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Abstract

Many examples of multi-stable shell structures have been recently proposed with

the underlying hypothesis of the shell being completely free on its boundary. We

describe a class of shallow shells which are bistable after one of their sides is

completely clamped. This result, which has relevant technological implications,

is achieved by a suitable design of the initial, stress-free, shape.

Keywords: Morphing structures, Multistability, Shallow shells, Reduced

models, Clamped bistable shells.

1. Introduction

Engineering structures should often be able to face several load and operating

conditions; their actual shape usually stems from a compromise, after a selection

of the more challenging requirements. Instead, morphing structures optimize

their response to external inputs by updating their geometric configuration;

despite being quite recently introduced, they could become a standard in some

areas of structural engineering (as foreseen in [4]).

Here we focus on multistable shells, a particular example of morphing struc-

tures able to provide stiffness and strength whilst allowing considerable shape

change. By triggering instability phenomena, or simply by exploiting displace-

ment amplifications due to geometric nonlinearities, suitably designed shells

could undergo major changes in shape under limited actuation forces.

For plates and shells, multistability can be achieved through a combina-

tion of means including pre-stresses, initial curvatures and plastic deformations.
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Indeed, a competition between geometric nonlinearities and elastic properties

manages the accumulation and release of elastic energy in the deformation pro-

cesses and determines the equilibrium configurations, their shapes and their

stability. Since stable configurations can be quite different in their geometry

and the transition between them may be accomplished by different load paths,

the design of multistable shells calls for mathematical models and numerical

tools able to depict a global stability scenario., i.e., capable of providing reliable

information about the number and type of stable equilibria, the energy barriers

interposed between them and the most appropriate actuation strategy (for in-

stance, one demanding a preset amount of power to the actuators). This requires

simplified shell models with few degrees of freedom, so as to obtain manageable

solutions and perform qualitative analysis and quick parametric studies.

For shallow shells, which are the ones typically employed in technological ap-

plications, this task is achieved by reducing the Föppl-von Kármán (FvK) shell

model [6, 19] to a low-dimensional subspace ensuring a good approximation of

the multiwell elastic energy [14, 18, 17]. Specifically, we use the reduction pro-

cedure introduced in [17] to infer a three-degrees-of-freedom reduced model ca-

pable of predicting the multistable behavior of suitably curved cantilever shells.

Although the reduction strategy may be applied in quite general cases, for

sake of simplicity we have chosen to focus our attention on shells with rectangu-

lar planforms where only one side is actually clamped. It has to be noted that,

even if boundary conditions have to be taken into account when considering a

bistable shell as a component of a complex structural system, only few works

deal with the design of multistable constrained shells [8, 12]. Indeed, many

literature studies were limited to examine the case of shells completely free on

their sides, see for instance [11, 13, 3, 7]. Instead, we are able to predict, and

numerically validate, several new examples of shells that are bistable after the

application of the clamp constraint. These examples are characterized by com-

bination of geometric and material parameters within a wide range of values,

thus opening the way to a proper and more general approach to design and

optimization of multistable shells.

The paper is organized as follows. In section 2 we introduce the class of

pseudo-conical shells. These are shallow shells, with rectangular planform, char-

acterized by distinct curvatures, say h1 and h2, of two opposite sides; cylindrical

shells are included as the special case h1 = h2. This class is sufficiently large

to allow some room for optimization and sufficiently simple to allow a physical

insight of the bistable response. In section 3 the displacement ansazt to obtain

2



the reduced shell model is introduced and discussed: the hypothesis of uniform

curvature, used in several literature studies, must be abandoned in order to al-

low more complex shell configurations. Section 4 is devoted to show the main

results: in particular, we give the conditions on the design parameters for a

pseudo-conical shell to be mono- or bi-stable after clamping. For shells that are

bistable, aimed at providing an effective actuation of such morphing structures,

we provide a method to compute an optimal path between the two equilibria. In

the same section, the predictions obtained by applying the reduced 3-dofs model

are confirmed by comparison with refined FE simulations. Finally in section 5

we draw some conclusions and discuss possible directions for future research.

