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Abstract— The high cost of mixed-signal circuit testing has
sparked a lot of interest for developing alternative low-cost
techniques. Although it is rather straightforward to evaluate an
alternative test technique in terms of test cost reduction, proving
the equivalence between an alternative and the standard test
technique in terms of test metrics, before actually deploying
the alternative test technique in production, is very challenging.
The underlying reason is the prohibitive simulation effort that
is required. Existing test metrics evaluation methodologies are
efficient only for circuits that can be simulated fast at transistor-
level. In this paper, we propose a test metrics evaluation method-
ology for circuits with long simulation times that is based on a
combination of behavioral modeling and statistical blockade. The
methodology is demonstrated on a built-in self-test strategy for
Σ∆ analog-to-digital converters.

I. INTRODUCTION

Testing the mixed-signal functions of Systems-on-Chip
(SoC) and Systems-in-Package (SiP) is responsible for a large
fraction of the overall manufacturing cost [1]. The standard
test technique followed today is specification testing where
all the performances that are promised in the datasheet are
measured sequentially [2]. The high test cost is due to the
specialized automatic test equipment (ATE) that is required
and the corresponding long test times. To reduce the test
cost, various alternative test paradigms have been proposed,
including structural defect-oriented test [3], built-in test [4],
[5], built-off test [6], alternate test [7], and statistical learning
[8]. The aim of any such alternative test technique is to
alleviate the ATE requirements, for example, by performing
the test on low-cost digital ATE, and to reduce the test time,
for example, by reducing the number of test configurations,
the volume of data that needs to be loaded and processed on
the ATE, the pure electrical test time, etc.

Although it is typically an easy exercise to project test
cost savings resulting by employing alternative test techniques,
it is not as straightforward to prove that an alternative test
technique maintains a test accuracy that is comparable, if not
equivalent, to the test accuracy of the standard test technique.
Ideally, the test accuracy, typically expressed by the test
coverage and yield coverage metrics or, equivalently, by the
test escape and yield loss metrics, should be evaluated during
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the design and test development phases through simulation.
This is important so as to be able to adjust, refine, or abandon
the alternative test technique at this early stage before moving
to high-volume production. Otherwise, we would need to apply
both the standard and alternative test techniques repeatedly on
a high-volume of fabricated circuits, in order to examine how
well they correlate. If at this late stage we conclude that the
alternative test technique results in insufficient test accuracy,
then we would have wasted significant resources and face a
significant setback in the test development.

The challenge for evaluating alternative test techniques
through simulation is to be able to perform the analysis
in a time-efficient manner. Regarding catastrophic defects,
the design of the simulation campaign to evaluate the test
coverage is straightforward, however, in the case where the
number of defects is too high, sophisticated defect sampling
techniques must be used [9]. On the other hand, evaluating
alternative test techniques against process variations is far
more challenging. The reason is that the specifications are
set to 3σ or higher and, thereby, a straightforward Monte
Carlo simulation that generates failing instances to evaluate
test coverage and marginally functional instances to evaluate
yield loss is not a viable option since an intractable number
of iterations are required. We use the term parametric test
metrics to refer to the test coverage and yield loss in the case
where only process variations are considered and catastrophic
defects are excluded from the analysis.

Several fast alternatives to Monte Carlo simulation exist
[10]. In the context of parametric test metrics evaluation,
several approaches have been studied, including density es-
timation [11], [12], Copulas theory [13], extreme value theory
[14], [15], importance sampling [16], and generation of para-
metric fault models [17], [18]. However, all these approaches
make the tacit assumption that the circuit can be simulated
at transistor-level at least a few hundreds or thousand times.
Therefore, they are not applicable for circuits with long
simulation times, such as analog-to-digital converters (ADCs)
and phase locked loops (PPLs).

