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ABSTRACT  43 

Recombinant methionyl human leptin (metreleptin) therapy was shown to improve hyperglycemia, dyslipidemia 44 

and insulin sensitivity in patients with lipodystrophic syndromes, but its effects on insulin secretion remain 45 

controversial. 46 

We used dynamic intravenous clamp procedures to measure insulin secretion, adjusted to insulin sensitivity, at 47 

baseline and after one-year metreleptin therapy, in 16 consecutive patients with lipodystrophy, diabetes and 48 

leptin deficiency.  49 

Patients, aged 39.2 ± 4 years (mean ± SEM), presented with familial partial lipodystrophies (n=11, 10 women) 50 

or congenital generalized lipodystrophy (n=5, 4 women). Their BMI (23.9 ± 0.7 kg/m
2
), HbA1c (8.5 ± 0.4%) 51 

and serum triglycerides (4.6 ± 0.9 mmol/l) significantly decreased within 1 month of metreleptin therapy, then 52 

remained stable. Insulin sensitivity (from hyperglycaemic or euglycemic hyperinsulinemic clamps, n = 4 and 12, 53 

respectively), insulin secretion during graded glucose infusion (n=12), and acute insulin response to intravenous 54 

glucose adjusted to insulin sensitivity (disposition index, n=12), significantly increased after 1 year of 55 

metreleptin therapy. Increase in disposition index was related to decrease in percent total and trunk body fat.  56 

Metreleptin therapy improves not only insulin sensitivity, but also insulin secretion in patients with diabetes due 57 

to genetic lipodystrophies.  58 

  59 



INTRODUCTION 60 

Leptin deficiency, linked to reduced fat amount, is thought to importantly contribute to the metabolic 61 

complications associated with lipodystrophic syndromes, as shown by studies in mice [1,2] and humans [3,4]. In 62 

generalized forms of lipodystrophies, metreleptin therapy dramatically decreased liver and muscle lipid content, 63 

improving insulin sensitivity, hyperglycemia and dyslipidemia, partly independently of decreased caloric intake 64 

[3,4]. However, in partial forms of lipodystrophies, the effect of metreleptin on hyperglycemia has not been 65 

clearly established in patients with moderate baseline metabolic alterations [5-7]. In addition, the effect of 66 

metreleptin on insulin secretion, which remains controversial, has been previously investigated using only oral 67 

glucose tolerance tests [3,6,8-10].  68 

In this study, we evaluated the effect of metreleptin on insulin sensitivity and insulin secretion using dynamic 69 

intravenous clamp procedures in 16 patients with genetic lipodystrophy syndromes, included in a compassionate 70 

therapeutic programme. 71 

 72 

METHODS 73 

(see also Supplementary appendix) 74 
 75 

Patients 76 

Twenty-two non HIV-infected patients with genetic or acquired, partial or generalized lipodystrophy, diabetes 77 

and low serum leptin (ie, fasting leptin ≤ 6 ng/ml), entered a compassionate programme of metreleptin therapy 78 

approved by the National French Health Agency. Among them, sixteen consecutive patients older than 16 years 79 

gave their informed consent for metabolic investigations at baseline and after one year of therapy, which were 80 

approved by the local ethics committee (Comité de Protection des Personnes, Paris-St-Louis). 81 

Recombinant human methionyl-leptin (r-metHuLeptin/metreleptin, Amylin/Bristol-Myers-Squibb/AstraZeneca 82 

Pharmaceuticals, San Diego, CA), self-administered in one daily subcutaneous injection at the initial dose of 83 

0.02 mg/kg (M0) increased to 0.08 mg/kg at one month (M1), was added to the patients’ regimen, stable for at 84 

least 6 weeks. Every three months, metreleptin and other medications were adapted to tolerance and 85 

effectiveness, and anthropometric parameters, lipid profile, HbA1c, renal and liver function tests were collected.  86 

The mean metreleptin daily dose at one year (M12) was 0.10 mg/kg ± 0.02 (SEM).  87 

 88 

Metabolic investigations using insulin and/or glucose intravenous infusions were performed at M0 and M12.  89 



The first four patients (1 to 4) were evaluated with hyperglycemic clamps, and the twelve subsequent patients (5 90 

to 16) with euglycemic hyperinsulinemic clamps and intravenous glucose tolerance test (IVGTT) followed by a 91 

graded IV-glucose infusion (glucose ramping).  92 

Hyperglycemic clamps allowed the measurement of acute insulin response to an intravenous bolus of glucose 93 