2. Design parameters: natural shape and material constants

In this study a suitable choice of the natural (stress-free) configuration of

the shell is sought as the primary mean to induce bistability; we do not consider

here another well known source of multistable behaviors, namely the presence

of inelastic pre-stresses, see [9].

While several authors already investigated natural configurations with uni-

form curvatures [see e.g. 14, 18, 5, 3], we abandon this simplifying hypothesis

to consider more general configurations. Specifically, within the shallow shell

assumption, we restrict our attention to shells with pseudo-conic natural config-

urations. These last can be mathematically described by surfaces in the form:

S0 = {(x, y, w0(x, y)), 0 ≤ x ≤ Lx, −Ly/2 ≤ y ≤ Ly/2} , (1)

with

w0(x, y) =
y2

2

(

h1 + (h2 − h1)
x

Lx

)

, (2)

for some h1, h2 ∈ IR and 0 < Ly ≤ Lx. Figure 1 shows the meaning of these

parameters and some of these shapes when the parameters h1 and h2 are varied

for Lx = Ly.

The curvatures of the natural configuration are therefore not uniform and

are given by:

hx = 0, hxy =
(h2 − h1) y

Lx
, hy = h1 + (h2 − h1)

x

Lx
. (3)

Incidentally, cylindrical shells are included as the special case h2 = h1.
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(a) (b)

Figure 1: (a) Design parameters for the natural stress-free configuration. (b)
Resulting configurations in the curvature plane (h1, h2) for Lx = Ly.

Three design parameters completely identify the natural shape of the shell:

the aspect ratio η = Lx/Ly ≥ 1 and the curvatures h1 and h2 which can be

interpreted, cfr. Fig. 1a, as the curvatures in direction y of the sides x = 0 and

x = Lx, respectively. As will be clear in the following, the area LxLy will play

a role only in the scaling of curvatures based on the characteristic radius R, cfr.

(25).

Concerning the constitutive properties of the material, for sake of simplic-

ity we consider only homogeneous orthotropic shells with no coupling between

bending and stretching (see [15]). Specifically, assuming the principal mate-

rial directions aligned with the coordinate directions x and y, the constitutive

relations between bending moments M and curvatures k will read

Mx = D11(kx − hx) +D12(ky − hy), Mxy = D33(kxy − hxy),

My = D12(kx − hx) +D22(ky − hy),
(4)

while the relations between membranal stresses N and membranal strains ε will

read:

Nx = A11(εx − fx) +A12(εy − fy), Nxy = A33(εxy − fxy),

Ny = A12(εx − fx) +A22(εy − fy),
(5)

where strains {fx, fy, 2fxy} represent non-zero membrane stresses in the flat

reference configuration, whilst curvatures {hx, hy, 2hxy} provide non-zero bend-
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ing moments in the reference configuration. Moreover, since we do not consider

inelastic pre-stresses, the Gauss compatibility equation holds true:

fx,yy + fy,xx − 2fxy,xy = hyhx − h2xy

where (•),x = ∂(•)/∂x, (•),y = ∂(•)/∂y. Note that the bending moments vanish

when the curvatures equal the ones in the natural configuration; similarly the

membranal stresses vanish when the membranal strains equal a field which is

compatible, via the Gauss compatibility equation, with the curvatures of the

natural configuration.

Moreover we suppose the shells under consideration to be homogeneous

through the thickness; this implies a proportionality between the membranal

and bending stiffness matrices as

D11 =
A11 t

2

12
, A/A11 = D/D11 =







1 ν 0

ν β 0

0 0 γ






, (6)

for t the shell thickness. Here β = D22/D11 = A22/A11 measures the ratio

between the membrane and bending stiffnesses in the coordinate directions,

γ = D33/D11 = A33/A11 measures the shear and torsional moduli and ν =

D12/D11 = A12/A11 measures the in-plane and out-of-plane Poisson effects.

