 2004) was also reported by Lewin et al. (2000) and 

Roesler et al. (2002) as well as found in Coccomyxa, a green alga belonging to the 

Chlorophyceae (Crespo et al. 2009). 

We analyzed the influence of irradiance (14, 65 and 140 µmol photons . m-2 . s-1) on 

pigment composition of nine strains of prasinophytes VIIA and B (Fig. 2; Table S2 in the 

Supporting Information).  Accessory chlorophylls and carotenoids involved in light 

harvesting tend to increase relative to Chl a at low light, while photoprotective carotenoids 

increase at high light (Schlüter et al. 2000, Henriksen et al. 2002, Brunet et al. 2011a). In our 

study, Chl b ratios increased slightly at low light, as expected, except for RCC3376 that 

showed a very slightly lower ratio at low light than at high light (0.78 vs. 0.81; Fig. 2; Table 

S2). A similar slight decrease was also observed by Garrido et al. (2009) for the green alga 

Tetraselmis suecica. 

The increase at low light of neoxanthin, β-ε carotene and loroxanthin  points to a light 

harvesting role for these pigments in most of the strains (Fig. 2; Table S2). The changes can 

be subtle, as in the case of neoxanthin or drastic, as observed for loroxanthin (Fig. 2). 

Neoxanthin has been found to be associated with light harvesting complexes in the 

Mamiellophyceae Mantoniella squamata (Wilhelm and Lenarz-Weiler 1987). A major light 

harvesting role could be suggested for loroxanthin in clades VII A and B in agreement with 

what observed Garrido et al. (2009) in another Chlorophyta Tetraselmis. Interestingly, two 

strains lacking loroxanthin (RCC1124 and RCC1871) have been isolated from temperate 

North Atlantic Ocean waters, in contrast to the other strains from subclade A which originate 

from tropical waters (Table 1). 
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The increase of astaxanthin (from 2 to 4-fold depending on the strains) with light 

intensity suggests that this carotenoid has a photoprotective role (Fig. 2), as previously 

demonstrated in the Chlorophyceae Haematococcus pluvialis (Wang et al. 2003, Gao et al. 

2012). Among all strains, RCC3374 showed the most impressive accumulation of astaxanthin 

which contributed up to 42% of the total carotenoid pool under high light conditions (Fig. 2). 

In comparison, H. pluvialis can accumulate 86 - 90% of astaxanthin in the total carotenoid 

pool after sixteen days cultures of under stress conditions (Sarada et al. 2002).  

The photoprotective  role attributed to lutein (Jahns and Holzwarth 2012) seems to 

happen also in these species. Its contribution to total carotenoids increased sharply from low 

to medium light and stabilized at the highest irradiance (Fig. 2; Table S2). Such increase 

under high light conditions has been previously reported by Böhme et al. (2002) in the 

Mamiellophyceae M. squamata. These authors suggested that lutein played an important role 

as intermediate of biosynthesis for light harvesting pigments after light shifts from HL to LL. 

This role was coherent with its loose binding to the LHC apoprotein, also observed for the 

violaxanthin cycle (VAZ) carotenoids. However, lutein and loroxanthin are xanthophylls 

derived from β-ε carotene, and both have also been suggested also to take part in 

photoprotective mechanisms (non-photochemical quenching, NPQ) to prevent photo-

oxidative damage in high light conditions in the green alga Chlamydomonas reinhardtii 

(Niyogi et al. 1997).  

As for lutein, the content of the photoprotective xanthophyll cycle involving 

violaxanthin, antheraxanthin and zeaxanthin (VAZ cycle) relative to Chl a increased from 

low to medium light and then stabilized (Fig. 2; Table S2). However the evolution of 

individual pigments differed among strains.  For example, zeaxanthin did not change much in 

RCC287 and RCC857 while it increased several-fold in other strains (e.g., RCC719, Fig. 2).  
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 A relationship between strain origin and pigment composition  is unlikely 

according to a Principal Component Analysis (PCA) based on pigments to Chl a ratios (Fig. 

3). The first two components explained more than 50% (dimension 1 and 2, 33.1 % and 20.4 

%, respectively) of the variance. Pigments contributing positively to dimension 1 included 

some which may have a photoprotective role (lutein, zeaxanthin, antheraxanthin and 

astaxanthin) while pigments suggested to be involved in light harvesting, such as loroxanthin 

contributed negatively to this axis. Pigments with moderate response to light, such as Chl b  

and neoxanthin, contributed to dimension 2.  Strains distributed along dimension 1 according 

to the light treatment, irrespectively of their sub-clade, latitude or depth of isolation (surface 

vs. DCM). The use of HPLC data to assess the role of individual pigments as light-harvesting 

or photoprotective must be considered with caution. Photoacclimation processes operate at 

different scales (from seconds to several days) and pigment changes are influenced by 

multiple factors (genetics, ecology, physiology). Despite all this, some common patterns can 

be found when pigment data are given in terms of their ratios to Chl a. Light-harvesting 

