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Abstract. δ18O of atmospheric oxygen (δ18Oatm) under-

goes millennial-scale variations during the last glacial period,

and systematically increases during Heinrich stadials (HSs).

Changes in δ18Oatm combine variations in biospheric and wa-

ter cycle processes. The identification of the main driver of

the millennial variability in δ18Oatm is thus not straightfor-

ward. Here, we quantify the response of δ18Oatm to such

millennial events using a freshwater hosing simulation per-

formed under glacial boundary conditions. Our global ap-

proach takes into account the latest estimates of isotope frac-

tionation factor for respiratory and photosynthetic processes

and make use of atmospheric water isotope and vegetation

changes. Our modeling approach allows to reproduce the

main observed features of a HS in terms of climatic condi-

tions, vegetation distribution and δ18O of precipitation. We

use it to decipher the relative importance of the different

processes behind the observed changes in δ18Oatm. The re-

sults highlight the dominant role of hydrology on δ18Oatm

and confirm that δ18Oatm can be seen as a global integrator

of hydrological changes over vegetated areas.

1 Introduction

Oxygen is one of the most abundant species in atmospheric

air. As oxygen is produced by photosynthesis and consumed

by respiration, a record of oxygen concentration in the past

should help us to constrain these two major biospheric fluxes

on Earth and potentially provide information on their link

with the carbon cycle.

Changes in the O2 /N2 ratio can be measured in air

trapped in ice cores back to 800 kyr (Bender, 2002; Kawa-

mura et al., 2007; Landais et al., 2012; Lemieux-Dudon et al.,

2015). Unfortunately the O2 /N2 ratio in ice cores does not

provide a direct information on the true atmospheric varia-

tions because it is affected by permeation through the ice lat-

tice during bubble formation at pore close-off, roughly 100 m

below the ice sheet surface, and by gas loss during ice core

storage. These effects have less impact on the isotopic com-

position of oxygen. These isotopic compositions have thus

been explored as possible constraints on biospheric produc-

tivity (Luz et al., 1999).

When dealing with isotopes, it is standard to use the iso-

tope ratio, R, defined as the fraction of the abundance of

the rare isotope over the dominant one in a substance. Since

changes in isotope ratios through natural processes are very

small, they are expressed in relation to a standard (recent air

and Vienna Standard Mean Ocean Water (VSMOW) being
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used for O2 and H2O, respectively) using the δ notation,

δ18O=
18Rsample

18Rstandard

− 1. (1)

δ18O and δ17O of atmospheric oxygen have been measured

for the period of the past 800 kyr with a mean resolution

of about 1500 years (e.g., Landais et al., 2010, and refer-

ences therein; Blunier et al., 2012). As shown by Bender

et al. (1994), δ18O of atmospheric oxygen, noted δ18Oatm

hereafter, cannot easily be related to biospheric productivity

through photosynthesis and respiration fluxes. δ18Oatm varia-

tions actually reflect for a large part the isotopic composition

of the meteoric water. The latter is transmitted to the plant

through its roots and stems to the leaves, where photosynthe-

sis produces oxygen with an isotopic composition close to

the isotopic composition in leaf water. Respiration modifies

the isotopic composition of atmospheric oxygen in a com-

plex way. While the processes consuming oxygen enrich at-

mospheric oxygen through a preferential consumption of the

lightest molecules, individual biological pathways are asso-

ciated with a wide range of oxygen fractionations (Helman

et al., 2005).

Based on fractionation factors available at the time, Ben-

der et al. (1994) established that the relative proportion of

oceanic vs. terrestrial biospheric productivities together with

the difference in isotope fractionation over land and ocean

were driving the δ18Oatm budget. Several studies have built

on this idea and interpret the δ18Oatm variations mainly as

variations in the oceanic vs. terrestrial biospheric productiv-

ities (Hoffmann et al., 2004; Ciais et al., 2012). However,

recent measurements have revealed that, overall, fractiona-

tion associated with oceanic productivity is very similar to

its terrestrial counterpart (Hendricks et al., 2004; Eisenstadt

et al., 2010), questioning the interpretation of δ18Oatm as an

indicator of the relative proportion of oceanic vs. terrestrial

biosphere productivity (Luz and Barkan, 2011b).

Despite the complex interpretation of δ18Oatm, several ro-

bust features have already been observed that highlight the

potential of these measurements. At the orbital scale, δ18Oatm

is showing clear variations at a 23 kyr periodicity (Dreyfus

et al., 2007). This strong link with precession is probably re-

lated to the variations in the hydrological cycle at low lati-

tudes (Bender et al., 1994). Indeed, variations related to the

monsoon regime strongly imprint the isotopic composition

of meteoric water as observed in speleothem records (e.g.,

Wang et al., 2008). They are easily transmitted to the iso-

topic composition of atmospheric oxygen because the major

part of the biospheric productivity, and hence photosynthesis,

is occurring in the tropics and subtropics.

At the millennial scale, it has recently been shown that

δ18Oatm is responding to the abrupt climate changes of the

last glacial period (Landais et al., 2007a; Severinghaus et al.,

2009). Millennial-scale climate variability is perhaps best

known from the Greenland ice cores, where it is manifested

in the stable water isotopes of ice. During the last glacial pe-

riod, these cores show 25 Dansgaard–Oeschger (DO) events

(NGRIP members, 2004). A DO event typically exhibits

a sawtooth pattern: (i) a cold phase (Greenland stadial, noted

GS hereafter) lasting from centuries to millennia, followed

by a warm phase (Greenland interstadial, GI) starting with

(ii) a rapid transition (a few decades) with an amplitude of

up to 16± 2.5 ◦C (Landais et al., 2004; Huber et al., 2006;

Kindler et al., 2014), and ending with (iii) a gradual cooling

before an abrupt decrease towards cold, stadial values.

During the last decade, mechanisms of glacial abrupt

events have been investigated using coupled ocean–

atmosphere models of varying complexity (e.g., Kageyama

et al., 2010, 2013; Stouffer et al., 2006). Recent hypothe-

ses often invoke internal variability (Kleppin et al., 2015;

Dokken et al., 2013), involving sea ice–atmosphere interac-

tions (e.g., Li et al., 2005, 2010), through ice–albedo feed-

back and the impact of sea ice cover on regional tempera-

tures by preventing heat exchange between the ocean and

atmosphere. There remains robust evidence from multiple

lines of paleoceanographic information and modeling that

millennial-scale variability is linked to changes in the At-

lantic meridional overturning circulation (AMOC) intensity

(e.g., Mc Manus et al., 1998), potentially initiated by large

freshwater input in the North Atlantic (e.g., Broecker et al.,

1990). The presence of ice rafted debris (IRD; Ruddiman,

1977; Heinrich, 1988) in marine sediments from the North

Atlantic region during the largest GS document episodes

of massive iceberg discharge in the North Atlantic (Hein-

rich events) mainly from the Laurentide (H2, H4, H5) and

Fennoscandian (H3, H6) ice sheets (Grousset et al., 1993;

Guillevic et al., 2014 and references therein). Even though

IRD is present in each GS (Elliot et al., 2002), not all GSs

contain a Heinrich event. Heinrich stadials (noted HSs here-

after) are GSs associated with a Heinrich event (Barker et al.,

2009; Sanchez Goni and Harrison, 2010).

Several aspects of the observed patterns during DO events

can be captured through the response of the Earth system to

imposed freshwater perturbations in the North Atlantic (Liu

et al., 2009; Otto-Bliesner and Brady, 2010; Kageyama et al.,

2010; Roche et al., 2010), mimicking Heinrich events. De-

pending on the background state of the climate (glacial or

interglacial, orbital context) and the AMOC, as well as on

the magnitude of the freshwater forcing, these models pro-

duce a complete shutdown of the AMOC (HS-like state) or

a reduction of the strength of the AMOC (GS-like state; e.g.,

Menviel et al., 2014). The injection of freshwater produces

in all models a significant cooling of the North Atlantic re-

gion. The amplitude of the associated temperature change

is probably affected by the simulated change in sea ice ex-

tent and feedbacks between sea ice and temperature that vary

in the different models (Kageyama et al., 2013). These hos-

ing experiments also produce an interhemispheric see-saw

temperature pattern, associated with a southward shift of the

Intertropical Convergence Zone (ITCZ) (e.g., Dahl et al.,
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2005; Broccoli et al., 2006; Krebs and Timmermann, 2007;

Swingedouw et al., 2009; Cvijanovic and Chiang, 2013).

Abrupt climate variation associated with the Greenland sig-

nal is found down to low latitudes in numerous terrestrial

and marine archives (e.g., Clement and Peterson, 2008). Its

climatic impact is recorded in large parts of the North At-

lantic region, both in marine cores (e.g., Bond et al., 1993;

Broecker, 2000) and in speleothems (Fleitmann et al., 2009).

Concomitant methane excursions and variations in the iso-

topic composition of the calcite of speleothems in eastern

Asia (e.g., Wang et al., 2001; Cheng et al., 2012) strongly

support the fact that these DO events are associated with

major reorganization of the tropical water cycle and hence

monsoon intensity through a shift in the ITCZ and its terres-

trial equivalent, the tropical rain belt (Chappellaz et al., 2013;

Wang et al., 2008; Pausata et al., 2011).

For this period of millennial-scale variability, high-

resolution measurements of δ18Oatm have been obtained in

Greenland and Antarctic ice cores (e.g., Guillevic et al.,

2014; Landais et al., 2007a, 2010; Severinghaus et al., 2009).

In Fig. 1 we present a synthesis of δ18Oatm evolution from

the Siple Dome ice core over HSs displayed on Greenland

Ice Core Chronology 2005 (GICC05) timescale, using defi-

nitions of Rasmussen et al. (2013) of the onset of GS. The

δ18Oatm records show a systematic increase in a few thou-

sand years following the onset of a HS (Fig. 2) by around

0.13 ‰, from +0.08 ‰ (HS1) to +0.18 ‰ (HS5). The dif-

ference in the slope inflection at the onset of HS4 and HS5,

more pronounced that for HS1, HS2 and HS3, may be due

to the long-term trend observed in δ18Oatm. Indeed, from

35 to 15 kyr, δ18Oatm exhibits a constant increase, consistent

with the build-up of polar ice sheet, and hence enrichment of

ocean water in 18O, but remains relatively stable over MIS3

(Fig. 1).

Because of its global character, δ18Oatm should provide

added value compared to the different local records of hydro-

logical cycle variations in different continental and marine

archives. However, until now, no quantitative, robust inter-

pretation of past variations in δ18Oatm has been established,

which limits the use of δ18Oatm as a quantitative indicator

for past biospheric production or variations in the hydrolog-

ical cycle. The aim of this modeling study is thus to pro-

vide a quantitative interpretation for the systematic increase

in δ18Oatm over HSs. To reach this objective, we propose

a global approach incorporating outputs from a general cir-

culation model implemented with water isotopes and focus

on the millennial variability in the last glacial period. We fol-

low a modeling approach already developed by Hoffmann

et al. (2004). We combine climatic parameters (temperature

and humidity), isotopic composition of meteoric water, veg-

etation distribution and productivity simulated by different

models with monthly mean temporal resolution.

In the following section, we describe the general method

used to simulate a global δ18Oatm signal. Section 3.1 is ded-

icated to model validation and Section 3.2 proposes to quan-

tify the different contributions (hydrology, vegetation, cli-

matic conditions) to the δ18Oatm signal over a HS equivalent.