For A and D to be positive definite, we must have β > ν2 and γ > 0. In all

the following the material is supposed orthotropic with β = 1, γ = 0.931 and

ν = 0.908, see [10].

3. Reduced nonlinear model

3.1. Motivations

For shells having the natural shapes parameterized by (2), we study the

stability properties once the side x = 0 has been clamped. In particular our aim

is to characterize the number and the nature of all such stable equilibria.

To this aim, one could, in principle, use a nonlinear finite element approxima-

tion of the shell under consideration. Starting from a meshing of the stress-free

configuration S0, one should impose the clamping boundary condition on x = 0

and, therefore, try to find all the possible stable equilibria, imposing and releas-

ing suitable displacement or force fields. A similar study is not easily automated
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and, actually, turns out to be extremely difficult as soon as the number of de-

grees of freedom becomes large: in our experience even coarse FE meshes lead

to computational difficulties. We also point out that continuation techniques

could fail as the equilibrium branches of similar structures often appear as turn-

ing points: thus, there is no way to continue such branches from other already

known equilibria, and no guarantee for having found all the equilibria.

These difficulties motivate the use of discrete, low-dimensional models as the

one introduced in [17]. Despite being based on few degrees of freedom, similar

nonlinear reduced models are able to effectively describe the overall stability

scenario of shallow shells, the number and type of bifurcations and their post-

critical behavior.

The equilibrium equations for such reduced models of FvK shells are poly-

nomials of order 3 in the Lagrangian parameters, see Sect. 3.3. Hence, if the

number n of degrees of freedom is low, one could efficiently apply polynomial

root-finding techniques that are guaranteed to give all the equilibrium branches.

On a standard modern workstation, trying both the function NSolve in Math-

ematica and the homotopy continuation method of PHCpack [16], we have

found that a limit condition for the discrete model could be n ≤ 5. Indeed the

total degree of the root-finding problem, and therefore the number of complex

equilibrium branches, grows as 3n. Already for n = 5 the roots are 243, but

only a few of them correspond to real stable equilibria. For n > 5 the time nec-

essary to trace all the solutions exponentially increases. The numerical results

discussed in the following are obtained with a discrete reduced model having

n = 3 degrees of freedom. A posteriori these results are carefully checked in

terms of stability with the commercial FE software Abaqus.

3.2. Main modeling assumptions

The main assumptions of the generalized Föppl von-Kármán theory are

briefly recalled for the reader’s convenience, see [2].

Thin shallow shells are characterized by two small geometric parameters: the

shallowness σ = L/R and the slenderness τ = t/L; here L is the characteristic

dimension of the shell planform, R is the typical radius of curvature and t the

shell thickness. In particular the small parameter ǫ := σ2τ2 = t2/R2 controls

the ratio between bending and stretching energy.

The main kinematical assumption of the FvK theory is to seek for shell
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configurations in the form

S = {(x+ u(x, y), y + v(x, y), w(x, y)), 0 ≤ x ≤ Lx, −Ly/2 ≤ y ≤ Ly/2} , (7)

with a proper scaling law between the in-plane displacement fields u and v and

the transverse displacement field w: specifically w = O(ǫ) whilst u = O(ǫ2) and

v = O(ǫ2). This last assumption implies that the contributions of the in-plane

and transverse displacements to the membranal strains of the surface S are

comparable. Namely, within an error O(ǫ4), we have

εx = u,x +w2

,x/2, εy = v,y +w2

,y/2, εxy = (v,x + u,y + w,x w,y) /2, (8)

Instead the curvatures of the surface S depend only the transverse displacement

w; within an error O(ǫ3), one has

kx = w,xx, ky = w,yy, kxy = w,xy. (9)

The stable equilibria of a FvK shell are then found as local minima of the

total energy, sum of the bending and stretching elastic energies:

E(u, v, w) =
1

2

∫ Lx

0

∫ Ly/2

−Ly/2

(Mxkx +Myky + 2Mxykxy) dxdy

+
1

2

∫ Lx

0

∫ Ly/2

−Ly/2

(Nxεx +Nyεy + 2Nxyεxy) dxdy, (10)

with the bending moments and membranal stresses given in (4) and (5).