Approaches applicable to circuits with long simulation times
are proposed in [19], [20]. The underlying idea to speed
up the analysis is to replace transistor-level simulations with
behavioral-level simulations. The behavioral parameters are
extracted by following a divide and conquer approach to
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decompose the circuit into individual blocks that can be
simulated independently at transistor-level. In [19], the Monte
Carlo analysis is performed at behavioral-level by sampling
an estimate of the joint probability density function (PDF)
of behavioral parameters to quickly generate millions of “syn-
thetic” circuit instances so as to be able to estimate test metrics
with parts-per-million (PPM) using relative frequencies. In
[20], a hyper-rectangular in the space of behavioral parameters
is defined based on the minimum and maximum values of
the behavioral parameters. Thereafter, uniform sampling is
performed within this hyper-rectangular to generate “syn-
thetic” faulty and marginally functional circuit instances so
as to be able to study the correlation between alternative and
standard test techniques beyond the nominal design point.
The disadvantage of the approach in [19] is that the PDF is
estimated based on centered circuit instances, thus, the tails
of the PDF where the faulty and marginally functional circuit
instances occur are inaccurately estimated, resulting, in turn,
in inaccurate parametric test metrics. The disadvantage of the
approach in [20] is that the extracted faulty and marginally
functional circuit instances are not necessarily realistic and
feasible circuit instances, thus, there is little confidence in
the resultant correlation between alternative and standard test
techniques. In this paper, we propose a methodology that also
uses behavioral modeling as a mean to speed up the analysis,
yet it builds upon the ideas proposed in [18] to speed up further
the analysis so as to be able to generate a realistic and feasible
set of faulty and marginally functional circuit instances based
on which the correlation between alternative and standard test
techniques can be studied with confidence.

The rest of the paper is structured as follows. In Section II,
we provide an overview of the proposed methodology and we
present the detailed algorithm. In Section III, we present our
case study which is a built-in self-test (BIST) technique for
Σ∆ ADCs. In Section IV, we demonstrate our methodology
on this case study. Finally, Section V concludes the paper.

II. PARAMETRIC TEST METRICS EVALUATION
METHODOLOGY

A. Overview

Our approach to parametric test metrics evaluation is to gen-
erate in a time-efficient manner two sets of circuit instances,
namely a fault model, which contains a set of circuit instances
that fail the specification limit of at least one performance,
and a set of marginally functional circuit instances that have
at least one performance that lies close to its specification
limit. These two sets that comprise extreme circuit instances
are used to examine the correlation between the alternative and
standard test techniques at the tails of the design distribution
where test escape and yield loss events occur.

Our aim is to stick to the Monte Carlo approach so as to
cover effectively the design space instead of running selective
corner simulations, which inevitably could lead to misleading
conclusions. However, this entails several challenges that we
have to overcome. To speed up simulation, we first replace the
transistor-level design with a behavioral model that captures

effectively the circuit functionality, as well as the non-idealities
(i.e. noise sources, non-linearity, etc.). For circuits with long
simulation times, such a behavioral model is always available
during the design phase and is used repeatedly to guide the
design and achieve the best possible performance trade-offs.
Thus, the development of the behavioral model does not
introduce an extra effort towards our objective.

The next step is to be able to run Monte Carlo simulations at
behavioral-level. Our approach is to estimate the joint PDF of
behavioral parameters and use it as a behavioral model design
kit (BMDK), similar to how the process design kit (PDK)
is employed in Monte Carlo transistor-level simulations. To
address the scenario where the PDF does not follow a known
parametric form (i.e. Gaussian, etc.), we use non-parametric
kernel density estimation (KDE) which makes no assumption
about the underlying form of the distribution [21].

To estimate the joint PDF of behavioral parameters, we
require an initial Monte Carlo sample of behavioral parameters
which draws upon the correlations that exist amongst the low-
level process parameters, as these are defined in the actual
PDK of the technology. Our approach is to run a Monte Carlo
simulation at transistor-level and use appropriate test benches
to extract the behavioral parameters. For this purpose, taking
into consideration that a single transistor-level simulation of
the complete circuit may take more than one day to terminate,
we decompose the circuit into individual simpler blocks that
can be simulated independently of each other at transistor-
level, much faster than the complete circuit itself. Test benches
using one block at a time are designed to extract all the relevant
behavioral parameters. The key is to use the same Monte Carlo
seed for every test bench such that the same global process
parameter vectors are visited in each Monte Carlo run. This
ensures that the correlations between the behavioral parameters
are captured efficiently.