2 Method

According to Landais et al. (2007a, 2010) and Severinghaus

et al. (2009), the millennial variations in δ18Oatm during the

last glacial period are driven by shifts in the tropical rain belt

modifying the relative humidity distribution and the isotopic

composition of meteoric water consumed by terrestrial bio-

sphere. The isotopic content of atmospheric oxygen is con-

trolled by numerous processes, so we must consider (i) the

worldwide meteoric water isotopic composition, from which

ground water is derived; (ii) the worldwide temperature and

humidity, from which evaporative enrichment of leaf water

δ18O is calculated; (iii) the worldwide vegetation cover and

gross primary productivity, defining the photosynthetically

and respiratory active areas that contribute to δ18Oatm; and

(iv) respiratory processes.

2.1 Oxygen isotopes mass balance model

Oxygen is exchanged with the terrestrial and marine bio-

spheres as well as with the stratosphere. Assuming a steady

state, δ18Oatm can thus be expressed as follows:

δ18Oatm =
(Fterr · δ

18Oterr+Fmar · δ
18Omar)

(Fterr+Fmar)
−

18εstrat, (2)

where 18εstrat represents the stratospheric isotope fractiona-

tion caused by photochemical reaction in the stratosphere in-

volving O2, O3 and CO2. Fterr and Fmar denote O2 fluxes

of gross terrestrial and oceanic productivity, respectively.

δ18Oterr and δ18Omar are the isotopic composition arising

from the terrestrial and oceanic realms, respectively. 18εstrat

is a small term, 0.4 ‰ compared to ∼ 23.8 ‰ for δ18Oatm

with reference to V-SMOW (Luz et al., 2014) and is not as-

sumed to change significantly over a HS because CO2 level

remains relatively stable. We assume a constant CO2 level

between the LGM and HS in our study. Ahn and Brook’s

(2014) study shows that variations over HSs are small (in-

crease of less than 20 ppm). Effect of isotopic exchange be-

tween CO2 and O2 in the stratosphere on δ18Oatm is expected

to be proportional to CO2 mixing ratio. Following the cal-

culation of Bender et al. (1994), which estimates a δ18Oatm

depletion of 0.4 ‰ for a CO2 concentration of 353 ppm,

we can estimate that a 20 ppm increase between the LGM

and HS can modify δ18Oatm by −0.023 ‰. The sign of

this change is actually opposite to the sign of the observed

δ18Oatm signal. We focus mainly on the millennial-scale vari-

ations in the terrestrial contribution to δ18Oatm signal, i.e.,

Fterr · δ
18Oterr/(Fterr+Fmar).

We do not consider the marine influence, in this first ap-

proach, for the following reasons. First, our aim is to test the

hypothesis of Landais et al. (2007b) and Severinghaus et al.

www.clim-past.net/11/1527/2015/ Clim. Past, 11, 1527–1551, 2015
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onset and end uncertainty (2σ ), based on the Rasmussen et al. (2013) maximum counting error (MCE). Top (right to left): black and white

horizontal bar indicate Marine Isotope Stage 1 to 4.

0.20

0.15

0.10

0.05

0.00

-0.05

10
3 δ

18
O

2.01.51.00.50.0-0.5-1.0
GICC05 (kyr after HS onset )

HS5
HS4
HS3
HS2
HS1

Figure 2. Evolution of Siple Dome atmospheric oxygen δ18O (Sev-

eringhaus et al., 2009) during Heinrich stadials on the GICC05

timescale.

(2009) that δ18Oatm millennial-scale variations are largely

driven by changes in the low-latitude hydrological cycle

through changes in the δ18O of precipitation. Second, Hen-

dricks et al. (2004) and Luz and Barkan (2011a) have shown

that the difference between δ18Oterr and δ18Omar is not sig-

nificant. Finally, the spatial and temporal variations in water

δ18O and respiration pathways in the ocean are expected to

be relatively small compared to the variations on land, which

renders their integration for δ18Oatm modeling less crucial,

as illustrated in the study of Hoffmann et al. (2004).

2.2 Calculation of δ18Oterr

The major source of atmospheric oxygen from the terrestrial

biosphere is the oxygen produced during photosynthesis. The

fractionation associated with photosynthesis is small (Guy

et al., 1993; Eisenstadt et al., 2010). The oxygen produced by

this process thus has almost the same isotopic composition

as the leaf water. Consumption of oxygen is also associated

with biosphere productivity through different pathways (dark

respiration, photorespiration, Mehler reaction). δ18Oterr thus

results from isotope fractionation associated with photosyn-

Clim. Past, 11, 1527–1551, 2015 www.clim-past.net/11/1527/2015/
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thesis and oxygen uptake. Following Bender et al. (1994),

Blunier et al. (2002), Hoffmann et al. (2004), and Landais

et al. (2007b), we assume a steady state, where photosynthe-

sis equals respiration. δ18Oterr calculates as

δ18Oterr =
(δ18Olw+ 1)

18αresp

− 1, (3)

where δ18Olw is the global production-weighted average iso-

topic composition of leaf water and 18αresp is the global ap-

parent respiratory isotope fractionation factor associated with

global oxygen uptake, i.e., oxygen consumption weighted

average of fractionation factors associated with specific res-

piratory pathways.

2.3 Photosynthetic oxygen

As classically done, we estimate the value of δ18O of leaf wa-

ter, hereafter δ18Olw, based on the Craig and Gordon (1965)

equation (C&G) of evaporation applied to leaf transpiration

(Dongmann, 1974; Flanagan et al., 1991b). It is thus calcu-

lated in the following way:

δ18Olw = h · (δ
18Ovap+

18εeq)+ (1−h)

· (δ18Ogw+
18εeq+

18εkin), (4)

where h is the relative humidity at the site of photosynthesis,
18εeq is the temperature-dependent liquid–vapor equilibrium

isotope effect (Majoube, 1971), 18εkin is the kinetic isotope

effect occurring when humidity is below saturation, δ18Ogw

is the isotopic composition of soil water and δ18Ovap is the

water vapor δ18O near the surface. 18εkin is deduced from the

ratio of the diffusion coefficient associated with H16
2 O (D)

and H18
2 O (D∗). Several values for the ratio D/D∗ can be

found in the literature (Merlivat, 1978; Cappa et al., 2003;

Luz et al., 2009), varying from 1.028 to 1.032. For leaf water

evaporation, many studies have reported lower enrichment in

δ18Olw than that predicted by Eq. (4) with 18εkin =D/D
∗
−1

as classically assumed (e.g., Allison et al., 1985; Bariac et al.,

1989; Walker et al., 1989; Walker and Brunel, 1990; Yakir

et al., 1990; Flanagan et al., 1991b, a, 1993, 1994). Farquhar

et al. (1989) suggested that 18εkin depends on the importance

of either stomatal or boundary layer resistances. In moist

conditions, stomata resistance is low and boundary layer re-

sistance high, leading 18εkin to values as low as 19 ‰ when

using the Merlivat (1978) value for D/D∗. In this study, we

have imposed a mean value for 18εkin of 20 ‰ because higher

values led to too high a global value for δ18Oatm.

The calculation of δ18Olw using Eq. (4) requires spatial

and temporal variations in temperature and relative humid-

ity as well as the variations in the isotopic composition of

water vapor and meteoric water, from which δ18Ogw will be

deduced (Sect. 2.3.2). These variables are obtained from out-

puts of modeling experiments.

2.3.1 Simulated climatic variations over an abrupt

cooling

Temperature and relative humidity variations over a HS are

inferred from simulations with the atmosphere–ocean gen-

eral circulation model (AOGCM) IPSL_CM4 (Marti et al.,

2010) with a horizontal resolution for the atmosphere grid

of 3.75◦× 2.5◦ (latitude× longitude) and with a 19 vertical

layer atmosphere. To model the δ18Oatm variations over a HS,

we have used a glacial simulation perturbed by a freshwater

hosing experiment. We will compare in the following the out-

puts of two simulations: one for the Last Glacial Maximum

(LGM_ctrl) and one for the Heinrich stadial (HS_exp).

The LGM_ctrl boundary conditions are as follows (see

Kageyama et al., 2009, for a detailed presentation of the cli-

mate setup): orbital parameters for 21 kyBP, CO2, CH4 and

N2O levels set to 185 ppm, 350 and 200 ppb, respectively

(Monnin et al., 2001; Dällenbach et al., 2000; Flückiger et al.,

1999), ICE-5G ice sheet reconstruction and land–sea mask

(Peltier, 2004).

The first experiment is an equilibrated glacial run

(LGM_ctrl) used as a reference run (see LGMb in Kageyama

et al., 2009). The second experiment (HS_exp) is a water hos-

ing experiment, where an additional freshwater flux of 0.1Sv

(1Sv= 106 m3s−1) is imposed instantaneously in the At-

lantic north of 40◦ N and the Arctic (see LGMc in Kageyama

et al., 2009) from year 150 for 400 years. The input of fresh-

water in HS_exp, mimicking a Heinrich event, leads to an

AMOC collapse in 250 years (see Fig. 1 in Kageyama et al.,

2009). We selected this HS_exp experiment since the most

efficient way to simulate the climate state during an Hein-

rich event with a model is to add freshwater in the high lati-

tudes of the Atlantic ocean, even though results from recent

studies (Marcott et al., 2011; Guillevic et al., 2014; Rhodes

et al., 2015; Alvarez-Solas et al., 2013) suggest that this does

not satisfactorily explain the observed sequences of events

(freshwater discharges from ice sheets might not be the ini-

tial trigger of Heinrich events) and especially the decoupling

between Greenland and low latitudes. We therefore center

our study on the mean state of two contrasted periods rather

than investigate the dynamics of the transition from the LGM

to HS. It also explains why we only focus on HSs and not DO

events.

The climate response to the AMOC collapse in the

HS_exp is of global extent and qualitatively agrees with pa-

leoarchive reconstructions for the North Atlantic cooling,

southwards Atlantic ITCZ migration and weakening of In-

dian and African monsoons (Kageyama et al., 2009, 2013).

However, the model does not simulate an Antarctic warm-

ing or weakened East Asian monsoon (Kageyama et al.,

2009). In the following we used the monthly averaged spa-

tial fields of temperature (Tm) and humidity calculated on

the first layer of the atmosphere grid. From these data we

followed the Lloyd and Farquhar (1994) approach to link

leaf temperature during photosynthesis, Tp, to Tm, through

www.clim-past.net/11/1527/2015/ Clim. Past, 11, 1527–1551, 2015
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Figure 3. Amount-weighted annual-mean δ18O of precipitation for (a) LGM_ctrl and (b) HS_exp experiments obtained with LMDZ-iso.

Note that the anomaly can be seen in Fig. 4a. (c) HS_exp–LGM_ctrl annual-mean anomaly of groundwater δ18O. Groundwater δ18O

represents the isotopic value of the substrate water for photosynthesis (see text for details). (d) HS_exp–LGM_ctrl annual-mean anomaly of

rainfall amount.

Tp= 1.05 · (Tm+ 2.5). An additional 2.5 ◦C is added to Tm

to account for the daytime increase in air temperature at

the time of photosynthesis. The 5 % increase allows for net

canopy to air heat fluxes (Farquhar and Lloyd, 1993). The rel-

ative humidity from the first layer is not modified (Farquhar

et al., 2007).