To efficiently minimize (10), it is important to note that the in-plane dis-

placements u and v can be solved in terms of transverse displacement w solving

a linear elasticity problem. Indeed necessary conditions for the functional E to

be stationary with respect to u and v are

Nx,x +Nxy,y = 0, Nxy,x +Ny,y = 0, (11)

while for the system (8) and (9) to be integrable one must have (Gauss com-

patibility):

εx,yy + εy,xx − 2εxy,xy = kxky − k2xy. (12)

By inversion of the constitutive relations (5), (12) is transformed in terms of
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stresses to get

A−1

11

[

(βNx − νNy),yy + (Ny − νNx),xx
β − ν2

−
2

γ
Nxy,xy

]

= (kxky − k2xy)− (hxhy − h2xy) := ∆g. (13)

Equations (11) and (13) are a standard plane elasticity problem which is linear

in the data, namely the difference ∆g in Gaussian curvature between the actual

and natural configurations.

3.3. Steps of the reduction procedure

We sketch the reduction procedure presented in [17] to deduce a discrete

approximation with few degrees of freedom of the Föppl von-Kàrmàn functional

(10). This procedure simply exploits the linearity of eqns. (11) and (13) to solve

in terms of Lagrangian parameters the membranal problem.

Step 1. We introduce an ad hoc ansatz for the transverse displacement field.

For the case under consideration, we seek w in the form

w(x, y) = q1
x2

2
+ q2

y2

2
+ q3

x3

6
+ q4

x2y2

2
+ q5

xy2

2
, (14)

uniquely defined by five Lagrangian parameters q1 to q5.

Step 2. We compute explicitly the forcing term in (13). Using (9) and (14)

kx = q1 + q3x+ q4y
2, ky = q2 + q5x+ q4x

2, kxy = q5y + q4xy, (15)

and, therefore,

∆g = q1q2 + (q2q3 + q1q5)x+ (q1q4 + q3q5)x
2 + q3q4x

3+

+

(

(h1 − h2)
2

L2
x

+ q2q4 − q2
5

)

y2 − q3q5xy
2 − 3q2

4
x2y2.

(16)

Step 3. We solve the membranal problem for ∆g given by (16). Due to the

linearity of the differential problem, this account for solving the same problem

for all the following seven forcing terms

{1, x, x2, x3, y2, xy2, x2y2} → {N00, N10, N20, N30, N02, N12, N22}, (17)

and then use the same linear combination, as in (16), to obtain the resulting
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membranal stress field

N = q1q2N
00 + (q2q3 + q1q5)N

10 + (q1q4 + q3q5)N
20 + q3q4N

30... (18)

Step 4. We use the ansatz for the displacement (14) and the membranal

solution (18) to compute the energy functional (10) in terms of Lagrangian

parameters

E ≃ Ê(q1, ...q5). (19)

As the membranal stresses (18) and strains, through (5), are second-order poly-

nomials of q1,...q5, the approximated functional (19) is a fourth-order polynomial

in the Lagrangian parameters.

3.4. Remarks

Remark 1. Assuming the transverse displacement in the form (14) allows the

shell to achieve an arbitrary linear combination of the shapes shown in Fig. 2.

Only the first two configurations from the left, corresponding to the Lagrangian

parameters q1 and q2, have uniform curvature.

Figure 2: Base configurations in (14): for η = 1 from left to right the shapes
moduled by q1, q2, ... q5.