(AIR), and the ratio of the glucose disposal rate to insulin concentration (M/I) at the 200 mg/dl-hyperglycemic 94 

plateau, as an estimate of insulin sensitivity.  95 

Euglycemic hyperinsulinemic clamps estimated the whole-body insulin sensitivity to glucose, expressed as the 96 

insulin-stimulated glucose disposal rate (M-value), further adjusted to insulin concentrations (M/I). AIR was 97 

calculated from IVGTT. Insulin secretion rates (ISR) in response to four-step graded glucose infusions evaluated 98 

the beta-cell sensitivity to glucose.  99 

The disposition index was calculated as the product of AIR by M measured during euglycemic hyperinsulinemic 100 

clamps [11]. 101 

 102 

Statistical analyses 103 

A favorable effect of metreleptin on glucose control was defined as a 0.5-point decrease in HbA1c, or HbA1c 104 

stability with a decrease of more than 50% in total daily insulin or oral antidiabetic doses, or discontinuation of 105 

one antidiabetic class, between M0 and M12. Results are presented as mean ± SEM, unless otherwise specified. 106 

See File S1 for supplemental methods and references. 107 

 108 

 109 

RESULTS  110 

Anthropometric and metabolic markers 111 

Patients with diabetes, attributable to familial partial lipodystrophy (FPLD) linked to LMNA (nine women), 112 

PPARG (one man) or PLIN1 mutations (one woman), or to congenital generalized lipodystrophy attributable to 113 

AGPAT2 mutations (CGL1) (four women, one man) were included in the study (Table S1). They presented 114 

different forms of lipodystrophic syndromes with insulin resistance and dyslipidemia, attributable to already 115 

described causative mutations (for review, see [12]). Their age and BMI were 39.2 ± 4.0 years and 23.9 ± 0.7 116 

kg/m
2
, respectively. Their serum leptin was low (2.7 ± 0.5 ng/ml), related to fat mass (r

2
=0.7, p=0.003). BMI, 117 

total energy intake (but not food macronutrient distribution), HbA1c, triglycerides, aspartate aminotransferase 118 

(AST) and gamma glutamyl transferase levels significantly decreased within the first month of metreleptin 119 



therapy, then were not significantly modified until M12 (Table 1, Figure S1, and data not shown). After one-year 120 

metreleptin therapy, proportion of total body fat and lean masses were not significantly modified, but abdominal 121 

and percentage of truncal fat decreased or tended to decrease. Patients used a lower number of antidiabetic 122 

classes, and three among nine of them stopped insulin therapy (Table 1). One-year changes in BMI, HbA1c and 123 

triglycerides were not significantly related to baseline leptin levels.  124 

Fourteen of 16 patients met the criteria for a glucose response to metreleptin. However, one of these fourteen 125 

patients cannot be formally considered as a responder since, although her glucose control was strikingly 126 

improved after one-year metreleptin whereas glitazones were stopped, her basal insulin doses were increased 127 

from 24 to 30 U/day and her metformin dose from 1g to 3g per day (patient 9, Table S2). The two non-responder 128 

patients were the only patient with a PLIN1-linked partial lipodystrophy, and a patient with FPLD2 with 129 

moderately elevated baseline HbA1c (patients 6 and 12, Table S2). None of them reported any difficulties 130 

regarding the compliance with the treatment. Compared to other patients with partial lipodystrophies, they had 131 

baseline values of serum leptin, percent body fat, waist circumference and duration of diabetes above the median 132 

levels. They were the only patients who did not lose, or even gained weight (+0 and +3.2 kg, respectively) over 133 

the one-year period.  134 

Insulin sensitivity  135 

Insulin-stimulated glucose disposal rate during euglycaemic hyperinsulinemic clamp (n=12) significantly 136 

increased during metreleptin therapy, from 2.72 ± 0.79 to 5.44 ± 1.19 mg/kg of fat free mass/min (p=0.0005) for 137 