2.3.2 Modeling of δ18O of meteoric water and

groundwater

For our estimate, we also need the distribution of the oxy-

gen isotopic composition of meteoric water. We extract it

from the isotopic version of the atmospheric general circu-

lation model developed at the Laboratoire de Météorologie

Dynamique (LMDZ4; Risi et al., 2010). LMDZ is the at-

mospheric component of the IPSL-CM4 model used above.

The physical package is described in detail by Hourdin et al.

(2006). It includes in particular the Emanuel convective pa-

rameterization (Emanuel, 1991; Grandpeix et al., 2004) cou-

pled to the Bony and Emanuel (2001) cloud scheme. Each

grid cell is divided into four subsurfaces: ocean, land, ice

sheet and sea ice (Risi et al., 2010). The monthly sea sur-

face temperature and sea ice fields obtained from the two

aforementioned experiments at equilibrium (LGM_ctrl and

HS_exp) have been used as surface boundary conditions for

the isotopic simulations. Monthly mean outputs of the IPSL-

CM4 are imposed to the LMDZ4 model, so there is no cou-

pling between ocean and atmosphere, and nonlinear sub-

monthly scale processes are thus not taken into account here.

This choice should not alter our results. Indeed, LeGrande

and Schmidt (2008) analyze changes in water isotopes fol-

lowing the 8.2 ka event’s meltwater pulse (meltwater δ18O:

−30 ‰) in a fully coupled AOGCM (Goddard Institute for

Space Studies ModelE-R) and show that the effect of the

freshwater impulse on δ18O of precipitation, noted δ18Op

hereafter, can be neglected because the signal is very short-

lived, only a few decades, before the climatic component

dominates. Furthermore, the main changes are constrained

to the northern North Atlantic and its surrounding regions

(Fig. 6 of LeGrande and Schmidt, 2008). Those regions only

have a limited contribution to the δ18Oatm signal, as most of

the terrestrial photosynthesis occurs in the tropics. Figure 7

of LeGrande and Schmidt (2008) shows that two decades af-

ter a meltwater pulse, the ensemble mean (five simulations)

anomaly of δ18Op calculates to −0.01 ‰, confirming the

small impact of δ18O depleted meltwater.

Figure 3 shows the mean annual δ18Op, simulated for the

LGM_ctrl and the HS_exp experiments. The δ18Op distri-

bution for the LGM_ctrl experiment has already been con-

fronted to observations of water isotopes in vapor and pre-

cipitation (Risi et al., 2010) and seasonal patterns are well

captured. For validation purposes, δ18Op changes from the

LGM to HS are compared with changes in (i) calcite δ18O

in speleothems, noted δ18Oc hereafter, and in (ii) ice δ18O
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Figure 4. (a) Model–data comparison of δ18O precipitation

anomaly during HS compared to the LGM. Data represent

speleothem’s calcite δ18O from various locations (see Table 3 for

details). (b) Comparison of reconstructed HS precipitation anomaly

1δ18O from selected proxies shown in (a) and simulated 1δ18Op

anomaly (R = 0.89, n= 13). Note that the correlation is done with

point XIII corrected, as we assume a bias in the model. Refer to Ta-

ble 3 for details on reconstructed precipitation. Points falling on the

line depict the same anomaly in the reconstruction and the simula-

tion. Note that Timta and Dongge (Wang et al., 2005) Cave δ18Oc

values were estimated from the Younger Dryas excursion, some-

times called H0 and characterized by a large freshwater input in the

North Atlantic (Pausata et al., 2011).

in Greenland ice cores over Heinrich events (Sect. 3.1.2; see

Fig. 4a for δ18Op anomaly).

Finally Eq. (4) also requires an estimate of δ18Ogw.

Groundwater pumped through the plant’s roots represents

a mixture of stored water and incoming precipitation water

(McGuire et al., 2002). Indeed, during spring/summer, when

maximal productivity occurs, the groundwater is composed

of significant amounts of fall/winter precipitation. In order

to take the mixing into account we use amount-weighted

annual-mean δ18O of precipitation. This approach has been

shown to be realistic in a field experiment in Kenya (Wang

et al., 2012) and has been implemented in a global cou-

Table 1. Plant functional types (PFT) in ORCHIDEE, abbreviation

used and mega-biome assignment in this study.

PFT Abbreviation Mega-biome

Bare soil Bare soil Bare soil

Tropical broadleaf evergreen trees TrBE Tropical trees

Tropical broadleaf raingreen trees TrBR Tropical trees

Temperate needleleaf evergreen trees TempNE Temperate trees

Temperate broadleaf evergreen trees TempBE Temperate trees

Temperate broadleaf summergreen trees TempBS Temperate trees

Boreal needleleaf evergreen trees BoNE Boreal trees

Boreal broadleaf summergreen trees BoBS Boreal trees

Boreal needleleaf summergreen trees BoNS Boreal trees

C3 grass C3 grass C3 grass

C4 grass C4 grass C4 grass

pled climate model of intermediate complexity (Caley et al.,

2014). When implementing this, we neglect the fractiona-

tion effects that can significantly affect the soil water isotopic

composition, especially in dry regions (Kanner et al., 2014).

2.4 Oxygen uptake in respiratory processes

2.4.1 Global oxygen production

The geographical distribution of respiratory O2 fluxes (noted

GPP_O2 hereafter from the hypothesis of equilibrium be-

tween oxygen production and consumption) is computed

from the vegetation cover and gross primary productiv-

ity (GPP) distribution provided by the ORCHIDEE model,

which simulates the vegetation distribution of 10 natural

plant functional types (PFTs) and bare soil (Krinner et al.,

2005). ORCHIDEE is the land surface component of the

IPSL-CM4 model. It is used here with the same spatial res-

olution as the aforementioned models (latitude× longitude

3.75◦× 2.5◦) and is run in offline mode, forced by the high-

frequency outputs from IPSL-CM4 for the two experiments

LGM_ctrl and_HS_exp. The prescribed forcing has a 6 h

time step temporal resolution, and thus takes into account

daily variability and diurnal cycle simulated by the IPSL

model (Woillez, 2012). Each grid cell simulates the vegeta-

tion cover by splitting the cell into fractions of 10 PFTs (see

Table 1 for names) and provides GPP fluxes (gCm−2 yr−1)

for each PFT. Validation of the vegetation cover can be found

in Woillez et al. (2011) for LGM_ctrl and Woillez et al.

(2013) for HS_exp over western Europe. Here we extend

this work and compare the LGM and HS simulation with

worldwide vegetation reconstructions selected from marine

(coastal) and terrestrial paleoarchives with high temporal res-

olution (Sect. 3.1.3).

In this study, following Hoffmann et al. (2004), we calcu-

late the terrestrial biosphere’s O2 fluxes in three steps. First,

the outputs from ORCHIDEE provide the GPP expressed in

gCm−2 yr−1 for each of the 10 PFTs on each model grid

point. Second, simulated carbon molar fluxes for each PFT

are converted to oxygen molar fluxes, based on the biochemi-

cal model of photosynthesis from Farquhar et al. (1980). The
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model accounts for the fraction of photorespiration and the

photosynthetic quotient (PQ) – measured by Keeling (1988)

and Severinghaus (1995) as ∼ 1.1. Third, GPP_O2 for each

PFT is expressed in terms of dark respiration (mitochon-

drial), Mehler respiration and photorespiration, each of these

respiratory uptake processes being associated with a specific

fractionation (refer to Table 2 for values):

GPP_O2 = GPP_O2_Mehler+GPP_O2_dark

+GPP_O2_photo=
GPP ·PQ · (1+ fphoto)

1− fMehler

, (5a)

with

GPP_O2_Mehler= fMehler ·GPP_O2, (5b)

GPP_O2_dark= (1− fMehler) ·PQ ·GPP, (5c)

GPP_O2_photo= (1− fMehler) · (GPP_O2−PQ ·GPP)

GPP_O2_photo= (1− fMehler) ·PQ ·GPP · fphoto, (5d)

where fMehler denotes the fraction of Mehler reaction, and

accounts for 10 % of the total respiration (Badger et al., 2000)

and fphoto represents the fraction of photorespiration.

2.4.2 Photorespiration

All types of C3 plants photorespire, but in different propor-

tions. In contrast, C4 plants do not photorespire, because of

a CO2 concentration mechanism allowing them to operate

at high chloroplast CO2 partial pressures and thereby inhibit

the oxygenation reaction during photosynthesis (Von Caem-

merer, 2000). The proportion of photorespiration is calcu-

lated from the proportion of C4 vs. C3 plants, temperature

and CO2 level (assumed constant in our study) as depicted in

the biochemical model of photosynthesis from Farquhar et al.

(1980) and already done in the studies of Hoffmann et al.

(2004) and Landais et al. (2007a). Increasing photorespira-

tion modifies 18εresp, as photorespiration is associated with

a high discrimination and in turn affects δ18Oterr. Details on

equations used in our offline model for δ18Oterr calculation

can be found in Hoffmann et al. (2004).

2.4.3 Soil respiration

We have assigned fractionation factors for each soil using

the soil type discrimination proposed by Angert et al. (2003).

For this, we relate the Angert soil types to the type of vegeta-

tion cover over the considered soil in the ORCHIDEE model.

As an example, we have assigned tropical soils (fractiona-

tion coefficient of −10.1 ‰) to soil covered by dominant the

PFT tropical broadleaf evergreen trees and the PFT tropical

broadleaf raingreen trees. Tropical soils (−10.1 ‰) discrim-

inate significantly less than temperate (−17.8 ‰) or boreal

soils (−22.4 ‰) following Angert et al. (2003). The global

respiratory isotope fractionation for the control run calcu-

lates as −15.895 ‰, much weaker than the common value

(−18 ‰) used for terrestrial ecosystems. As soil respiration

only occurs where vegetation exists, a shift of the latter mod-

ifies the spatial distribution of soils where dark respiration

takes place. In our model, the change in vegetation cover

from the LGM to HS leads to a very slight weakening of soil

respiration isotope fractionation using fractionation values of

Angert et al. (2003). We present in Sect. 3.2.2 a sensitivity

test to assess the magnitude of the uncertainty in soil respi-

ration isotope fractionation that is introduced by not taking

into account the effect of soil aeration, i.e. the weakening of

respired O2 back-diffusion in waterlogged soils.

2.4.4 Global terrestrial fractionation factor

Uptake of oxygen by respiration discriminates against heavy

isotopes, leaving the substrate oxygen, atmospheric O2, en-

riched in 18O. Each of the oxygen uptake processes is af-

fected by a specific, spatially and temporally constant frac-

tionation (Table 2) and the global terrestrial isotope fraction-

ation factor 18αresp is expressed as follows:

18αresp =
18αphoto · fphoto+

18αMehler · fMehler

+
18αdark_soil · fdark_soil+

18αdark_leaves · fdark_leaves, (6)

The latest estimations of 18αMehler,
18αphoto and 18αdark_leaves

can be found in Table 2. A significant proportion of terres-

trial respiration (30 to 40 %) occurs below the surface (Raich

and Potter, 1995) with varying fractionation values. Respira-

tion below surface (18αdark_soil) thereby needs to be consid-

ered for the different types of soils (boreal, temperate, trop-

ical), as each soil type is associated with a specific fraction-

ation factor because of different diffusion pathways (Angert

et al., 2003). The Mehler fraction, fMehler, represents 10 %

of global respiration (Badger et al., 2000) and fphoto is calcu-

lated from the outputs of the ORCHIDEE and IPSL-CM4

models. The dark respiration fraction is composed of leaf

(38 %) and soil (62 %) respiration, following Landais et al.