The assumption (14) allows us to describe the pseudo-conical natural configu-

rations (2) when:

q1 = q3 = q4 = 0, q2 = h1, q5 =
h2 − h1
Lx

. (20)

Moreover, (14) allows to easily clamp the boundary x = 0. Indeed, one easily

obtains

w(0, y) = q2 y
2/2, w,x(0, y) = q5 y

2/2, (21)

and the clamping conditions are achieved setting both q2 and q5 to zero. In this

last case, the average curvatures are controlled by k̄x = q1 + Lxq3/2 + L2

yq4/12

and k̄y = L2

xq4/3, while k̄xy = 0.
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Remark 2. For shells constrained by the clamp condition, i.e. within the

subspace q2 = q5 = 0, the gaussian curvature difference (16) reduces to

∆g = q1q4 x
2 + q3q4 x

3 +
(h1 − h2)

2

L2
x

y2 − 3 q2
4
x2 y2. (22)

Therefore, it suffices to solve only four (out of the seven) auxiliary membranal

problems (17).

Remark 3. The auxiliary elliptic problems (11)-(13) can be solved either in

terms of Airy functions or in terms of displacements with standard FE codes.

Note, however, that the precision in the evaluation of the membranal stresses N

(and strains ε) is of fundamental importance for a good estimate of the stretch-

ing energy in (19). Actually, the precision allowed by the numerical solution of

the membranal problems turns out to be the key ingredient of the proposed pro-

cedure; indeed, when applying reduction techniques based on multiple ansatzs

for all the displacement fields, dozens of degrees of freedom are normally re-

quired in order to reach such a high precision on membranal stresses N , see [1]

or [13].

4. Numerical results

The study of the stable equilibria of the pseudo-conical shells after clamping

reduces to minimize the functional (19)

min
q1,q3,q4

Ê(q1, 0, q3, q4, 0; η, h1, h2) (23)

within the three-dimensional subspace q2 = q5 = 0 as the design parameters η,

h1 and h2 are varied.

In this section we present the results of such a minimization and compare

them to refined FE simulations.

4.1. Overall stability properties

For every choice of η, h1 and h2, the stationarity conditions for (23) are a

system of three third-order polynomial equations in the unknowns (q1, q3, q4).

Among all the 33 = 27 complex roots, we select the ones which are real and

check their stability (minimality) through the eigenvalues of the Hessian matrix.

We have found that, once clamped on one side, shells with pseudo-conical shapes

described by (2) can have either one or two stable configurations.
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Figure 3 displays the mono-stability (white) and bi-stability (gray) regions in

the plane of design parameters (h1, h2) for aspect ratios η = 1, 2, 3, respectively.

We recall that h2 is the curvature of the side (x = Lx) in the natural stress-free

configuration; the opposite side (x = 0), having curvature h1 in the natural

configuration, is the one to be clamped.

(a) η = 1 (b) η = 2 (c) η = 3

Figure 3: Monostability (white) and bistability (gray) regions in the natural
curvature plane (h1, h2).

We can notice the following:

• For any value of the aspect ratio, the monostability region includes a

neighborhood of the origin h1 ≃ h2 ≃ 0; in other words almost flat natural

configurations are monostable.

• Due to the symmetry, labeling hp
2
(h1, η) the lower boundary of the upper

bistability region for given aspect ratio, the shells are bistable if

h2 ≥ hp
2
(h1, η), or if h2 ≤ −hp

2
(−h1, η). (24)

• The threshold value for bistability hp
2
(h1, η) depends on the curvature h1

of the side (x = 0). In other words, clamping the side (x = 0) induces a

stress field which is of fundamental importance to determine the bistable

behaviour of the clamped shell. The larger h1 is, the larger is such stress

field and the larger must be the curvature h2 of the opposite side in order

for the shell to be bistable.