To perform a Monte Carlo simulation at behavioral level,
we use the BMDK to sample a behavioral parameter vector
in each run. Although behavioral simulation is considerably
faster than transistor-level simulation, it is in the order of
minutes and, thereby, it is still not time-efficient enough for
the purpose of evaluating parametric test metrics. To address
this challenge, we employ the statistical blockade technique
[22], [23]. The underlying idea is to decide whether a circuit
instance is extreme before actually running the behavioral
simulation since any non-extreme circuit instance is worthless
for evaluating parametric test metrics. If a circuit instance
is unlikely to be extreme, then the behavioral simulation
is blocked and we proceed by sampling a new behavioral
parameter vector. The decision block that is introduced into the
Monte Carlo loop is fine-tuned in the course of the algorithm
so as to increase the confidence on whether to run a behavioral
simulation and, thereby, save a maximum of simulation effort.

B. Detailed algorithm

In this Section, we present the detailed algorithm for para-
metric test metrics evaluation. In Section IV, the various steps



of the algorithm will be demonstrated on our case study using
figures where necessary.

step 1 Build a behavioral model of the circuit.
step 2 Decompose the circuit into individual blocks.
step 3 Build test benches for each individual block for extract-
ing all relevant behavioral parameters.
step 4 Run n Monte Carlo simulations at transistor-level
independently for each test bench using the same seed and
extract the behavioral parameters.
step 5 Use the sample of n behavioral parameters from step
4 to build the joint PDF of behavioral parameters using non-
parametric KDE. This joint PDF serves as the BMDK.

The behavioral model from step 1 and the BMDK from
step 5 are the inputs to the main loop of the algorithm that is
based on statistical blockade. The algorithm is run separately
for each performance of interest. Let us denote a performance
of interest by P and let us assume without loss of generality
that it has a lower specification limit, denoted by s. Suppose
that we target generating a fault model of size at least N . As a
by-product, the algorithm returns a set of marginally functional
circuit instances of size M > N .

step 6 Sample the BMDK to generate n
′

independent behav-
ioral parameter vectors. Set i = 1.
step 7.i Run n

′
behavioral-level simulations using the n

′

behavioral parameter vectors and compute the performance
P in each run.
step 8.i The circuit instances that satisfy P < s are put into the
fault model while the circuit instances that satisfy s < P <
s + |ε| are put into the set of marginally functional circuit
instances. If the size of the fault model exceeds N , then the
algorithm terminates.
step 9.i Consider the ordered sequence of performances from

step 7.i, denoted by P (1) ≤ · · · ≤ P (j) ≤ · · · ≤ P (n
′
), and

calculate the q%-quantile as ui = P (j), where j =
⌈
n

′
q/100

⌉
.

In other words, Pr{P ≤ ui} ≈ q/100. We create two
sets, namely the set S−i that includes the

⌈
n

′
q/100

⌉
circuit

instances that satisfy P ≤ ui and the set S+i that includes
the rest n

′ −
⌈
n

′
q/100

⌉
circuit instances that satisfy P > ui.

The set S−i contains the most extreme circuit instances with
performance that lies closer to the specification limit.
step 10.i Train a nonlinear binary classifier to allocate a
boundary bi that separates the sets S−i and S+i in the space
of behavioral parameters.
step 11.i Apply the statistical blockade technique to generate
a sample of n

′
behavioral parameter vectors that is more

extreme than the sample used in step 7.i. Specifically, we
sample the BMDK sequentially and we examine the footprint
of each generated behavioral parameter vector with respect to
boundary bi. Sampling stops when we identify n

′
behavioral

parameter vectors that lie in the area that corresponds to S−i.
The underlying idea is that a behavioral parameter that lies
in the area that corresponds to S+i more likely will result

in a performance that satisfies P > ui if we were to run a
behavioral-level simulation. For this reason, these behavioral
parameters are skipped since our objective is to generate circuit
instances that satisfy P < s and given that, at least in the first
iterations of the algorithm, s < ui. In short, the aim of the
statistical blockade is to concentrate the simulation effort in
areas of the behavioral parameter space that are more likely to
result in extreme circuit instances violating the specification
limit and circumvent running a behavioral-level simulation if,
with very high probability, the resultant performance will be
much higher than the specification limit.
step 12.i Set i = i+1. Go to step 7.i where the behavioral-level
simulations use the n

′
behavioral parameter vectors generated

in step 11.i-1.