(2007b).

3 Results

3.1 Simulation of regional climate, vegetation and

isotopic pattern during a HS

We propose here a model–data comparison on a regional

scale to evaluate the model performances, as the climatic

and water cycle responses during a HS are not spatially ho-

mogeneous. Climatic outputs of the HS experiments are al-

ready discussed in Kageyama et al. (2009) and Woillez et al.

(2013). In the following we thus mainly discuss the simu-

lated change in relative humidity (Sect. 3.1.1) since the latter

has an important influence on the δ18Olw and hence δ18Oterr.

Then, we further compare the modeled change in δ18O of

precipitation over a HS with changes in speleothems calcite

δ18O (Sect. 3.1.2) and modeled fraction of vegetation with

vegetation reconstructions (Sect. 3.1.3).
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Table 2. Parameters involved in the calculation of δ18Oatm. Uncertainties are given for most of the parameters except for those derived from

the ORCHIDEE model.

Parameter Unit Definition LGM_ctrl HS_exp

[CO2] ppm carbon dioxide mixing ratio in the troposphere 190 190

t ◦C temperature at the site of photosynthesis 21.08 21.41

h % relative humidity at the site of photosynthesis 66.09 66.12

GPP_C Pmol C yr−1 gross photosynthetic molar carbon flux from the terrestrial biosphere 6.758 6.450

GPP_O2 Pmol O2 yr−1 gross photosynthetic molar oxygen flux from the terrestrial biosphere 11.768 11.410

fC4 % C4 fraction (in terms of GPP_C) 36.92 35.59

fphoto % fraction of photorespiration 28.55 29.52

fsoil_dark % soil fraction of dark respiration 62a 62a

fdark_soil % fraction of soil respiration 38.10 37.50

fdark_leaves % fraction of leaf respiration 23.35 22.98

fMehler % fraction of Mehler respiration 10b 10b

18εdark_soil ‰ global isotopic fractionation associated with dark soil respiration 16.242± 0.5c 16.056± 0.5c

18εdark_leaves ‰ mitochondrial (AOX+COX) isotopic fractionation in leaves 19± 1c 19± 1c

18εMehler ‰ global Mehler respiration isotopic fractionation 10.8± 0.2d 10.8± 0.2d

18εphoto ‰ global photorespiration isotopic fractionation 21.4± 1d 21.4± 1d

18εresp ‰ global terrestrial respiration isotopic fractionation 17.83 17.80

δ18Op_amount ‰ global precipitation water isotope delta −6.689 −6.781

δ18Op ‰ global photosynthesis precipitation water isotope delta −5.530 −5.289

δ18Ovap_amount ‰ global water vapor isotope delta −12.648 −12.653

δ18Ovap ‰ global photosynthesis water vapor isotope delta −12.483 −12.295

δ18Oleafwater ‰ global leaf water isotope delta 5.164± 1e 5.301± 1e

δ18Oterr ‰ global terrestrial tropospheric isotope delta 23.407± 1 23.516± 1

δ18Omar ‰ global marine tropospheric isotope delta 25.3± 2f 25.3± 2f

δ18Oatm ‰ global tropospheric isotope delta 23.88± 2 23.95± 2

a(Schlesinger and Andrews, 2000). Note that this estimation is for present day, and here we assume it was similar during the last glacial period. b(Badger et al., 2000). c(Landais et al.,

2007a). d(Helman et al., 2005). e(Gillon and Yakir, 2001). fNote that the increase of 1 ‰ compared to the Luz et al. (2014) value accounts for the 1 ‰ enrichment of the glacial ocean

(Waelbroeck et al., 2002).

3.1.1 Simulated humidity validation

According to climate reconstructions, during HS, wet peri-

ods in northeastern Brazil are synchronous with periods of

weak East Asian summer monsoons (Wang et al., 2001) and

with cold periods in Greenland (Grootes and Stuiver, 1997)

and Europe (Genty et al., 2003). Reorganization in tropical

rainfall patterns leads to wetter conditions in southwestern

North America (Asmerom et al., 2010) and southern South

America (Kanner et al., 2012), and to dryer conditions in

the Australian–Indonesian monsoon region (Mohtadi et al.,

2011), wide parts of Asia (Wang et al., 2008), northern South

America (Peterson and Haug, 2006), Mediterranean region

(Fleitmann et al., 2009), and equatorial western Africa (e.g.,

Weldeab, 2012).

During HS, the model simulates similar humidity patterns

as reconstructed ones, with dryer conditions over Europe, the

Mediterranean region, northern and equatorial Africa, south-

ern and eastern Asia, Middle East, India, southern Australia

and parts of Indonesia. In South America, a region of par-

ticular interest, where major simulated changes in vegeta-

tion and oxygen production occur, the model captures well

the observed contrast with increased moisture in northeast-

ern Brazil, and drying in northern South America and Central

America.

These rapid comparisons show that there is a good general

agreement between modeled changes in humidity over an HS

and climatic reconstructions over the different regions.

3.1.2 Simulated amount-weighted δ18Op validation

Tropics

Comparisons of modeled hosing-driven amount-weighted

1δ18Op anomalies with reconstructed 1δ18O of

speleothem’s calcite during HSs are presented in Table 3 and

Fig. 4. Thirteen Heinrich1δ18Op proxy reconstructions arise

from Lewis et al. (2010) (n= 11) and Pausata et al. (2011)

(n= 4). They are located in the eastern Mediterranean,

and in the regions of the South American monsoon, East

Asian monsoon, Indian summer monsoon, North American

monsoon and the Australian–Indonesian monsoon. Those

regions represent the most productive ones and therefore

carry a substantial part of the δ18Oterr signal. Although

reconstructed 1δ18Op anomalies from Lewis et al. (2010)

and Pausata et al. (2011) studies were estimated differently,

they are consistent and common reconstructed 1δ18Op

estimates (for Hulu and Songjia Cave) are similar in both
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studies (Table 3, this study; method section of Pausata et al.,

2011).

The dominant hydrological controls on reconstructed

δ18Op are site-specific and are described by Lewis et al.

(2010). Figure 4 demonstrates the ability of the AOGCM

LMDZ-iso to reproduce the observed 1δ18Op spatial pat-

tern for most of the sites, particularly in regions strongly af-

fected by ITCZ (and its land extension) variations and hence

by changes in the water cycle, regardless of the processes

at play. There are two regions where the model does not

properly reproduce the observed signal over HS. The first

one occurs in the Indian summer monsoon domain (Timta

Cave). Model and observation would reconcile two grid cells

south of Timta Cave, as it is located just at the transition be-

tween a positive and negative simulated δ18Op anomaly. This

disagreement can be due to a model bias. The IPSL model

indeed does not simulate the monsoonal signal at the right

place, with an Indian monsoon located too far south even for

modern climate (Marti et al., 2010). In the LGM simulation

also, the IPSL model predicts that it mostly takes place over

the ocean (−0.5 to −2 mm day−1 is only simulated over the

ocean; see Fig. 9 (lower panel) of Kageyama et al., 2009),

while there is evidence for a monsoonal signal over land.

In northern India, i.e., the Timta Cave site, the model does

not simulate any significant rainfall change between the two

periods. A more intense weakening of the Indian monsoon

over land in the HS run, and hence less rainfall, would have

helped in reconciling the model and data at Timta Cave, since

δ18Op would have been enriched through the amount effect.

Pausata et al. (2011) recently suggested that change in rain-

fall amount associated with Indian monsoon rather than in

southeastern Asia explains changes observed in calcite δ18O

in Chinese stalagmites (in southeastern Asia). As in Pausata

et al. (2011), a freshwater impulse was applied to the control

simulation with LGM background climate. Rainfall amount

drops in eastern Asia and northwestern India, mostly over

the ocean, but increases in southeastern India, as shown in

Fig. 3d. Values of−0.17 and−0.13 mm day−1 are simulated

at Hulu and Songjia Cave during HS, respectively. The en-

richment in δ18Op observed in Chinese caves is reproduced

by the model, but the latter fails to capture the enrichment in

Timta Cave. Overall, δ18Op is enriched over the whole of In-

dia (with an abrupt change south of Timta Cave) and southern

Asia. The possible role of the Indian monsoon in the oxygen

isotopic enrichment of Chinese stalagmites is limited in our

simulation, probably because the monsoonal signal is located

too far south in the IPSL model. The increase in δ18O over

southeastern Asia is consistent with local amount effect.

Another mismatch occurs in the North American mon-

soon domain (Cave of the Bells), where the observed1δ18Op

(−0.8‰) and the modeled 1δ18Op (0.9‰) are of opposite

sign. The elevation of the site (1700 ma.s.l.) might explain

the disagreement between model and data, in a region where

the coarse model resolution does not allow for the role of

orography to be properly represented. At Timta Cave and

Cave of the Bells, our model fails to capture the calcite δ18O

anomaly recorded in speleothems. These two sites are lo-

cated at high altitude and do not correspond to the regions

where most of the oxygen is produced.

As shown in Table 3, the modeled increase in δ18Op quan-

titatively agrees with data δ18Oc increase during HS in most

of the compared sites (Fig. 4). In conclusion, the key features

of HS precipitation inferred from speleothem’s δ18Oc, i.e.,

a low-latitude interhemispheric see-saw pattern (Cheng et al.,

2012), are generally well captured by the LMDZ model.

High latitudes

In Greenland, HS can hardly be distinguished from the GS

or from the mean LGM state. The only clear δ18Oice signal is

observed from GI to GS (or HS) with an approximately 4 ‰

decrease in central Greenland sites (GRIP, GISP2, NGRIP).

The depletion simulated in Greenland, with a 1.6 ‰ decrease

at the GRIP site, by the model for a HS compared to a glacial

background state does not compare well with available data.

However, it is difficult to compare the δ18O change simu-

lated by a freshwater input (the most efficient way to model

a Heinrich event, as mentioned in Sect. 2.3.1) and the δ18O

depletion between a GI and a GS. Indeed, there is more and

more evidence that the δ18Op depletion at the end of a GI is

not due to the same freshwater discharge than the one asso-

ciated with a Heinrich event. It can well be due to a thresh-

old in the extent in sea ice or an atmospheric heat transport.

Therefore our choice of modeling approach may potentially

explain some of the discrepancies observed in the low lati-

tudes, but our approach is the best we can realize today.

3.1.3 Validation of simulated vegetation

In order to compare model and data easily, simulated PFTs

are gathered into five mega-biomes (boreal, temperate and

tropical trees, C3 and C4 grasses) as well as bare soil. We

distinguish between C3 and C4 plants as their partitioning

has a strong impact on photorespiration fraction. The sim-

ulated dominant vegetation fraction is shown for LGM_ctrl

(Fig. 5) and HS_exp (Fig. 6), together with pollen-based re-

constructed mega-biomes. Given its domination, we display

bare soil fraction only if it covers more than 80 % of a grid

cell.

Global oxygen production

Present-day carbon and oxygen productions amount to

10.5 Pmol C yr−1 and 17.95 Pmol O2 yr−1 (taking into ac-

count photorespiration) in the ORCHIDEE model, respec-

tively. This is in line with other estimates, e.g., Angert et al.