• Shells having natural cylindrical configurations, i.e. those along the dashed

line h1 = h2, are either monostable or very close to the margin of bista-

bility region. These shells would therefore exhibit, even if bistable, one of

the two configurations with tiny stability margins.
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Finally note that these results were derived from a discrete model of shallow

shell; in order to satisfy this hypothesis, the curvatures should be bounded by:

√

h2
1
+ h2

2
≤ 10R−1, R :=

√

12ψ
LxLy

t
, ψ ≃ 3.9× 10−4(1− ν2). (25)

This bound was obtained in [9] for a shell of isotropic material (β = 1, γ =

(1 − ν)/2) and Lx ≃ Ly. The bound (25) is displayed by dashed circles in

Figs. 3: for natural curvatures (h1, h2) having norm larger than this value, the

shallowness hypothesis is not fulfilled and the FvK model could progressively

lose its predictivity. In other words, the conditions in (25) are needed to ensure

that the shells are sufficiently shallow but not overly curved, otherwise the

limits of what is meant by shallow are exceeded and a more geometrically exact

analysis would be required. In particular for a shell having ν ≃ 0.4 this bound

corresponds to the shallowness ‖h‖L scaling as

‖h‖L ≃ 160 t/L;

for instance, if t ≃ 1mm and L ≃ 30 cm, one has ‖h‖L ≃ 0.5.

4.2. Sample bistable configurations and energy path between them

Figures 4 and 5 give more insight on the bistable configurations and on the

multi-well energy profiles achievable with pseudo-conical natural shapes.

In particular, in Fig. 4 the stability diagram of Fig. 3a is zoomed in the region

h1 > 0 for η = 1. According to four choices of the natural configurations, labeled

by points A, B, C, D in Fig. 4a and shown in Fig. 4b (red shapes), we depict

the shapes of the clamped stable configurations (black shapes in Fig. 4b) and

the associated energy profiles. Here, the dimensionless elastic energy is plotted

against the parameter s, see (26), meaning a normalized distance between the

minima.

The pseudo-conical shape corresponding to point B in the monostable region

exhibits, once clamped, a convex energy profile with only one minimum. The

other choices, falling within the bistability regions, are instead characterized by

a double-well elastic energy. We can note that all the clamped stable configura-

tions (black shapes in Fig. 4b) are characterized by non-vanishing energy values

of their minima; the natural configurations (red shapes) are indeed the ones

being stress-free.

We can note also the difference in the energy profiles corresponding to points

12



(a) (b) (c)

Figure 4: (a) Stability diagram within h1 > 0 for η = 1. (b) Natural configura-
tions and clamped configurations for the pseudo-conical shapes A, B, C, D and
(c) the associated energy profiles, where the horizontal axis is the normalized
distance s along the straight line path on the energy landscape, see (26).

A, C and D. In the former case (A) the two stable equilibria are characterized

by similar energy values while being separated by a relatively small energy gap.

In the latter case (D) a more relevant energy gap separates the two minima

which are also characterized by different values of the elastic energy. Finally,

point C, chosen near the boundary of the bistability region, is characterized by a

small stability margin of one of its minima. All these features become extremely

important when considering the actuation problem for such clamped shells.

Figure 5 displays a similar stability scenario for more slender pseudo-conical

shapes having η = 3. With respect to the case η = 1, one could notice that

the point C for η = 3 falls within the monostability region and that the energy

profiles corresponding to configurations A and D are characterized by smaller

energy gaps. We also point out the considerable difference between the two

clamped stable configuration of point D (last row of Fig. 5b). In section 4.3 these

shapes, resulting form the 3dofs reduced model, will be checked and compared

to refined FE simulations.

A word of caution must be given regarding the energy profiles between min-

ima. Indeed the ones shown in Figs. 4c and 5c refer to straight paths between

the stable configurations and, therefore, they are not necessarily optimal from an

energetic point of view. Specifically, labeling m1 and m2 the two minima within
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(a) (b) (c)

Figure 5: (a) Stability diagram within h1 > 0 for η = 3. (b) Natural configura-
tions and clamped configurations for the pseudo-conical shapes A, B, C, D and
(c) the associated energy profiles.