M-value and 0.013 ± 0.005 to 0.031 ± 0.008 mg/kg of fat free mass/min/pmol/l for M/I (p=0.02), showing that 138 

the whole-body insulin sensitivity improved. Of note, in three patients (patients 6, 8 and 13, Table S1), 139 

euglycemia was maintained without any glucose infusion during the hyperinsulinemic clamp at baseline, while a 140 

significant glucose infusion rate was mandatory after one year-metreleptin therapy, pointing to a significant 141 

improvement in insulin sensitivity. In the four patients evaluated with the hyperglycemic clamp, M/I increased 142 

by a mean of 48% (Table S3). 143 

Insulin secretion  144 

Acute insulin response to intravenous glucose (AIR, n=16) did not significantly increased after one-year 145 

metreleptin therapy (88.9 ± 27.5 pmol/kg/min at M0 and 128.8 ± 36.4 at M12, p=0.19). However, insulin 146 

secretion rate (ISR) during glucose ramping was higher at every hyperglycemic step (ANOVA overall effect 147 



p<0.0001), and the disposition index (AIR x M-value), which adjusts the acute beta-cell function to insulin 148 

sensitivity
 
[11] increased after one-year metreleptin (n=12) (Figure 1) (Table S3). The AIR x M/I index, assessed 149 

in the whole group, also significantly increased (from 6.3 ± 3.8 to 9.2 ± 3.1, p=0.02).   150 

Although one-year changes in HbA1c, triglycerides, M-value, and AIR were not significantly associated with 151 

modifications in anthropometric parameters (data not shown), disposition index variation was significantly 152 

related to changes in percent total body fat (r
2
=0.71, p=0.008), and percent trunk fat mass (r

2
=0.40, p=0.05). 153 

 154 

Metreleptin response in the LMNA-mutated subgroup of patients  155 

In patients with LMNA mutations (n=9), BMI, HbA1c, triglycerides and liver enzymes significantly decreased 156 

after one-year metreleptin therapy (data not shown), while M-value increased from 2.88 ± 1.13 to 6.85 ± 1.65 157 

mg/kg of fat free mass/min (n=7, p=0.02). ISR increased or tended to increase at the four steps of glucose 158 

ramping, with a mean increase of 36%, and the disposition index significantly increased, from 208.8 ± 154.3 to 159 

1068 ± 543.9 (n=7, p=0.02) (Figure S2 and Table S3). In this group, the decrease of HbA1c at M12 was 160 

positively correlated with the initial HbA1c level (r
2
=0.7, p=0.03), but was not related to the initial leptinemia. 161 

 162 

DISCUSSION 163 

In patients with lipodystrophy, metreleptin therapy was shown to improve insulin sensitivity [8,13,14]. However 164 

the studies that investigated its effects on insulin secretion were done using oral glucose tolerance tests, and gave 165 

heterogeneous results [3,6,8-10]. Interestingly, leptin has been shown to have dual effects on pancreatic beta-cell 166 

function: while suppressing insulin gene expression and secretion, it also inhibits ectopic lipid storage in islet 167 

cells, thus preventing lipotoxicity in rodent models [15].  168 

The present study, which used dynamic i.v. clamp techniques in 16 patients with diabetes and endogenous 169 

hypoleptinemia due to genetically-determined lipodystrophic syndromes, shows that metreleptin treatment for 1 170 

year significantly improved insulin secretion. It also confirms that it decreased HbA1c, triglycerides and liver 171 

enzymes and enhanced insulin sensitivity, with a two-fold increase in insulin-stimulated glucose disposal rate 172 

after one year, as reported [8]. Importantly, in this context of severe insulin resistance, we adjusted insulin 173 

secretion measurements for insulin sensitivity using the disposition index, based on the hyperbolic function 174 

linking acute insulin response and insulin sensitivity [11]. Improvement of this index showed that, in patients 175 

with lipodystrophy, metreleptin therapy increased beta-cell sensitivity to glucose. 176 



Metreleptin-induced changes in disposition index and body fat mass and distribution were correlated, suggesting 177 

that improvement in beta-cell secretory function could result from decreased lipotoxicity. In accordance, the two 178 

non-responder patients did not lose, or even gained weight under metreleptin. Leptin could also inhibit glucagon 179 

oversecretion, which was reported in insulin-deficient mice [16] and remains to be investigated in patients with 180 

lipodystrophy under metreleptin therapy. 181 

In patients with partial forms of lipodystrophies as a result of mutations in the LMNA gene, defects of insulin 182 

secretion have been suspected to prevent the beneficial effect of metreleptin on glucose homeostasis [5]. Our 183 

present results show that metreleptin therapy also increases insulin secretion in this subgroup of patients, 184 

affected by typical Dunnigan syndrome (FPLD2) [17] or by previously described mixed laminopathic 185 

phenotypes associating lipodystrophic syndrome and progeroid or cardiomyopathic signs [18,19]. In addition, in 186 