(2003) or Welp et al. (2011), estimating 8 to 13 Pmol C yr−1

and 12.5 to 14.2 Pmol O2 yr−1, respectively. For the LGM

and HS, land carbon production estimates from the OR-

CHIDEE model are rather low, 6.8 and 6.5 Pmol C yr−1,
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Table 3. Comparison of isotopic proxy records (speleothem’s calcite δ18O) with annual average modeled amount-weighted δ18Op. Note that

anomalies from Pausata et al. (2011) are calculated from H1 and YD, while anomalies from Lewis et al. (2010) arise from all identifiable

δ18Oc excursions.

Core ID Region Latitude Longitude Data 1δ18O Model 1δ18O Reference

Hulu Cave XI China 32.5 119.2 1.4 1.1 Pausata et al. (2011); Lewis et al. (2010)

Songjia Cave XII China 32.3 107.2 1.4 1.1 Pausata et al. (2011); Lewis et al. (2010)

Dongge Cave IX China 25.3 108.8 1 0.8 Pausata et al. (2011)

Timta Cave XIII India 29.8 80.0 3 −3.7 Pausata et al. (2011)

Sanbao Cave X China 31.7 110.5 1.2 1.1 Lewis et al. (2010)

Borneo VII Indonesia 4.0 114.0 0.8 0.6 Lewis et al. (2010)

Moomi Cave VIII Yemen 12.5 54.3 0.9 0.6 Lewis et al. (2010)

Soreq Cave VI Israel 31.5 35.0 0.5 0.5 Lewis et al. (2010)

Rio Grande do Norte II northeastern Brazil −5.7 −37.7 −1.6 −0.1 Lewis et al. (2010)

Santana Cave V southern Brazil −24.5 −48.7 −0.8 −0.9 Lewis et al. (2010)

Botuvera Cave IV southern Brazil −27.2 −49.2 −1.1 −1.1 Lewis et al. (2010)

Cave of the Bells III North America 31.7 −110.8 −0.8 0.8 Lewis et al. (2010)

Poleva Cave I Europe 44.7 21.8 −2 −1.0 Lewis et al. (2010)

which translates into 11.8 and 11.4 Pmol O2 yr−1 for the

LGM and HS, respectively. This is up to a factor of 2 lower

than model-based LGM estimates from Joos et al. (2004),

Hoffmann et al. (2004) or Bender et al. (1994), ranging from

23 to 16.7 Pmol O2 yr−1.

The ORCHIDEE model is known to underestimate LGM

productivity at both low latitudes (too low productivity in

tropical forests, especially Amazonia) and high latitudes (too

low productivity in the absence of permafrost modeling).

Photorespiration fraction (see Sect. 2.4.2) may also be

invoked to explain part of the model–data discrepancy for

the LGM and HS. Underestimation of photorespiration may

arise from uncertainties related to the time of photosynthesis.

In the real world, plants must reduce their CO2 uptake under

water stress, as stomata close to preclude water loss. This

leads to a higher proportion of photorespiration, not neces-

sarily considered during experiments performed under ideal

hydric conditions, whose results are used in the classical Far-

quhar parameterization (Farquhar et al., 1980).

The classical scaling factor between carbon uptake and

oxygen production (Keeling, 1988) of 1.07 used in our study

may also have been underestimated. Indeed, plants can pro-

duce oxygen without involving carbon uptake during times of

stress, which is not considered in experiments run under ideal

conditions. The oxygen production calculated here from the

ORCHIDEE model seems to be biased toward too low values

for the LGM. The same bias is true for HS. Still, it should be

noted that the δ18Oterr calculations of our study and hence the

final results do not depend on the absolute value of oxygen

production at the LGM and HS.

LGM_ctrl vegetation

The main features of the glacial vegetation are correctly re-

produced by the ORCHIDEE model, as briefly presented by

Woillez et al. (2011): reduced fractions of tropical forest, par-

ticularly in Amazonia, and high grass fractions in Siberia,

Alaska, and western North America. Main biases are an over-

estimation of the tree fractions over western Europe, eastern

Eurasia and eastern North America, as well as an overestima-

tion in bare soil fractions over India, southern Africa, Siberia

and South America (Woillez et al., 2011), leading to an un-

derestimation of the global carbon production, as mentioned

in the previous section.

The model simulates temperate trees in southeastern Asia

(Vietnam, southern China, Cambodia), tropical trees and

grasses over the western pacific warm pool (Malaysia, Thai-

land, Indonesia) and over southern Africa, in agreement

with BIOME6000 reconstructions (Prentice et al., 2000). The

model underestimates temperate trees in Asia and overesti-

mates bare soil in South Africa.

A more detailed comparison shows that the important (bo-

real) tree fraction over southwestern Europe differs from

palynological reconstructions depicting an important grass

fraction, but this bias mainly comes from the overestimation

of Boreal broadleaf summergreen trees, which is a common

feature in the version of ORCHIDEE used here, also found

in present-day vegetation simulations. The bias might also be

the sign that the LGM climate simulated by IPSL-CM4 over

western Europe is too warm and wet (Woillez et al., 2011). In

a few regions, ORCHIDEE correctly simulates the presence

of forest, but the dominant type of tree disagrees with pollen

reconstructions: tropical trees over Papua New Guinea and

western Indonesia, while reconstructions reveal the presence

of temperate trees over these regions. Simulated forests over

southern Australia (a thin coastal band in the southeast) are

composed of temperate and tropical trees, while reconstruc-

tions rather indicate the presence of a few tropical trees. The

model simulates mixed vegetation composed of grasses, bo-

real and temperate trees in eastern North America, consistent

with pollen data, but the spatial distribution is incorrect.

It is important to keep in mind that model–data compari-

son of vegetation can only remain qualitative given the coarse

resolution of the vegetation model, related to the model res-
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Table 4. Comparison of mega-biomes during Heinrich stadials between pollen reconstructions (references are included in the table) and

simulated vegetation (compiled from HS_exp using the ORCHIDEE vegetation model). Note that simulated C3 and C4 grasses are merged

into one mega-biome because pollen-based biome reconstructions do not allow us to distinguish between the two PFTs.

Core ID Region Latitude Longitude Resolutiona Which

HS?

Mega-biome distribution Agreement Reference

pollen data model results

(yr/sample) flora biome(s) desig-

nation

dominant,

subdominant

biome

Kashiru

Bog

1 equatorial

Africa

−3.47 29.57 410 HS1 grassland and dry shrubland,

savannah and xerophytic scrub-

land

grasses tropical forest,

grasses

fair Hessler et al. (2010); Handiani et al. (2012)

Lake

Tanganyika

2 equatorial

Africa

−8.5 30.85 610 HS1 warm temperate mixed forest,

savannah and xerophytic scrub-

land

temperate for-

est, grasses

grasses, tropi-

cal forest

fair Hessler et al. (2010); Handiani et al. (2012)

Lake

Masoko

3 equatorial

Africa

−9.33 33.75 550 HS1 warm temperate mixed forest,

savannah and xerophytic scrub-

land

temperate for-

est, grasses

grasses, tropi-

cal forest

fair Hessler et al. (2010); Handiani et al. (2012)

Lake

Malawi

4 equatorial

Africa

−11.29 34.44 200 HS1 savannah and xerophytic scrub-

land, tropical forest

grasses, tropi-

cal forest

grasses good Hessler et al. (2010); Handiani et al. (2012)

Barombi

Mbo

5 equatorial

Africa

4.51 9.4 590 HS1 savannah and xerophytic scrub-

land, tropical forest

grasses, tropi-

cal forest

grasses, tropi-

cal forest

good Hessler et al. (2010); Handiani et al. (2012)

KS 84-063 6 equatorial

Africa

4.4 −4.18 450 HS1 tropical forest, warm temperate

mixed forest

tropical forest,

temperate for-

est

tropical forest,

grasses

good Hessler et al. (2010); Handiani et al. (2012)

ODP 1078-

C

7 equatorial

Africa

−11.92 13.4 140 HS1 warm temperate mixed forest,

temperate montane forest

temperate for-

est, boreal for-

est

bare soil, tropi-

cal forest

badb (soil

> 90 %)

Hessler et al. (2010); Handiani et al. (2012)

GEOB

1023 –

Cunene

River

Mouth

8 equatorial

Africa

−17.15 11.02 185 HS1 savannah and xerophytic scrub-

land, grassland and dry shrub-

land

grasses none none Hessler et al. (2010); Handiani et al. (2012)

Lake Caco 9 South America −2.97 −43.42 80 HS1 warm temperate mixed forest,

tropical forest

temperate for-

est, tropical for-

est

bare soil, tropi-

cal forest

moderate Hessler et al. (2010); Handiani et al. (2012)

Colonia 10 South America −23.87 −46.71 710 HS1 savannah and xerophytic scrub-

land, grassland and dry shrub-

land

grasses grasses, tem-

perate forest

good Hessler et al. (2010); Handiani et al. (2012)

La Laguna,

Bogota

11 South America 4.92 −74.03 670 HS1 savannah and xerophytic scrub-

land, grassland and dry shrub-

land

grasses bare soil bad (soil

= 100 %)

Hessler et al. (2010); Handiani et al. (2012)

Fuquene 12 South America 4.92 −74.03 520 HS1 savannah and xerophytic scrub-

land, temperate montane forests

grasses, tem-

perate forest

bare soil bad (soil

= 100 %)

Hessler et al. (2010); Handiani et al. (2012)

GEOB

3104

13 South America −3.67 −37.72 670 HS1 temperate montane forest,

warm temperate mixed forest

temperate for-

est

tropical forest,

bare soil

badb Hessler et al. (2010); Handiani et al. (2012)

GEOB

3910-2

14 South America −4.15 −36.21 125 HS1 savannah and xerophytic scrub-

land, warm temperate mixed

forests

grasses, tem-

perate forest

tropical forest,

bare soil

badb Hessler et al. (2010); Handiani et al. (2012)

MD03-

2622

15 South America 10.71 −65.17 420 HS3,

HS4,

HS5

montane forest, semi-deciduous

forest, savannah (except HS4)

temperate for-

est, grasses

none none Hessler et al. (2010); Handiani et al. (2012)

17 962 16 Australasia 7.18 112.08 370 HS4 tropical forest tropical forest tropical forest,

grasses

good Harrison and Sanchez-Goni (2010)

18 300 17 Australasia 4.35 108.65 526 HS4 tropical forest tropical forest tropical forest,

grasses

good Harrison and Sanchez-Goni (2010)

18 323 18 Australasia 2.78 107.88 420 HS4 tropical forest tropical forest tropical forest,

grasses

good Harrison and Sanchez-Goni (2010)

Lake Wan-

goom

19 Australasia −38.35 142.6 362 HS4 herbaceous and shrublands grasses temperate for-

est, tropical for-

est

bad Harrison and Sanchez-Goni (2010)

Tyrendarra

Swamp

20 Australasia −38.2 141.76 337 HS4 herbaceous and shrublands grasses temperate for-

est, tropical for-

est

bad Harrison and Sanchez-Goni (2010)

Lake

Surprise

21 Australasia −38.06 141.92 345 HS4 herbaceous and shrublands grasses temperate for-

est, tropical for-

est

bad Harrison and Sanchez-Goni (2010)

Kohuora 22 Australasia −36.57 174.52 375 HS4 herbaceous and shrublands grasses temperate for-

est, tropical for-

est

bad Harrison and Sanchez-Goni (2010)

Native

Companion

Lagoon

23 Australasia −27.68 153.41 655 HS4 tropical forest and open forest,

woodland

tropical forest,

temperate for-

est

bare soil, tem-

perate forest

moderate Harrison and Sanchez-Goni (2010)

Ioannina

284

24 Europe 39.75 20.85 325 HS4 grassland and dry shrubland grasses boreal forest,

grasses

fair Fletscher et al. (2010)

Megali

Limni

25 Europe 39.1 26.32 150 HS4 grassland and dry shrubland

with 40 % xerophytic steppe el-

ements

grasses grasses, boreal

forest

good Fletscher et al. (2010)

Lago

Grande di

Monticchio

26 Europe 40.93 15.62 210 HS4 grassland and dry shrubland

with 40 % xerophytic steppe el-

ements

grasses boreal forest,

grasses

fair Fletscher et al. (2010)

MD04-

2845

27 Europe 45.35 −5.22 540 HS3 grassland and dry shrubland grasses none none Fletscher et al. (2010)

MD99-

2331

28 Europe 41.15 −9.68 390 HS4 grassland and dry shrubland grasses none none Fletscher et al. (2010)

MD95-

2039

29 Europe 40.58 −10.35 300 HS4 grassland and dry shrubland grasses none none Fletscher et al. (2010)

MD95-

2042

30 Europe 37.8 −10.17 360 HS4 grassland and dry shrubland

with 40 % xerophytic steppe el-

ements

grasses none none Fletscher et al. (2010)
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Table 4. Continued.