In successive iterations of the loop, the threshold ui reduces
and the boundary allocated by the classifier in step 10.i moves
towards the true boundary that separates the functional from
the faulty circuit instances in the space of behavioral param-
eters. In this way, the sample that is generated in step 11.i is
more and more extreme and its geometric mean is approaching
gradually the specification limit. After few iterations, the fault
model size reaches N and the algorithm terminates. A set of
marginally functional circuit instances of size M is also made
available.

The parameters n
′
, q, and ε are user-defined. n

′
should be

selected as high as possible given the simulation time budget.
For selecting q, there is trade-off between simulation time and
how well the area of failing circuit instances is approximated.
By setting q = 50, we maintain balanced training sets S+i and
S−i at each iteration and we populate heavily the area around
the boundary that separates them. Therefore, the allocation
of the boundary bi is more accurate and the area of failing
circuit instances is well approximated in the end. However,
the boundary moves slowly towards the true boundary that
separates the functional from the faulty circuit instances in
the space of behavioral parameters and, thereby, the algorithm
takes more time to terminate. By setting q at a small value, say
q = 10, the boundary moves faster towards the true boundary
and, thereby, the algorithm terminates faster, however, the set
S+i may overshadow the set S−i, risking not to approximate
equally well the area of failing circuit instances in the end.
Finally, ε defines the area of marginal functionality. For a
large enough and practical value of ε, for example, setting
ε equal to one standard deviation, a circuit instance that fails
the specification limit is sampled with lower probability than a
marginally functional circuit instance and, thereby, at any time
during the course of algorithm, a set of marginally functional
circuit instances of size M > N is maintained.

III. CASE STUDY

A. BIST for Σ∆ ADCs using digital ternary stimulus

Our case study is a fully-digital, low-cost BIST strategy for
measuring the Signal-to-Noise and Distortion Ratio (SNDR) of
Σ∆ ADCs, originally proposed in [24], [25]. Fig. 1 shows the



Fig. 1. General block diagram of the BIST strategy for Σ∆ ADCs.

general block diagram of the BIST strategy. The test wrapper
is composed of three digital blocks, namely the Stimulus
Generator, Response Analyzer, and BIST Control. During test
mode, the Σ∆ ADC under test is disconnected from the main
signal path and is connected to the Stimulus Generator and
the Response Analyzer. The Stimulus Generator provides an
optimized digital test stimulus to the input whereas the Re-
sponse Analyzer computes the SNDR based on purely digital
algorithms. The BIST Control block manages test execution
and provides a standard digital access to load different test
configurations and read out test results.

The key point in the dynamic characterization of any ADC is
to provide an appropriate high-linearity input test stimulus –at
least 2 effective bits above the nominal linearity of the ADC–
that can excite the complete full scale (FS) of the ADC. This
particular BIST strategy makes use of a ternary test stimulus
that encodes a high-linearity sine-wave at an amplitude close to
the FS of the Σ∆ ADC. This ternary test stimulus is generated
on-chip by combining a digital Σ∆ bitstream encoding a high-
resolution sine-wave with a delayed version of itself. The dig-
ital Σ∆ bitstream is generated through software and is loaded
into the circular shift register. As a result of this combination,
the shaped high-frequency quantization noise in the digital
Σ∆ bitstream can be greatly attenuated, improving the spectral
performance of the ternary test stimulus. The resulting ternary
test stimulus is then fed into the Σ∆ ADC through a 3-level
Digital-to-Analog Converter (DAC). The Response Analyzer
compares the output response to the reference digital Σ∆
bitstream and computes the SNDR based on the well-known
sine-wave fitting algorithm. The interested reader is referred
to [24], [25] for an in-depth description of the BIST strategy.