accordance with recent findings showing that, in patients with partial lipodystrophy, metreleptin was mainly 187 

useful if metabolic derangements were severe [7], the present study shows that effect of metreleptin on glucose 188 

control in these patients was related to the baseline level of HbA1c.  189 

In conclusion, 1 year of metreleptin therapy improves beta-cell function in patients with lipodystrophy, leptin 190 

deficiency and diabetes. Improved insulin secretion, related to fat mass and distribution changes, probably 191 

contributes to the metabolic benefits of metreleptin. Further studies are required to investigate whether these 192 

effects are maintained over time and to study mechanisms by which metreleptin affects the islets. Leptin has 193 

been proposed to protect the islets by acting on several pathophysiological steps involved in beta-cell 194 

lipotoxicity and in glucagon production during diabetes [20]. These leptin-regulated pathways, which control, 195 

among others, de novo ceramide synthesis, could be further studied in response to metreleptin therapy. 196 

 197 
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FIGURE 1 LEGEND 

Effect of metreleptin therapy on insulin secretion 

A. Insulin secretion rates (ISR) during graded glucose infusion were calculated for each of the four glucose 

infusion steps (of 4, 8, 10 and 12 mg/ kg of body weight of glucose per min) and plotted against the 

corresponding mean glucose concentration, in patients 5 to 16. Mean values obtained at baseline are represented 

as empty circles, and those obtained at one year-metreleptin therapy as filled triangles. Whiskers represent SEM. 

 * p<0.05 versus M0  

B. Disposition index, indicating the insulin secretion capacity relative to insulin sensitivity, was calculated in the 

same patients as the product of M value measured during the euglycemic hyperinsulinemic clamp by AIR. 

Rectangles represent 25
th

 and 75
th

 percentile values, with the median values depicted in-between. Whiskers 

represent the lowest datum still within 1.5 IQR of the lower quartile, and the highest datum still within 1.5 IQR 

of the upper quartile (Tukey boxplot).  

M0: baseline, M12: after 12 months of metreleptin therapy;  * p<0.05 versus M0  
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Table 1: Metabolic markers at baseline and after one year of metreleptin treatment in the sixteen studied patients 

 

Variable Baseline 12 month-metreleptin p 

 

Body weight and body composition 

BMI (kg/m2) 

Waist circumference (cm) 

Abdominal total adipose tissue area (cm2, CT-scan) 

Abdominal visceral adipose tissue area (cm2, CT-scan) 

Abdominal subcutaneous adipose tissue area (cm2, CT-scan) 

Fat mass (% of total body mass, DEXA) 

Trunk fat mass (% of total body mass, DEXA) 

Lean mass (% of total body mass, DEXA) 

Energy intake 

Total food intake (Kcal/day) 

Metabolic, renal and liver parameters 

Systolic blood pressure (mmHg) 

HbA1c (%) 

Fasting Glucose (mmol/l) 

Fasting Insulin (pmol/l)  

LDL-cholesterol (mmol/l) 

HDL-cholesterol (mmol/l) 

Triglycerides (mmol/l)  

Aspartate aminotransferase (AST) (IU/l) 

Alanine aminotransferase (ALT) (IU/l) 

Gamma glutamyl transferase (GGT) (IU/l) 

Creatinine (µmol/l) 

Albumin excretion rate (mg/l) 

 

 

23.9 (0.7) 

81.8 (7.0) 

195.9 (29.3) 

122.2 (17.7) 

73.7 (13.6) 

15.4 (1.6) 

18.7 (2.4) 

82.1 (1.7) 

 

1970 (108.1) 

 

130.1 (3.4) 

8.5 (0.4) 

7.5 (0.5) 

259.2 (81.2) 

2.5 (0.3) 

0.7 (0.04) 

4.6 (0.9) 

47.8 (8.5) 

70.9 (17.2) 

84.9 (21.7) 

62.4 (4.8) 

297.5 (166.5) 

 

 

22.6 (0.8) 

77.5 (8.5) 

144.0 (24.4) 

94.6 (15.7) 

49.4 (11.8) 

14.7 (1.5) 

17.8 (2.4) 

85.5 (2.5) 

 

1717 (112.8) 

 

125.1 (3.0) 

7.5 (0.3) 

7.0 (0.8) 

380.9 (125.8) 

2.0 (0.02) 

0.8 (0.04) 

3.4 (0.9) 

32.4 (2.9) 

49.4 (6.9) 

57.6 (19.9) 

66.7 (4.9) 