Core ID Region Latitude Longitude Resolutiona Which

HS?

Mega-biome distribution Agreement Reference

pollen data model results

(yr/sample) flora biome(s) assig-

nation

dominant,

subdominant

biome

ODP site

976

31 Europe 36.2 −4.3 240 HS4 grassland and dry shrubland

with 40 % xerophytic steppe el-

ements

grasses bare soil, boreal

forest

bad

(soil> 90 %)

Fletscher et al. (2010)

MD95-

2043

32 Europe 36.13 −2.62 260 HS4 grassland and dry shrubland

with 40 % xerophytic steppe el-

ements

grasses bare soil, boreal

forest

bad

(soil> 90 %)

Fletscher et al. (2010)

Khoe 33 Japan 51.34 142.14 750 HS4 cold deciduous and evergreen

conifer forest

boreal forest boreal forest,

grasses

good Takahara et al. (2010)

Kenbuchi 34 Japan 44.05 142.38 250 HS1,

HS2

cold deciduous forest boreal forest boreal forest,

grasses

good Takahara et al. (2010)

MD01-

2421

35 Japan 36.02 141.77 150 HS4 cold evergreen conifer forest boreal forest boreal forest,

temperate

forest

good Takahara et al. (2010)

Lake Nojiri 36 Japan 36.83 138.22 100 HS4 increase in cold evergreen

conifer forest within cool

conifer forest

temperate for-

est, boreal for-

est

none none Takahara et al. (2010)

Lake Biwa 37 Japan 35.22 136 300 HS4 increase in cool conifer forest

within temperate conifer forest

temperate for-

est

boreal forest,

temperate

forest

fair Takahara et al. (2010)

Kamiyoshi

Basin

38 Japan 35.1 135.59 800 HS4 increase in cool conifer within

temperate conifer forest, and

deciduous broadleaf forest

temperate for-

est

boreal forest,

temperate

forest

fair Takahara et al. (2010)

Toushe

Basin

39 Japan 23.82 120.88 300 HS4 temperate deciduous or warm

temperate evergreen forest

temperate for-

est

boreal forest,

temperate

forest

good Takahara et al. (2010)

Fargher

Lake

40 North America 45.88 −122.58 270 HS4 boreal forest boreal forest none none Jimenez-Moreno et al. (2010)

Carp Lake 41 North America 45.91 −120.88 630 HS4 open temperate and pine forest temperate for-

est

none none Jimenez-Moreno et al. (2010)

Little Lake 42 North America 44.16 −123.58 260 HS4 boreal–temperate forest boreal forest,

temperate

forest

none none Jimenez-Moreno et al. (2010)

W8709A-

13PC

43 North America 42.25 −127.66 430 HS4 boreal forest with decrease in

heterophyla

boreal forest none none Jimenez-Moreno et al. (2010)

EW-9504-

17PC

44 North America 42.23 −125.81 460 HS1,

HS2,

HS3

warm temperate temperate for-

est, tropical for-

est

none none Jimenez-Moreno et al. (2010)

ODP 893A 45 North America 34.28 −120.03 220 HS4 open temperate forest temperate for-

est

temperate for-

est, bare soil

good Jimenez-Moreno et al. (2010)

Bear Lake 46 North America 41.95 −111.3 680 HS4 xerophytic shrubland grasses grasses good Jimenez-Moreno et al. (2010)

Camel

Lake

47 North America 30.26 −85.01 300 HS4 temperate forest with increase

in southeastern pine forest

temperate for-

est

boreal forest,

temperate

forest

fair Jimenez-Moreno et al. (2010)

Lake

Tulane

48 North America 27.58 −81.5 480 HS4 southeastern pine forest, florida

scrub

grasses, tem-

perate forest

bare soil, tem-

perate forest

moderate Jimenez-Moreno et al. (2010)

a Sampling resolutions of the MIS where vegetation changes occur. Mean sampling resolution is 393 years. b Similar to Handiani et al. (2012) model results.

olution of the climatic forcing fields. Furthermore, pollen

records represent the surrounding vegetation distribution at

different altitudes, while the ORCHIDEE model does not ac-

count for elevation changes within a grid cell (Woillez et al.,

2013).

HS_exp vegetation

To validate the simulated HS vegetation, we compare the

millennial-scale changes in selected high-resolution (< 800

years; mean resolution is 400 years) pollen records of 48

sites described for HS1-GS2 (n= 16) in South America and

southern Africa (Hessler et al., 2010; Handiani et al., 2012),

and for HS4–GS9 (n= 31) in Europe (Fletcher et al., 2010),

North America (Jimenez-Moreno et al., 2010), Japan (Taka-

hara et al., 2010) and Australasia (Harrison and Goni, 2010).

Figure 7 displays the location of paleorecords discussed in

this study. Table 4 summarizes the model–data comparison at

a grid cell level and provides additional information revealed

by palynological reconstructions. The sampling resolution

for the analyzed period (MIS2 for HS1, MIS3 for HS4), the

other biomes represented for a given site, and the potential

occurrences of similar reconstructed vegetation changes over

other HSs are presented.

The model–data comparison has been performed as fol-

lows: the two dominant reconstructed biomes are compared

with the two dominant simulated biomes over the grid cell

covering the site where the proxy originates. Among the 48

sites with pollen reconstructions, 12 were discarded because

of absence of vegetation on the considered grid cell. Among

the remaining 36 terrestrial and coastal sites, 11 disagree

(30 %) and 25 (70 %) display moderate to good agreement

(Table 4). Good agreement (n= 13) is obtained when recon-

structed and simulated dominant biomes are alike, fair agree-

ment (n= 9) when a subdominant biome agrees with a dom-

inant one, and moderate agreement (n= 3) when subdomi-

nant biomes only are similar.

Simulated vegetation in regions associated with high oxy-

gen productivity agrees well with pollen reconstruction. This

is the case for South America, where a strong increase in

tropical forest at the expense of bare soil is simulated in

eastern Brazil, and in the West Pacific Warm Pool region,

where tropical forest represents the dominant biome. The

slight southward shift of the southern border of desert areas
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Figure 5. (a) Model–data comparison of mega-biome distribu-

tion for LGM_ctrl based on dominant PFT type simulated by OR-

CHIDEE. For each grid cell, the fraction of bare soil, tropical

forests, temperate forests, boreal forests, and C3 and C4 grasses is

considered. The type covering the greatest cell fraction is the dom-

inant type. Note that dominant bare soil fraction denotes more than

80 %. Circles denote LGM mega-biomes inferred from pollen and

plant macrofossil records compiled by the BIOME6000 project. Re-

fer to Table 4 to see how PFTs simulated by ORCHIDEE have been

assigned to the mega-biomes mapped in this figure. (b) Detail of the

averaged vegetation composition in grid cells occupied by a domi-

nant mega-biome for LGM_ctrl.

in equatorial Africa is also well captured by ORCHIDEE. In

the Indian summer monsoon region, the simulated weakened

monsoon (Kageyama et al., 2009) leads to the appearance of

desert areas south and east of India, consistent with a dryer

climate revealed by a core from the Indus region (Deplazes

et al., 2014).

From this analysis it appears that sites showing a disagree-

ment between model and data are coastal sites and/or have

a very high bare soil fraction. Coastal sites do not necessar-

ily only represent the vegetation in the coastal region, but

they offer numerous records and allow high-resolution anal-

ysis thanks to their high sedimentation rate, so it is crucial

to include them for millennial-scale analysis. Five (50 %) of

the sites showing no agreement present a very high simulated

bare soil fractions (> 90 %). Woillez et al. (2013) already
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Figure 6. (a) Model–data comparison of mega-biome distribution

for HS_exp based on dominant PFT type simulated by ORCHIDEE.

For each grid cell, the fraction of bare soil, tropical forests, tem-

perate forests, boreal forests, and C3 and C4 grasses is considered.

The type covering the greatest cell fraction is the dominant type.

Note that dominant bare soil fraction denotes more than 80 %. Cir-

cles denote HS_exp mega-biomes inferred from pollen and plant

macrofossil records compilation. Refer to Table 4 to see how PFTs

simulated by ORCHIDEE and reconstructed vegetation have been

assigned to the mega-biomes mapped in this figure. (b) Detail of the

averaged vegetation composition in grid cells occupied by a domi-

nant mega-biome for HS_exp.

pointed out the overestimation of the bare soil fractions by

the ORCHIDEE model. We argue that this bias might partly

explain the observed discrepancy between model and data.

Furthermore, the other sites showing a disagreement, over

Europe and Australia, underestimate grass fraction. For Eu-

rope, the bias is already present in the LGM simulation and is

probably partly due to the systematic overestimation of for-

est by ORCHIDEE in this region (Woillez et al., 2011). Given

the scarcity of data offering a time resolution high enough to

catch millennial-scale vegetation variability, further testing

of the simulated vegetation remains challenging. In conclu-

sion, HS_exp vegetation agrees reasonably well with avail-

able pollen-based vegetation reconstruction.

Finally, based on the reasonable agreement of the simu-

lated changes in vegetation, humidity and precipitation with
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Figure 7. Location of marine and terrestrial paleoarchives sites included in the model–data comparison. Blue diamonds denote speleothem’s

calcite δ18O and red circles denote pollen records. Arabic numbers and Roman numerals displayed on the map identify the location of the

paleoarchives listed in Tables 3 (hydrology) and 4 (vegetation) for site names, references and further details.

observations depicted in this section, we can rely on the va-

lidity of the model to simulate δ18Oterr over a HS.

3.2 Global increase in δ18Oterr during a HS

The model calculates δ18Oterr for LGM_ctrl and HS_exp

as 23.41 and 23.52 ‰, respectively (Table 2). This average

δ18Oterr value is coherent with the δ18Oatm value of 23.8 ‰

with respect to V-SMOW and the finding that terrestrial and

marine contribution to δ18Oatm are similar (Luz et al., 2014).

Moreover, the global increase in δ18Oterr of 0.11 ‰ (Fig. 8)

can quantitatively explain most of the 0.1 ‰ δ18Oatm increase

over HS (Severinghaus et al., 2009; Guillevic et al., 2014;

Fig. 1). In the following, we use the different model out-

puts to decipher the main influences on δ18Oterr and hence

on δ18Oatm.