pigments and Chl a content increase under low irradiance, and tend to co-vary under variable 

light conditions. In turn, photoprotective pigments are synthesized under light stress and 

increase their ratios to Chl a in higher light irradiance (Brunet et al. 2011b).  The behavior of 

pigments analyzed in clade VII resembled that expected for light-harvesting or 

photoprotective ones, but without a more complete dataset (biochemistry, photosynthetic 

dynamics, etc.) this cannot be stated unambiguously. The discovery of loroxanthin (a putative 

light harvesting pigment) and astaxanthin (with a suggested photoprotective role) in 

prasinophytes clades VIIA and B prompts the need to reexamine the pigment composition of 

other members of this diverse and ancient group using improved analytical protocols.  
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Recent phylogenetic results pointed clade VII A/B as a sister group of the core of 

Chlorophyta (Guillou et al. 2004, Leliaert et al. 2012, Lemieux et al. 2014a, 2014b). The 

presence of astaxanthin as in core Chlorophyta while it is absent in other prasinophytes may 

reflect another common feature between clade VII and core Chlorophyta.  Moreover while 

Guillou et al. (2004) included Picocystis into clade VII based on the phylogenetic analysis of 

18S rRNA gene, the recent analysis of chloroplast genomes (Lemieux et al. 2014a) has 

shown widely divergent traits between Picocystis and sub-clade VIIA.  The divergent 

carotenoid composition of Picocystis (absence of loroxanthin, astaxanthin, and 

antheraxanthin, and confirmation of the presence of red lineage pigments such as 

diatoxanthin and monadoxanthin) reinforce these phylogenetic analyses and point out the 

interest of pigments as phenotypic markers.  
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List of tables 

Table 1.  Characteristics of the strains used in this study.  RCC refers to the Roscoff 

Culture Collection (http://www.roscoff-culture-collection.org/). 

RCC 
Sub-
clade Strain name Other names

Ocean 
origin Region origin Latitude

Depth  
Isolation 

(m)
15 A CCMP 1205 NA NA NA NA 

287 A NOUM15 NOUM97015 
Pacific 
Ocean West Equatorial Pacific 0° 120 

719 A 
IndianOcean_45-

8 
Indian 
Ocean East Equatorial Indian 12°S 76 

856 A Biosope_42 A2 CCMP3325
Pacific 
Ocean Marquesas islands 8°S 10

857 A Biosope_40 A2 
Pacific 
Ocean Marquesas islands 8°S 10 

996 A Biosope_46 B4S 
Pacific 
Ocean South East Pacific 9°S 100 

998 A Biosope_46 C3S NIES2676, CCMP3334 
Pacific 
Ocean South East Pacific 9°S 100 

1124 A PAP_AD PAP_Ludwig_AI 
Atlantic 
Ocean North Atlantic, PAP site 49°N 10 

1871 A RA090205-09 
Atlantic 
Ocean 

North Atlantic, English 
Channel 49°N 0 

3374 A CCMP 2152 A7831 
Pacific 
Ocean Hawaii 23°N NA 

3376 A CCMP 2113 A9533 
Pacific 
Ocean Central Equatorial Pacific 9°N 85 

2337 B JST MH335 MH335, NIES2756 Pacific 
Ocean Iki Island 34°N 0 

2339 B JST MH340 MH340, NIES2758, 
CCMP3360

Pacific 
Ocean Iki Island 34°N 0

3402 C CCMP 1897 SFBB 
Pacific 
Ocean San Francisco Bay 38°N 0 

Remark  : Ordered by clade and then RCC number 
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Table 2. Concentration of Chl a  per cell, ratios of pigment to Chl a concentration and 
contribution to total carotenoids (in italics) for fourteen strains of prasinophytes clade VII 
(Chlorophyta) grown at 140 µE.m-2.s-1. 

Strain
sub - 
clade Light fg Chl a Chl b Chlide a Chlide b

Sum 
of 

carotenoids
µE.m-2.s-1 /cell /Chl a /Chl a /Chl a /Chl a /Chl a % /Chl a % /Chl a % /Chl a % /Chl a % /Chl a % /Chl a % /Chl a % /Chl a % /Chl a %