83.4 (55.9) 

 

 

0.003 

0.004 

0.03 

0.0005 

0.006 

0.6 

0.08 

0.8 

 

0.03 

 

0.23 

0.005 

0.5 

0.7 

0.14 

0.24 

0.03 

0.03 

0.3 

0.05 

0.03 

0.12 

Therapy    

Antidiabetic medication classes per patient 2.2 (0.28) 1.6 (0.26) 0.008 

Insulin users (n) 9/16 6/16  

 
Lipid-lowering medications per patient 

 

Fibrate 9/16 

Statin 6/16 

 

 

Fibrate 9/16 

Statin 4/16 

 

 

 

Values are expressed as mean (SEM). p values are depicted in bold when considered significant (p < 0.05).  

Total, visceral and subcutaneous abdominal adipose tissue areas were evaluated form 1cm-reconstructed CT-scan slices at the L4 

level. DEXA: dual energy x-ray absorptiometry  

 

 



Figure 1: Effect of metreleptin therapy on insulin secretion  
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Additional Supporting Information 

 

File S1. Supplemental methods and references 

 

Methods 

 

Biochemical analyses 

HbA1c was measured using high performance liquid chromatography and plasma insulin using a immuno-

radiometric assay (BI-INSULIN IRMA, Cis Bio-International, Gif-Sur-Yvette, France). 

The values of LDL-cholesterol were determined from total cholesterol, triglycerides and HDL-cholesterol levels 

using the Friedewald formula (LDL-cholesterol = total cholesterol minus HDL-cholesterol minus triglycerides 

(mg/dl) /5), when triglycerides levels were below 400 mg/dl (n=9 patients).  

 

Evaluation of body composition 

Total fat and lean masses, and body fat segmental distribution, were measured by dual energy x-ray 

absorptiometry (DEXA), and abdominal subcutaneous and visceral adipose tissue surfaces (SAT and VAT) were 

calculated from 1 cm-reconstructed CT-scan slices at the L4 level as previously described [1].
 

 

Caloric and macronutrient intakes were evaluated by three-day food records performed at M0 and M12. 

 

Metabolic investigations 

Metabolic investigations were performed after a 12h-overnight fast at M0 and M12. When fasting glycemia was 

above 7 mmol/l, a 2h-insulin infusion was performed before the investigations. Intravenous glucose tolerance 

tests (IVGTT, n=16), hyperglycemic and euglycemic hyperinsulinemic clamps (n= 4 and 12, respectively), and 

graded glucose infusion tests (glucose ramping, n=12) were performed as previously described [2-6].  

 

Acute insulin response to an intravenous bolus of glucose (AIR) (n=16 patients) 

In all patients, a solution of 20% glucose of [weight (kg) x (200 – fasting glycemia (mg/dl)) x 1.5] / 200 ml was 

given within 30 seconds intravenously and measurements of plasma glucose and insulin were performed at -5, 0, 

2, 4, 6, 8 and 10 min. AIR was defined as the incremental area under the curve of plasma insulin concentration 

above baseline between 2 and 10 min after intravenous glucose administration according to the trapezoid 

method. Baseline insulin (InsB) was the mean insulin level between -5 and 0min [(Ins-5min+Ins0min)/2]. AIR= 



[(IT0min+ IT2min)/2 – IT0min] +[( IT2min + IT4min)/2 – IT0min]+ [(IT4min + IT6min)/2 – IT0min]+ 

[(IT6min + 

IT8min)/2 – IT0min]+ [(IT8min + IT10min)/2 – IT0min] and expressed as pmol/kg/min. 

Hyperglycemic clamp (patients 1 to 4) 

Following the intravenous bolus of glucose for the AIR determination, we maintained plasma glucose at 

200 mg/dl for 180 min by infusing 20% glucose at varying rates according to blood glucose measurements 

reformed at 5min-intervals. Blood samples were collected at 160
th

, 170
th
 and 180

th
 min for the measurement of 

plasma insulin and C peptide concentrations. We calculated the glucose disposal rate from the glucose infusion 

rate during the last 20 min of the hyperglycemic plateau after accounting for inter-individual differences in 

glucose space [3] (in mg/kg body fat-free mass/min). Glucose space correction was calculated as (G2-G1) x 0.095 

with G2 and G1 being the glucose concentrations in mg/dl at the end and at the beginning of each 5-min period 

during the last 20 min of the clamp. The ratio of the glucose disposal rate to insulin concentration at the 200 

mg/dl-hyperglycemic plateau (M/I) was used as an estimate of insulin sensitivity.  