By construction (Eq. 3), δ18Oterr is linearly dependent on

both δ18Olw and 18εresp; we discuss these two effects below.

Figure 8 (upper panel) details the different contributions to

δ18Oterr change over a HS and demonstrates the dominant

role of δ18Olw (Sect. 3.2.1) compared to 18εresp (Sect. 3.2.2).

Indeed, the 0.11 ‰ increase in δ18Oterr exclusively stems

from δ18Olw increase (+0.14 ‰ over HS_exp), while respi-

ratory fractionation leads to a negative anomaly (−0.03 ‰)

over HS_exp. We explore in more details below the origin

of the relative changes in 18εresp and δ18Olw as calculated by

our modeling approach. In particular, we look at the different

regional contributions to the global 18εresp and δ18Olw sig-

nals since low-latitude regions are associated with the largest

GPP_O2 (Fig. 9a for the whole latitudinal range and Fig. 10a

for a closeup of the tropics) and hence have the strongest in-

fluence on the global δ18Oterr signal (Fig. 9c).

3.2.1 Leaf water

We find global δ18Olw values of 5.16 and 5.30 ‰ for

LGM_ctrl and HS_exp, respectively. The 0.14 ‰ difference

is similar to the δ18O increase observed in ice cores during

HS (Fig. 2). The increase in δ18Olw is clearly visible in the

low-latitude regions. It corresponds to an increase in δ18Op

and a decrease in GPP_O2 weighted relative humidity, both

effects leading to a global δ18Olw increase (Fig. 9b).

Still, when looking at the whole latitudinal range, the

GPP_O2 weighted relative humidity is not significantly dif-

ferent in HS and in LGM state. This is due to the decrease

in relative humidity during HS in the extratropical regions

(Fig. 9b). The net effect of relative humidity on δ18Olw is

thus zero. As a consequence, the main driver of δ18Olw (and

hence δ18Oterr) increase is the increase in GPP_O2-weighted

δ18Op (Fig. 9b) by 0.18 ‰ (Fig. 8). This increase is linked

to the southward shift of the tropical belt occurring during

HS, as suggested from the speleothem data compilation (see

Sect. 3.1.2).

Figure 10 clearly shows how rainfall amount and δ18Op

are anticorrelated as expected on most of the intertropical

band. During a HS, δ18Op is enriched in the Northern Hemi-

sphere down to 14 ◦S. A particular pattern occurs between

the Equator and 14 ◦S, where oxygen production is most

enhanced at HS, as precipitation is more abundant but also

heavier in δ18Op.

3.2.2 Respiration

Respiratory processes lead to a 0.03 ‰ decrease in δ18Oterr

in HS_exp compared to δ18Oterr in LGM_ctrl (Fig. 8a). This

variation is too small to challenge δ18Oterr enrichment caused

by hydrological processes, but the sign of its anomaly raises

questions. Here we explain the stability of 18εresp on millen-

nial timescales by a compensatory effect taking place be-
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Figure 8. Evolution of the main simulated factors controlling atmospheric δ18O. Note that all variables are oxygen-production-weighted,

i.e., integrated over vegetated areas, if not stated with “non w.”. (a) Left panel: HS_exp – LGM_ctrl anomalies of temperature and relative

humidity. Right panel: (left to right) HS_exp – LGM_ctrl anomalies of seawater δ18O, amount-weighted precipitation δ18O, precipitation
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atmospheric δ18O (δ18Oterr). (b) LGM_ctrl values of same relevant factors as in (a) in δ18Oterr budget. Note that plotted respiratory isotope

fractionation anomaly is inverted as respiration is an oxygen uptake process. Note also that the −18εresp anomaly totals 0.02 ‰ when soil

aeration influence on soil respiratory isotope fractionation is considered. δ18Olw is controlled by δ18Op, temperature and relative humidity

as described by Eq. (4). Combined with 18εresp as described in Eq. (3), one obtains δ18Oterr.

tween the main respiratory pathways. We then carry out a

simple sensitivity experiment to get a better understanding

of the causes of 18αdark_soil negative anomaly during HS.
18εresp is classically separated into four contributions as

given in Eq. (6): soil respiration, leaf respiration, photorespi-

ration and Mehler reaction.

Soil respiration with associated fractionation factor
18αdark_soil represents 63 % of dark respiration (Schlesinger

and Andrews, 2000). It represents 39 % of global terrestrial

respiration in our simulation, in agreement with estimates

from Raich and Potter (1995) of 30 to 40 %. 18αdark_soil

is temperature-dependent (Angert et al., 2003), with higher

fractionation associated with colder soils, causing a high

zonal contrast. This temperature effect leads to a change in
18αdark_soil by 0.19 ‰ at HS, increasing 18εresp by 0.12 ‰ and

in turn depleting δ18Oterr.

The photorespiration fraction, strongly discriminative

against 18O (18αphoto =−21.4 ‰), represents 28.56 % of the

global terrestrial oxygen uptake in LGM_ctrl. The propor-

tion of photorespiration is mainly linked to the change in the

C3 vs. C4 plant proportions and in temperature during pho-

tosynthesis (Von Caemmerer, 2000; Hoffmann et al., 2004).

During HS_exp, photorespiration fraction increases by 1 %

(29.52 %), driven by a slight decrease in C4 grass (1.3 %)

and a slight photosynthesis temperature increase (0.3 ◦C). As

a result, change in photorespiration fraction and soil respira-

tion lead 18εresp to decrease by 0.03 ‰ in HS_exp, thus caus-

ing δ18Oterr enrichment.

In summary, in our model, a weaker 18αdark_soil during

HS cancels out the effect of increased photorespiration on
18εresp. Note that this compensation between the two main

respiratory processes explains not only the temporal stability

of 18εresp but also its zonal stability. Indeed, in high latitudes,

cold temperatures lead to a weak photorespiration but strong

soil isotope fractionation. In low latitudes, despite a weak

soil isotope fractionation, high temperatures and variable C4

fraction lead to a highly variable photorespiration.

The 0.19 ‰ increase in 18αdark_soil during HS needs to be

considered carefully. Indeed, following the southward migra-

tion of the tropical rain belt during HS, tropical soils gener-

ally dry out during HSs, as inferred from the lower atmo-

spheric nitrous oxide concentration and its isotopic compo-

sition during HS1 (Schilt et al., 2014). Well-aerated soils

are associated with a strong discrimination (Angert et al.,

2003). Well-aerated tropical soils of the Northern Hemi-

sphere should thus lead to a stronger 18αdark_soil, owing to

the greater area of the northern vs. southern tropics. We per-

form a sensitivity study to assess the effect of soil moisture

content on 18αdark_soil by allowing the latter to vary in the

intertropical band according to the amount of precipitation

simulated by the IPSL model, used as a proxy for soil aera-

tion. Concretely, 18αdark_soil is allowed to vary from its initial

value (e.g., −10.2 ‰ for tropical waterlogged soils) up to a

factor of 2 (−20.2 ‰ for well-aerated tropical soils). Note

that not only tropical but also temperate soils are simulated

in the 30◦ S–30◦ N latitudinal band, as the type of soil is re-

lated to the vegetation cover in our model (Sect. 2.4.3).

Clim. Past, 11, 1527–1551, 2015 www.clim-past.net/11/1527/2015/



C. Reutenauer et al.: δ18O variations during a Heinrich stadial 1543

mol.m .a-2 -1
20 40 60

La
tit

ud
e

60S

30S

0

30N

60N

90N

Biospheric productivity

gpp_O
2

 LGM
ctrl

gpp_O
2

 HS
exp

gpp_C LGM
ctrl

gpp_C HS
exp

10 3δ1 8 O
-1 0 1

δ1 8 O
lw

δ1 8 O
p

Relative humidity (%)
-1012

r2m

10 3δ1 8 O
-1 0 1

HS
exp

- LGM
ctrl

 anomalies

δ1 8 O
terr

1 8
resp

δ1 8 O
lw

60S

30S

0

30N

60N

90N
(a) (b) (c)

Figure 9. (a) Zonal annual mean of gross primary productivity ex-

pressed in terms of carbon (GPP_C) and oxygen (GPP_O2) annual

molar fluxes for LGM_ctrl and HS_exp, respectively. (b) Zonal

annual-mean anomalies of δ18Olw, δ18Op and relative humidity

(note its inverted x axis). (c) Zonal annual-mean anomalies for

−
18εresp, δ18Olw and δ18Oterr. Note that all variables of panels

(b) and (c) are oxygen-production- (GPP_O2) weighted.

18αdark_soil totals −22.36 ‰ in the modified run, 6.12 ‰

stronger than in the LGM control run (−16.24 ‰). δ18Oterr,

increases subsequently by 2.91 ‰ The picture is similar for

HS_exp run, where 18αdark_soil strengthens by 6.17 ‰ from

−16.06 to −22.23 ‰, leading δ18Oterr to increase by 2.96 ‰

at HS.

While the absolute values of 18αdark_soil,
18εresp and

δ18Oterr are significantly modified by accounting for tropi-

cal soil aeration, this does not modify the sign of 18αdark_soil

anomaly between the LGM and HS. However, its magni-

tude is slightly reduced by 0.05 ‰, which causes the 18εresp

anomaly to vary from −0.03 to +0.02 ‰. As a result,

δ18Oterr is enriched by 0.16 ‰ during HS. This 0.05 ‰ in-

crease in δ18Oterr anomaly may give an estimate of the mag-

nitude of the uncertainty associated with 18αdark_soil when

considering soil wetness. This sensitivity test does not fun-

damentally affect the conclusion of the present study, as

the 18εresp anomaly, although becoming positive, remains

very small (+0.02 ‰) but underlines the limitations of our

approach. Why does a 18αdark_soil negative anomaly per-

sist when soil aeration is considered? First, in our sensi-

tivity test, we use the amount of precipitation as an in-

dex for soil aeration. This approach may be too simple and

could be improved by quantitatively relating the soil aera-

molO2.m .a-2 -1
20 40 60

La
tit

ud
e

30S

15S

0

15N

30N
Biospheric productivity

gpp_O
2

 LGM
ctrl

gpp_O
2

 HS
exp

10 3δ1 8 O
-6.5 -6 -5.5 -5 -4.5

Precipitation δ1 8 O

gppO2 w. δ1 8 O
p

 LGM
ctrl

gppO2 w. δ1 8 O
p

 HS
exp

mm.d-1
2 4

Terrestrial rainfall

Rainfall LGM
ctrl

Rainfall HS
exp

30S

15S

0

15N

30N
(a) (b) (c)

Figure 10. Intertropical profiles of (a) zonal annual mean of gross

primary productivity expressed in terms of oxygen (GPP_O2) an-

nual molar fluxes for LGM_ctrl and HS_exp. (b) Zonal annual

mean of oxygen-production-weighted δ18Op for LGM_ctrl and

HS_exp. (c) Zonal annual mean of rainfall amount for LGM_ctrl

and HS_exp.

tion to the model’s rainfall amount and land surface slope

by using existing parameterizations employed in models that

predict nitrous oxide production (e.g., LPX-Bern, which is

a state-of-the-art bottom-up dynamic global vegetation and

land surface process model; Stocker et al., 2013). Second,

soil respiration is closely linked to the vegetation cover in

our model, as types of soil (boreal, temperate, tropical) and

their associated fractionation factor are related to PFTs rather

than land area (Sect. 2.4.3). Third, aboveground oxygen

productivity controls the rate of soil respiration. As South-

ern Hemisphere tropics dominate over Northern Hemisphere

tropics in terms of GPP_O2 for both LGM and HS runs,
18αdark_soil anomaly remains negative even when consider-

ing soil aeration. The distribution of vegetation simulated by

ORCHIDEE, favoring Southern Hemisphere tropics, com-

bined with the GPP_O2 weighting of soil respiration, ex-

plains why the drying-out of the Northern Hemisphere soils,

albeit covering a greater land area, does not lead to a stronger
18αdark_soil during HS in our model.