B. Σ∆ ADC and behavioral modeling

The ADC under test in our case study is a 18-bit Σ∆
ADC designed in a 40nm CMOS technology and provided
by STMicroelectronics. Fig. 2 shows a simplified schematic
of the modulator of the Σ∆ ADC which is a fully-differential
2:1 MASH. Fig. 2 includes the circular shift register of the
Stimulus Generator and shows how the input stage of the
modulator is modified for injecting the ternary test stimulus.
The required 3-level DAC, shown in Fig. 1, has been merged
together with the input stage of the modulator simply by
adding four input switches [25]. This DAC interfaces the three
digital symbols ‘+1’, ‘0’, and ‘−1’ in the ternary test stimulus
to the three analog differential levels +Vref = REF+−REF−,
0, and −Vref = REF− − REF+, respectively, in order to
retrieve the analog sine-wave encoded in the ternary test

Fig. 2. Simplified schematic of the 2:1 MASH modulator including built-in
test circuitry.

stimulus and inject it at the input of the modulator. The
decimation filter of the Σ∆ ADC and the Response Analyzer
are completely digital blocks and they are not considered in
our analysis.

Direct transistor-level simulation of the complete system
in Fig. 2 takes up very long times. Specifically, a single
simulation to obtain the SNDR of the 2:1 MASH modulator for
a given input amplitude with an accuracy of 1dB takes more
than one day to complete on dedicated simulation servers. To
this end, according to steps 1-3 of the algorithm in Section II-
B, we developed a realistic behavioral model following the
guidelines provided in [26], [27] and we decomposed the
modulator into simpler building blocks that can be efficiently
and separately simulated at transistor-level. The main sources
of dynamic non-linearity and noise in the modulator that
result in SNDR variations are modeled explicitly as behavioral
parameters in the behavioral model. In particular, we consider
the finite gain-bandwidth product (GBW), limited slew-rate
(SR), finite open-loop gain, reference voltage of the modulator,
and noise of the amplifier in the first integrator and we set up
transistor-level test benches including only the first integrator
to extract these behavioral parameters. In addition, we consider
jitter noise and kT/C noise. Notice that in behavioral-level
Monte Carlo simulations all noise sources are treated as
random variables and only the GBW, SR, open-loop gain,
and reference voltage of the modulator vary according to
their distribution in the BMDK reflecting process variations
in the PDK of the technology. The dynamic performance of
the modulator is mainly limited by the first integrator, thus,
for simplicity, the second and third integrators, as well as
the comparators, are modeled as ideal blocks [26], [27]. In
addition, the behavioral model excludes other non-idealities,
such as charge injection, clock feedthrough, capacitor non-
linearity, non-linearity of the 3-level DAC, kickback noise
from comparators to integrators, etc., since, based on our
evaluations, their impact on the dynamic performance is far
less significant compared to the aforementioned modeled non-
idealities and given that a behavioral model cannot include
all possible non-idealities because the equations would be
unsolvable [26], [27].

Fig. 3 shows the SNDR of the complete 2:1 MASH mod-
ulator as a function of the input amplitude at the nominal
design point using both transistor-level and behavioral-level



Fig. 3. SNDR vs. input amplitude curves obtained by transistor-level and
behavioral-level simulation.

Fig. 4. SNDR histograms obtained by transistor-level and behavioral-level
Monte Carlo simulations using, respectively, the PDK and the BMDK.

simulations. As it can be observed, there is a very good
agreement between the transistor-level and behavioral-level
simulations across the whole amplitude range, demonstrating
the accuracy of the behavioral model. Regarding simulation
time, it took about one week to run the set of transistor-level
simulations, while the set of behavioral-level simulations was
completed in about 1.5 minutes.