 

Euglycemic hyperinsulinemic clamp (patients 5 to 16) 

The insulin-stimulated glucose disposal rate (M-value) was measured during a 100 min-step of 80 

mU/m
2
/min insulin infusion, while blood glucose was clamped at 100 mg/dl using variable infusion of 20% 

glucose. Blood samples were collected before the clamp and every 10 min during the last 20 min, for the 

measurement of plasma glucose and insulin. The M-value was calculated according to DeFronzo et al. [3], after 

accounting for inter-individual differences in glucose space, and was expressed in mg/kg of fat-free mass/min, 

using the formula described above. We also calculated the M/I ratio, which adjusted the M-value to the mean 

insulin concentration during the last 20 min of the test. 

 

Glucose ramping (graded glucose infusion test) (patients 5 to 16) 

This test consisted of four consecutive 40-min intravenous infusion of 4, 8, 10 and 12 mg/kg/min of 

glucose as previously described [2,4]. Blood samples were collected every 10 minutes during the whole 

procedure (200 min). The insulin secretion rates (ISR), which evaluate the beta-cell sensitivity to glucose, were 

assessed from the changes in C-peptide concentrations and the pre-hepatic insulin secretion rate for each of the 

four glucose infusion steps. ISR was derived by deconvolution, assuming a two-compartmental model of C-

peptide clearance kinetic, using the ISEC software version 3.4a designed by Hovorka R et al (see [5] for more 

details). Mean ISR for each glucose infusion step was adjusted to fat-free mass and plotted against the 



corresponding mean glucose concentration, thereby establishing a dose-response relationship between plasma 

glucose and insulin secretion rate for each patient.   

 

The disposition index (patients 5 to 16) was calculated as the product of AIR by M-value measured 

during euglycemic hyperinsulinemic clamps [6]. 

 

Statistical analyses 

Statistical analyses were performed using GraphPad PRISM (GraphPad Software, Inc, CA, USA) and Statview 

(SAS Institute Inc., CA, Austria) statistical softwares. We used the Fisher exact test to compare categorical 

variables and the non-parametric Mann Whitney U test. Analysis of variance (ANOVA) and Wilcoxon rank-sum 

test for quantitative variables were performed for comparisons over time. The relationship between ISR and 

glucose levels during glucose ramp was analyzed using mixed model analysis of covariance. Correlations of 

different measures of glucose metabolism with body composition or age were evaluated using Spearman’s rank 

correlation test or linear regression analysis. P values <0.05 were considered significant. 
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Table S1: Baseline characteristics of the sixteen studied patients  
 

Patients 
Age 

(years) 
Sex 

(M/F) 
Disease 

(gene mutation) 
BMI 

(kg/m2) 
Total body fat 

mass (%, DEXA) 
Serum leptin  

(ng/ml) 
Known duration of 

diabetes (years) 

1  60 F 
FPLD2 

(HTZ LMNA p.R482W) 
22.8 21.8 0.6 23 

2 37 F 
FPLD2 

(HTZ LMNA p.R482W) 
25.7 18.1 1.4 16 

3 24 F 
CGL1 

(HMZ AGPAT2 p.L165-
Q196del) 

26.8 8.8 0.1 6 

4 17 F 
CGL1 

(HMZ AGPAT2 
p.Q196fsX228) 

20.3 11.2 1.7 3 

5  52 F 
CGL1 

(HMZ AGPAT2 p.K216X) 
21.5 8.4 0.1 38 

6  51 F 
FPLD4 

(HTZ PLIN1 
p.V398GfsX166) 

26.0 22.2 5.0 30 

7  50 F 
FPLD2 

(HTZ LMNA p.R482W) 
24.5 21.3 4.1 6 

8  41 F 
FPLD2 

(HTZ LMNA p.R482W) 
23.0 13.4 3.4 22 

9  19 F 
FPLD2 

(HTZ LMNA p.R482W) 
25.0 22.6 5.6 3 

10  50 F 
FPLD2 

(HTZ LMNA p.R482W) 
25.2 13.8 3.6 1 

11 16 F 
Progeroid laminopathy  
(HTZ LMNA p.D47Y) 

17.4 7.2 1.1 2 

12  36 F 
FPLD2 

(HTZ LMNA p.R482W) 
24.5 24.2 3.9 22 

13  45 M 
FPLD3 

(HTZ PPARG p.L339X) 
29.0 22.6 4.0 22 

14 29 F 

CGL1 
(HMZ AGPAT2 
p.Q196fsX228) 