4 Discussion

Our results suggest a strong control of tropical hydrology on

δ18Oterr through changes in δ18Op. It suggests that δ18Oatm

is related to tropical hydrology and may be a good tracer for

global monsoon signal. The aim of the following discussion

is to evaluate these results by (i) providing some insights on

δ18Omar estimate and (ii) testing the robustness of our con-
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clusion on the driver of δ18Oterr changes through three sen-

sitivity experiments separating the different parameters (hy-

drology, climate and vegetation).

4.1 Estimate of δ18Omar over a Heinrich stadial

δ18Omar has been recently estimated as 24.3± 2.0 ‰ for

present day (Luz et al., 2014). In order to estimate δ18Omar

for the LGM and HS, we assumed that fractionation during

oxygen uptake by marine biosphere remained constant be-

tween the LGM/HS and present day and used a mean ocean

δ18O enriched by 1 ‰ at the LGM (Waelbroeck et al., 2002).

This results in a value of δ18Omar of 25.3± 2.0 ‰ for the

LGM and HS. It is important to note that a rise in sea level

during a HS would lead to a depleted mean ocean δ18O, as

polar ice sheets accumulate 16O, and can therefore not ex-

plain the increased δ18Oatm observed during stadials.

Because of the spatial limitation of paleorecords to provide

a global picture of marine primary productivity, we have esti-

mated the marine productivity for the LGM and HS using the

Pelagic Interaction Scheme for Carbon and Ecosystem Stud-

ies (PISCES) model. The PISCES model is a biogeochemi-

cal model of the global ocean including a simple representa-

tion of marine ecosystem and forced offline by the AOGCM

IPSL-CM4 (Aumont and Bopp, 2006; Mariotti et al., 2012).

The model PISCES has already been compared under glacial

conditions with observations (Mariotti et al., 2012; Tagli-

abue et al., 2009; Bopp et al., 2003) and reproduces roughly

the paleoproductivity reconstruction of Kohfeld et al. (2005).

Using the same forcings as for our simulations, Mariotti

et al. (2012) simulate a global decrease in oceanic primary

productivity of 16 % during a Heinrich event, in agreement

with independent modeling studies (Schmittner, 2005; Men-

viel et al., 2008; Schmittner and Galbraith, 2008) and more

important than the one in terrestrial GPP (3.5 %). Because

δ18Omar is larger than δ18Oterr, this decrease in marine pro-

ductivity would lead to a decrease in global δ18Oatm during

the HS, opposite to the observation. We simulated a change in

the marine production to assess its impact on δ18Oatm signal.

With a change of 10 % in marine export, δ18Oatm varies by

0.05 ‰. However this result needs to be treated with caution

for two main reasons. (i) The fraction of land versus ocean

production is strongly affecting δ18Oatm if the isotope frac-

tionation factors associated with the terrestrial and marine

production are not similar. Pioneer studies on the Dole effect

often invoked the marine-to-terrestrial production ratio to ex-

plain the observed variations. Though it is not the case in

our model, recent studies suggest their magnitude to be very

close, with δ18Omar 1.8 ‰ higher than δ18Oterr. The change

in δ18Oatm is thus likely to be smaller in the real world. (ii)

Recent studies (eg. Mariotti et al., 2012) rather suggest a de-

crease in marine export after a Heinrich event. This would

lead to a decrease in δ18Oatm signal that is in opposition to

the observations as mentioned in Section 4.1. We conclude

that marine productivity is not the driver for δ18Oatm increase

during HS.

4.2 Disentangling the influences of climate, hydrology

and vegetation on δ18Oatm: sensitivity experiments.

In order to assess the robustness of our conclusion stating that

the low-latitude hydrological cycle is the driver of δ18Oatm

changes, we have run three different experiments:

– In HSclim we test the impact of the climatic conditions.

This simulation is similar to LGM-ctrl, except that the

temperature and relative humidity from HS_exp are pre-

scribed as boundary conditions.

– In HShydro we test the impact of the hydrological

cycle. This simulation is similar to LGM-ctrl, except

that δ18Op and δ18Ovap from HS_exp are prescribed as

boundary conditions.

– In HSveget we test the impact of the vegetation. This

simulation is similar to LGM-ctrl, except that the vege-

tation production and distribution from HS_exp are pre-

scribed as boundary conditions.

Figure 11 summarizes the results of the sensitivity analy-

sis in terms of temperature, humidity, and oxygen isotopic

composition of δ18Op, δ18Olw and δ18Oterr. The sensitivity

tests show that the implementation of one parameter from

HS_exp (HSclim, HShydro and HSveget) leads to a simu-

lated δ18Oterr anomaly similar to or higher than in the full

HS_exp.

In HSclim, δ18Oterr enrichment is mostly caused by the

0.3 % decrease in relative humidity over the LGM veg-

etated areas after the AMOC collapse, since δ18Op and

δ18Olw are not modified by definition. This global decrease

in GPP_O2-weighted relative humidity is not visible in the

global HS_exp (Fig. 8) and hence does not explain the

δ18Oterr increase in HS_exp. In HSveget, the southward shift

of HS_exp vegetation leads to a global GPP_O2 weighted

relative humidity decrease by 0.5 %. As in HSclim, this leads

to a high δ18Oterr positive anomaly. The effect of relative

humidity on δ18Oterr is minimized in HS_exp, as the south-

ward shift in vegetation counterbalances the change in cli-

matic conditions. This compensation explains why the final

GPP_O2 weighted relative humidity does not vary.

In HShydro, the δ18Op increase explains the whole

δ18Oterr increase. This increase in GPP_O2-weighted δ18Op

is similar in HShydro and HS_exp, which confirms that

the δ18Oterr simulated by the model in the full experiment

HS_exp is arising from a change intrinsic to the hydrological

cycle, only slightly affected by vegetation distribution.

In addition, note that a weakening of δ18Olw only oc-

curs with HS vegetation (HS_exp, HSveget), regardless of

the climatic conditions. Moreover, HSclim depicts a stronger

δ18Olw, caused by a higher temperature increase over HS,
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Figure 11. Summary of sensitivity study experiments. HSfull uses

the same settings as HS_exp, while HSclim, HShydro and HSveget

experiments are identical to LGM_ctrl, except for meteoric wa-

ter isotopic composition, climatic conditions, or vegetation pro-

duction and distribution, respectively, originating from HS_exp.

For each of the experiments, an annual-mean anomaly (experiment

– LGM_ctrl) of oxygen-production-weighted temperature, relative

humidity, δ18Op, water vapor δ18O, δ18Olw, 18εresp and δ18Oterr is

presented.

leading to an enhanced photorespiration fraction among C3

plants. However, the temperature effect on δ18Olw remains

minor.

The global impact of 18εresp is negligible in all exper-

iments, with variations 1 order of magnitude lower than

δ18Op.

Finally, these tests confirm the strong control of hydrolog-

ical processes on δ18Oterr, and highlight the role of the vege-

tation distribution in defining δ18Op and climatic conditions

recorded by δ18Oterr.

5 Conclusions and perspective

Our study first aimed at quantitatively testing the driving of

δ18Oatm by tropical hydrology as suggested by the strong cor-

relation between local records of δ18Oc and global record

of δ18Oatm on the millennial scale. For this we used a HS-

type simulation under LGM background conditions with an

oxygen isotope mass balance model using spatial and tem-

poral fields of (i) temperature and relative humidity from the

AOGCM IPSL-CM4, (ii) PFT distribution and GPP provided

by the dynamic global vegetation model ORCHIDEE, (iii)

oxygen isotope composition of water vapor and precipita-

tion from the AOGCM LMDZ-iso, and (iv) the latest iso-

tope fractionation factor measurements involved in respira-

tory and photosynthetic processes.

Validation of AOGCM outputs feeding the oxygen iso-

tope mass balance model was performed through a model–

data comparison of the main drivers of δ18Oterr: (i) simulated

δ18Op was compared to speleothem’s calcite δ18O anoma-

lies, and in most sites showed excellent agreement despite

the complexity of the δ18Oc signal; (ii) simulated HS humid-

ity was compared to the reconstructed ones, broadly agree-

ing with paleodata; and (iii) simulated vegetation was com-

pared with palynological reconstructions for LGM and HS,

and was qualitatively consistent.

The model simulates a terrestrial enrichment of δ18Oterr

of 0.11 ‰, which mostly arises from the δ18Op signal. On

a global scale, respiration fractionation only plays a minor

role in the anomaly observed during HS, and slightly de-

creases δ18Oterr in our simulation, driven by a weaker isotope

fractionation of soil respiration during HS that masks the ef-

fect of increased photorespiration. Accounting for the effect

of soil aeration on 18αdark_soil modifies the 18εresp anomaly

by 0.05 ‰, a change too small to challenge δ18Op main con-

trol on δ18Oterr. However, the simplicity of our approach to

model soil moisture content and the GPP_O2 weighting of
18αdark_soil favoring Southern Hemisphere tropics are likely

to explain this result. In order to precisely evaluate the uncer-

tainty associated with 18εresp, an improved parameterization

of soil aeration will be needed. This limitation of the model

must thus be kept in mind when considering the conclusion

of this study.

The strong control of the low-latitude hydrological cycle

on simulated δ18Oatm on millennial timescales suggests that

δ18Oatm records, at first order, changes in monsoonal activ-

ity on millennial timescales, in agreement with CH4 mix-

ing ratio variations. Indeed, rapid CH4 variations during the

last glacial period are generally attributed to changes in the

low-latitude water cycle (Baumgartner et al., 2014; Brook

et al., 2000; Chappellaz et al., 1993) driven by latitudinal

shifts of the ITCZ and the monsoon systems (e.g., Chiang,

2009). Such a signal can also be used for exploring the low-

latitude hydrological cycle characteristic of Heinrich events.

Indeed, the recent study of Rhodes et al. (2015) suggests that

observed CH4 spikes in WAIS Divide ice core during the

cold phases of HSs represent the hydrological signature of

Heinrich events, through activation of Southern Hemisphere

wetlands. The Guillevic et al. (2014) multi-ice-core prox-

ies approach over GS9–HS4 also suggests a decoupling be-

tween changes in Greenland temperatures and low-latitude

hydrology identified in both CH4 and δ18Oatm, and demon-

strates the need for high-resolution data with common pre-

cise chronology to explore submillennial variations.

δ18Oatm is a valuable tool to assess the validity of Earth

system model simulations, as it integrates a combination

of hydrological, climatic and biological processes. Further-

more, δ18Oatm is a global signal, which mostly arises from

the tropics and integrates all vegetated areas. Therefore, the

ability of a model to catch δ18Oatm millennial-scale varia-

tions implies a correct spatial representation of an ensemble

of processes. The comparison of Earth system model out-

puts with global proxies such as δ18Oatm, involving the main

components of the climatic system, is crucial for gaining
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confidence in their ability to represent the real world. Our

approach is mainly restricted to terrestrial contribution, but

future modeling exercises should also include the oceanic

δ18Oatm signal.
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