RCC15  A 140 20.34 0.901 0.066 0.018 1.321 0.058 4.37 0.003 0.20 0.327 24.77 0.165 12.47 0.043 3.25 0.103 7.79 0.376 28.45 0.093 7.03 0.154 11.66 0 0.00
RCC287  A 140 4.99 0.986 0.106 0 1.533 0.024 1.59 0.167 10.91 0.572 37.29 0.210 13.68 0.024 1.56 0.043 2.79 0.363 23.68 0.079 5.17 0.051 3.32 0 0.00
RCC287 a  A 100 Nd 1.313 Nd Nd 0.759 Nd Nd 0.074 9.75 0.131 17.26 Nd Nd 0.051 6.72 0.042 5.53 0.382 50.33 0.053 6.98 0.026 3.43 0 0.00
RCC719  A 140 14.89 0.683 0.000 0 1.928 0.035 1.80 0.086 4.44 0.617 31.97 0.264 13.71 0.000 0.00 0.478 24.79 0.193 10.02 0.149 7.73 0.107 5.53 0 0.00
RCC856  A 140 23.37 0.860 0.000 0 2.077 0.113 5.42 0.079 3.79 0.291 14.02 0.570 27.44 0.042 2.02 0.310 14.94 0.461 22.20 0.136 6.53 0.075 3.63 0 0.00
RCC857  A 140 4.10 1.000 0.000 0 1.399 0.026 1.89 0.122 8.74 0.534 38.15 0.187 13.38 0.024 1.73 0.094 6.69 0.291 20.83 0.064 4.55 0.056 4.03 0 0.00
RCC996  A 140 51.57 0.931 0.074 0 1.259 0.043 3.39 0.095 7.52 0.119 9.46 0.191 15.17 0.039 3.06 0.245 19.45 0.364 28.88 0.074 5.85 0.091 7.21 0 0.00
RCC998  A 140 26.07 0.783 0.000 0 1.902 0.014 0.75 0.117 6.15 0.877 46.10 0.157 8.24 0.058 3.04 0.168 8.84 0.285 14.98 0.131 6.90 0.095 4.99 0 0.00
RCC1124  A 140 8.61 0.960 0.099 0 1.471 0 0.00 0.116 7.87 0.525 35.66 0.148 10.07 0.020 1.39 0.086 5.83 0.399 27.14 0.082 5.59 0.095 6.45 0 0.00
RCC1871 A 100 3.30 1.196 0.000 0 1.296 0 0.00 0.119 9.20 0.460 35.45 0.064 4.92 0.015 1.15 0.091 7.03 0.444 34.28 0.025 1.93 0.078 6.03 0 0.00
RCC3374  A 140 4.14 0.726 0.229 0 1.841 0.012 0.67 0.082 4.47 0.272 14.78 0.778 42.25 0.041 2.25 0.118 6.39 0.332 18.06 0.146 7.92 0.059 3.22 0 0.00
RCC3376  A 140 4.08 0.813 0.105 0 1.526 0.008 0.53 0.112 7.33 0.572 37.47 0.324 21.26 0.054 3.56 0.129 8.47 0.048 3.14 0.194 12.68 0.085 5.57 0 0.00
RCC2337 B 140 4.37 0.882 0.394 0.236 2.186 0.031 1.40 0.137 6.27 0.504 23.07 0.302 13.82 0.051 2.34 0.154 7.03 0.706 32.30 0.240 10.97 0.061 2.80 0 0.00
RCC2339 B 140 14.58 0.624 0.000 0 1.520 0.026 1.74 0.078 5.13 0.613 40.35 0.045 2.98 0.024 1.56 0.074 4.84 0.302 19.86 0.330 21.72 0.028 1.83 0 0.00
RCC3402 C 100 60.40 0.283 0.000 0 0.583 0 0.00 0.039 6.69 0.035 6.03 0 0.00 0.003 0.53 0.018 3.17 0.071 12.12 0.129 22.06 0.015 2.59 0.047 8.13

Nd: Not determined
aValues reported by  Latasa et al.  2004

Alloxanthin

Carotenoids 

Loroxanthin Neoxanthin Violaxanthin Astaxanthin Antheraxanthin Zeaxanthin Lutein a ββ - carotene βε - carotene

 

 

List of supplementary tables 

Table S1. Chromatographic retention times and spectral characteristics of the major 

pigments for strains of prasinophytes clade VII. 

Table S2. Ratios of pigment to Chl a concentration and contribution to total 

carotenoids (in italics) for nine strains of prasinophytes clade VII under three light intensities.   

 

List of Figures 

Figure 1.  A. Cumulative ratios of Chl b and five major carotenoids (lutein a, 

violaxanthin, zeaxanthin, astaxanthin, alloxanthin + monadoxanthin + diatoxanthin) to Chl a 

for 14 strains of prasinophytes clades VII at 140 or 100 µE.m-2.s-1 (see Table 2).  Strains are 

ordered by sub-clades (A, B, C) and depth of isolation (surface, deep chlorophyll maximum-

DCM). RCC287a correspond to the composition reported by Latasa et al. (2004) for this 

strain.  B. Same as A but with relative abundance of Chl b and five major carotenoids. 
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Figure 2. Change in pigment to Chl a ratios for Chl b and nine major carotenoids in 

nine strains of prasinophytes clade VII under three light intensities.  Solid lines correspond to 

sub-clade VIIA and dashed  lines to VIIB.  Open symbols correspond to surface strains, 

closed ones to DCM strains and grey to unknown depth of isolation. 

Figure 3.  Principal component analysis using the pigment to Chl a ratios as variables 

for the strains grown at 3 light levels (Table S2).  Top. Variables. Bottom. Samples.  Circles 

correspond to clade VIIA and triangles to clade VIIB.  Closed symbols correspond to low 

light, grey symbols to medium light and open symbols to high light. 
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