 

24.1 10.1 2.2 29 

15 70 M 
CGL1 

(HMZ AGPAT2 p.E172K) 
21.4 4.2 0.34 42 

16 31 F 
Mixed laminopathy  

(HTZ LMNA p.R28W) 
24.8 16.9 6 20 

Mean ± SEM 39.2 ± 4.0   23.9 ± 0.7 15.4 ± 1.6 2.7 ± 0.5 17.8 ± 3.3 

  

FPLD: Familial Partial Lipodystrophy; CGL: Congenital Generalized Lipoatrophy; AGL: Acquired Generalized Lipoatrophy; 

HTZ: heterozygous; HMZ: homozygous; DEXA: dual energy x-ray absorptiometry 

  



Table S2: Use of antidiabetic medications during metreleptin therapy 

Patients 
Type of 

lipodystrophy 

Antidiabetic treatment (except insulin) 
 

Insulin doses (U/d) 
 

HbA1c 
 

M0 M12 M0 M12 M0 M12 

1  FPLD2 
Metformin 3 g/d 

Pioglitazone 45 mg/d 
Glimepiride 4 mg/d 

Metformin 3 g/d 
 

Glimepiride 4 mg/d 
0 0 7.7 6.9 

2 FPLD2 
Metformin 1.7 g/d 

Pioglitazone 30 mg/d 
Glibenclamide 2 mg/d 

Metformin 1.7 g/d 
 

Glibenclamide 1 mg/d 
0 0 7.7 6.9 

3 CGL1 Metformin 3g/d Metformin 3g/d 0 0 8.7 6 

4 CGL1 None None 61 0 7.6 6.4 

5  CGL1 None None 60 0 8.1 7.1 

6  FPLD4 Metformin 3 g/d Metformin 3 g/d 254 564 9 10.2 

7  FPLD2 Metformin 2 g/d Metformin 2 g/d 0 0 8.5 7.4 

8  FPLD2 Metformin 3 g/d Metformin 3g/d 140 40 6.9 6.9 

9  FPLD2 

Metformin 1 g/d 
Pioglitazone 45 mg/d 
Gliclazide 120 mg/d 
Liraglutide 1.8 mg/d 

 

Metformin 3 g/d 
 

Gliclazide 120 mg/d 
Liraglutide 1.8 mg/d 

 

24 30 12.1 9.2 

10  FPLD2 Metformin 1.7 g/d Metformin 1.7 g/d 0 0 7.1 6.2 

11 
Progeroid 

laminopathy  
Metformin 1.4 g/d 

Pioglitazone 30 mg/d 
Metformin 1.4 g/d 

 
202 0 10.4 9 

12  FPLD2 
Metformin 0.7 g/d 

Vildagliptin 100 mg/d 
 

Metformin 0.7 g/d 
Vildagliptin 100 mg/d 

 
0 0 7.1 7.2 

13  FPLD3 
Metformin 3 g/d 

Glibenclamide 4 mg/d 
Liraglutide 1.8 mg/d 

Metformin 3 g/d 
Glibenclamide 4 mg/d 
Liraglutide 1.8 mg/d 

0 0 10.8 9.9 

14 CGL1 Metformin 2.55 g/d None 80 68 8.7 8 

15 CGL1 Metformin 3 g/d None 180 180 8.3 6.8 

16 
Mixed 

laminopathy  
Metformin 3 g/d 

Glibenclamide 4 mg/d 
Metformin 2.1 g/d 

 
272 220 7.6 6 

 

 



Figure S1 : Longitudinal effects of metreleptin therapy in the 16 patients  

 

D. 

Variable Baseline 
1 month-

metreleptin 
therapy (M1) 

p M1 versus 
baseline 

12 month-
metreleptin 

therapy (M12) 

p M12 versus 
baseline 

p M1 versus 
M12 

BMI (kg/m2) 23.9 (0.7) 22.9 (0.7) 0.0009 22.6 (0.8) 0.003 0.06 

HbA1c (%) 8.5 (0.4) 7.6 (0.3) 0.0005 7.5 (0.3) 0.005 0.57 

Triglycerides 
(mmol/l) 

4.6 (0.9) 3.1 (0.5) 0.004 3.4 (0.9) 0.03 
 

0.93 
 

Total food intake 
(Kcal/day) 