In Fig. 4, we consider the maximum input amplitude and
we compare the SNDR histogram obtained by transistor-
level Monte Carlo simulation using the technology PDK
with the SNDR histogram obtained by behavioral-level Monte
Carlo simulation using the developed BMDK. In the case
of transistor-level Monte Carlo simulation, it took about one
month to perform the 21 runs, while in the case of behavioral-
level simulation it took only 50 minutes to perform 250 runs.
As it can be observed, the average SNDR in the case of
transistor-level simulations is 104.8 dB with a standard devia-
tion 1.07 dB, while in the case of behavioral-level simulations
the average SNDR is 105.7 dB with a standard deviation
1.09 dB. Although the statistical significance of the SNDR
histogram obtained by transistor-level Monte Carlo simulation
is limited by the low number of runs, which are still very
time-consuming and prohibitive to perform in practice, the
two SNDR histograms show a good agreement.

IV. RESULTS

The first step in evaluating the BIST strategy is to simulate it
at the nominal design point. The results are shown in Fig. 5 for
two different operating scenarios. Solid-line curves correspond
to a low sampling frequency (fs) below one tenth of the GBW

Fig. 5. SNDR measurements as a function of the test stimulus amplitude.

of the amplifiers in the integrators, while dashed-line curves
correspond to a high fs at around one fourth of the GBW. The
plot shows the SNDR as a function of the amplitude of the
test stimulus for two different types of test stimuli, namely
an ideal (e.g. very high-resolution) sine-wave corresponding
to the standard test technique and a ternary test stimulus that
encodes an ideal sine-wave corresponding to the BIST strategy.
In both operating scenarios, the oversampling ratio (OSR) was
set to 128 such that the expected SNDR is the same. This
implies that the test stimuli have a higher frequency in the high
fs scenario than in the low fs scenario. In the low fs scenario,
we observe that the BIST provides an SNDR measurement
that practically coincides across the input amplitude range
with the true SNDR obtained by using the ideal sine-wave
as test stimulus. In the high fs scenario, the BIST provides an
SNDR that is consistently lower for input amplitudes above
−10 dBFS, however, the two SNDR measurements track each
other very well and, thereby, the BIST strategy can still be
used by assuming an appropriate amplitude-dependent test
limit. The fact that the BIST strategy provides a lower SNDR
is explained by the input-dependent settling behavior in the
first integrator of the modulator. In particular, the ternary test
stimulus, unlike the ideal sine-wave, induces settling errors in
the first integrator, thus degrading the SNDR value.

Once the BIST strategy is evaluated at the nominal design
point and is proven to be equivalent to the standard test
that employs a high-resolution sine-wave, the next step is to
prove that the equivalence also holds true for extreme circuit
instances with excessive process variations that result in a
SNDR value that marginally passes or fails the specification
limit. Unless this analysis is performed, we do not have
sufficient confidence for applying the BIST strategy in high-
volume production test. This analysis is performed by applying
the proposed parametric test metrics evaluation methodology.
Next, we will show this analysis for the high-fs scenario and
an input amplitude at −2.3 dBFS. We chose this operating
point because it appears to be the most challenging for the
BIST strategy.

Referring to the algorithm in Section II-B, steps 1-3 were
discussed in Section III-B. In step 4, we perform n = 103

transistor-level Monte Carlo simulations for the different test
benches, in order to generate n = 103 behavioral-level circuit
instances. These data are used in step 5 to fit a non-parametric



Fig. 6. Circuit instances generated through transistor-level simulation and
non-parametric density sampling projected onto the space of three behavioral
parameters.

joint PDF of the behavioral parameters that serves as the
BMDK. The BMDK can be sampled very fast to generate
new behavioral-level circuit instances. Fig. 6 projects circuit
instances generated by transistor-level simulation and BMDK
sampling onto the space of three behavioral parameters. We
excluded from this scatter plot and from the scatter plots
that will follow the reference voltage of the modulator since
it exhibits the smallest variations and turns out not to be
responsible for SNDR failures. As it can be observed from Fig.
6, the two populations are practically indistinguishable and, for
the purpose of test metrics evaluation, BMDK sampling can
replace transistor-level simulation.

Next, we run the statistical blockade loop in steps 6-11,
in order to generate the set of extreme circuit instances. The
SNDR has a lower specification that is set at 101.2dB, which
corresponds to 4σ. We aim at generating N = 100 circuit
instances that fail the specification. The margin ε is set at
0.8dB. Finally, we use q = 10 and in each iteration of the
loop we simulate n

′
= 500 circuit instances.