1970 (108.1) 1880 (159.4) 0.03 1717 (112.8) 0.03 0.69 

Aspartate 
aminotransferase 

47.8 (8.5) 27.3 (1.5) 0.003 32.4 (2.9) 0.03 
 

0.06 
 

Gamma glutamyl 
transferase 

84.9 (21.7) 45.5 (9.2) 0.03 57.6 (19.9) 0.05 0.45 
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Figure S2   

Effect of metreleptin on insulin secretion in patients with LMNA mutations 
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Table S3  

Insulin secretion and insulin sensitivity indexes before and one year after metreleptin therapy 

 
3 A. intravenous glucose tolerance test (IVGTT) followed by hyperglycemic clamps 

Patients 
Type of 

lipodystrophy 

Acute Insulin Response (pmol/kg/min)  

 

M-value/Insulinemia  
(mg/kg of fat free mass/min/pmol/l) 

 

 

AIR x M/I 

 

M0 M12 M0 M12 M0 M12 

1  FPLD2 182.7 208 0.033 0.058 6.03 12.06 

2 FPLD2 31.3 50 0.184 0.125 5.76 6.25 

3 CGL1 80.1 532 0.035 0.061 2.80 32.45 

4 CGL1 99 81.5 0.037 0.065 3.66 6.43 

 

 

3 B. Euglycemic hyperinsulinemic clamps and intravenous glucose tolerance test (IVGTT) followed by a glucose ramping 

Patients Type of 
lipodystrophy 

Acute Insulin Response  (pmol/kg/min) 
 

M-value  
(mg/kg of fat free mass/min) 

 

Disposition index  
(AIR x M-value) 

 
M0 M12 M0 M12 M0 M12 

5  CGL1 5 79.6 6.43 8.28 32.2 658.5 

6  FPLD4 10 56.2 0 0.33 0 18.5 

7  FPLD2 25.2 29.6 6.96 10.05 175.4 297.5 

8  FPLD2 124.2 37.5 0 2.74 0 102.7 

9  FPLD2 25.9 46.3 1.82 9.60 47.1 444.1 

10  FPLD2 43 385.6 2.12 9.30 91.1 3586.0 

11 
Progeroid 

laminopathy  
426.4 27.8 0.05 2.05 21.8 57.0 

12  FPLD2 155.8 222 7.21 12.03 1123.4 2670.7 

13  FPLD3 9.7 15.7 0 0.77 0 12.1 

14 CGL1 179.6 97 3.01 3.96 540.6 384.1 

15 CGL1 24.2 44.1 3.02 3.96 73.1 174.6 

16 
Mixed 

laminopathy  
 

1.0 148 1.99 2.15 1.99 318.2 

 



Supplementary Figure legends 

 

Figure S1  

Longitudinal effects of metreleptin therapy in the 16 patients  

Values of BMI (A), HbA1c (B) and serum triglycerides (C) are depicted as rectangles which represent 25
th

 and 

75
th

 percentile values, with the median values depicted in-between. Whiskers represent the lowest datum still 

within 1.5 IQR of the lower quartile, and the highest datum still within 1.5 IQR of the upper quartile (Tukey 

boxplot). M: months after the onset of metreleptin therapy. *: p<0.05 versus M0  

Data expressed as mean (SEM) with statistical analyses are presented in (D). 

 

Figure S2 

Effect of metreleptin on insulin secretion in patients with LMNA mutations  

A. Insulin secretion rates (ISR) during graded glucose infusion were derived by deconvolution as described, for 

each of the four glucose infusion steps (of 4, 8, 10 and 12 mg per kg of body weight of glucose per min), in 7 

patients (patients 7 to 12 and patient 16). ISR expressed in pmol/kg of fat-free mass/min, were plotted against the 

corresponding mean glucose concentration. Mean values obtained at baseline are represented as empty circles, 

and those obtained at one year-metreleptin therapy as filled triangles. Whiskers represent SEM. 

B. Disposition index, indicating the insulin secretion capacity relative to insulin sensitivity, was calculated in the 

same patients as the product of M value measured during the euglycemic hyperinsulinemic clamp by AIR. 

Rectangles represent 25
th

 and 75
th

 percentile values, with the median values depicted in-between. Whiskers 

represent the lowest datum still within 1.5 IQR of the lower quartile, and the highest datum still within 1.5 IQR 

of the upper quartile (Tukey boxplot).  

M0: baseline, M12: after 12 months of metreleptin therapy;  * p<0.05 versus M0  
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