The loop terminates after four iterations when we have
finally generated fault model of size N = 100. Fig. 7 shows
the SNDR values of the samples of circuit instances simulated
across the four iterations. Each circle point corresponds to one
circuit instance. As it can be observed, in subsequent iterations
the SNDR median drops linearly and the number of circuit
instances in the fault model increases. Fig. 8 provides another
visual illustration. It shows that in subsequent iterations the
SNDR histograms move to the left, closer to the specification
limit, and a larger part of the tail of the histograms lies beyond
the specification. Fig. 8 also shows that the number M of
marginally functional circuits that are simulated across the four
iterations is, as expected, much larger than N .

Fig. 9 projects the circuits instances in the first iteration and
the fault model onto the space of the same three behavioral
parameters plotted in Fig. 6. As it can be observed, circuit
instances in the fault model have a combination of low GBW
and low SR. Since the fault model is generated in a Monte
Carlo sense, we conclude that failures most likely will be due
to a combination of low GBW and low SR.

Fig. 10 plots the SNDR measurements obtained by the
BIST strategy and the standard test technique on the fault
model and the marginally functional circuit instances, as

Fig. 7. SNDR values of circuit instances simulated in each iteration.

Fig. 8. Histograms of circuit instances simulated in each iteration.

well as on the circuit instances in the initial Monte Carlo
run, which, by default, are expected to be centered around
the nominal design point. As it can be observed, the two
SNDR measurements correlate very well not only around the
nominal design point, but, most importantly at the tails of the
distribution where test escape and yield loss events may occur.
The correlation is slightly nonlinear with a knee that lies well
into the region of functional circuits. We observe also that
some marginally faulty circuit instances are now shown to
satisfy the SNDR specification of 101.2dB and, vice versa,
some marginally functional circuit instances are now shown
to violate the SNDR specification of 101.2dB. These circuit
instances correspond to the overlapping area of the faulty
and marginally functional populations in Fig. 10. Finally,
we observe that there is a spread in the points around the
correlation curve. The overlapping and the spread are both due
to noise in the modulator and the limited number of samples
that are used to compute the Fast Fourier Transform (FFT)
from which the SNDR is derived. Fig. 10 is a strong proof
that the BIST strategy achieves high fault coverage and low
yield loss and, thereby, we can proceed with implementing it in
high-volume production test. Additionally, given the extreme
circuit instances, the extreme value theory can be used to
quantify the fault coverage and yield loss probabilities [14],
[15], but this out of the scope of this paper.

Regarding computation time, it took 50 minutes to run the
n = 103 transistor-level simulations of the individual blocks
of the decomposed circuit in step 4, 1 minute to estimate the
joint PDF in step 5 and derive the BMDK, a few seconds to
sample one behavioral parameter vector from the BMDK in



Fig. 9. Circuit instances in the first iteration and faulty circuit instances
projected onto the space of three behavioral parameters.

Fig. 10. True SNDR value vs. BIST measurement for faulty, marginally
functional, and centered circuit instances.

step 6, and less than one 1 minute to run a behavioral-level
simulation in step 7i. The majority of the time is consumed
for running the behavioral-level simulations in the statistical
blockade loop in steps 7i-12i. Overall, it took about 6 hours to
produce the data for the plots in Fig. 6-10, in order to complete
the evaluation.

V. CONCLUSIONS

We proposed a generic methodology for evaluating an alter-
native test technique against the standard test technique. The
methodology specifically targets circuits with long transistor-
level simulation times that cannot be handled by existing
methodologies. It is based on running Monte Carlo simulations
at behavioral-level while respecting the joint PDF of process
parameters defined in the PDK. The simulation campaign
is further accelerated by employing the statistical blockade
technique. The output of the methodology is a set of extreme
circuit instances that marginally pass or fail the specifications.
This set allows to readily study the equivalence of the alterna-
tive and standard test techniques far from the nominal design
point where test escapes and yield loss events may occur. The
methodology was illustrated step by step for the evaluation of
a BIST strategy for a 40nm 18-bit Σ∆ ADC.
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