Figure 6: Construction of the optimal path between the minima m1 and m2.

the three-dimensional space spanned by the Lagrangian parameters {q1, q3, q4},

the straight path qs(s) is defined by

qs(s) = (1− s)m1 + sm2, s ∈ [0, 1]. (26)

However, with reference to Fig. 6, a minimum energy path between m1 and m2

can be found as follows:

• compute the vector a1 = (m2 −m1) pointing from m1 to m2,

• compute, by a Gram-Schmidt process, a new orthogonal reference frame

(a1, a2, a3) to express the shell configuration

q(s, s2, s3) = m1 + s a1 + s2 a2 + s3 a3,

• with s fixed, call s2 = ŝ2(s), s3 = ŝ3(s) the solutions of the two-dimensional

14



h−1

1
(cm) h−1

2
(cm) t (mm) Lx (cm) Ly (cm) η

P 21 14 1 15 15 1

Q 21 -14 1 15 45 3

Table 1: Geometric parameters for two pseudo-conical shells.

minimization problem

min
s2,s3

Ê(q(s, s2, s3); η, h1, h2),

Hence, a minimum energy path connecting m1 to m2 is given by

qm(s) = m1 + s a1 + ŝ2(s) a2 + ŝ3 a3, s ∈ [0, 1].

This path can be seen as the path of least resistance connecting the minima of

the unloaded shell. Since it is computed starting from the elastic energy it has to

be considered reliable as long as the actuation forces remain small. Clearly, since

the functions ŝ2(s) and ŝ3(s) are not necessarily continuous, qm(s) can exhibits

jumps: this is often the case for the pseudo-conical shapes under consideration.

To show such jumps, physically corresponding to standard snap-through

phenomena, we consider the two pseudo-conical shells listed in Table 1.

Once plotted in the dimensionless coordinates, P falls near point A in Fig. 4a,

whilst Q is close to point D in Fig. 5a.

(a) (b)

(c)

Figure 7: (a) Energy profiles of the straight (gray) and optimal (dark red) paths
between the clamped equilibria of shell P. (b) Average curvatures along the same
paths. (c) Shell configurations along the optimal path.

15



Figure 7 compares the elastic energy along the straight path Ê(qs(s)) with

the elastic energy along the optimal path Ê(qm(s)) for the pseudo-conical shell

P. Despite the optimal points 1-5 being close to the straight path in Fig. 7b,

this last plot, being two-dimensional, reports only the average curvatures; a

third dimension would mark the difference between the configurations of the

straight and optimal paths. Clearly Ê(qs(s)) is easily computable but gives

us only an upper bound for the energy gap between the equilibria. Note also

that the minimum energy path is optimal only in the three-dimensional space

spanned by {q1, q3, q4}. Considering a larger space (i.e. more dofs) for the shell

configurations could lead to find actuation paths with lower energy gaps.

Similar conclusions can be drawn also for the energy profiles of the pseudo-

conical shell Q depicted in Fig. 8. For this shell, one observes a relevant jump

between the two equilibrium branches stemming from m1 and m2: compare the

shapes corresponding to the configurations 3 and 4 respectively before and after

the jump.

(a) (b)

(c)

Figure 8: (a) Energy profiles of the straight (gray) and optimal (dark red)
paths between the clamped equilibria of shell Q. (b) Average curvatures along
the same paths. (c) Shell configurations along the optimal path.

4.3. Comparison with Abaqus simulations

For several shells we have perfomed refined Finite Element simulations i) to

check the actual existence of multiple stable configurations and ii) to compare

these configurations with the ones predicted by the reduced model (23). In the

following we report these results for the shells P and Q in Table 1.

Specifically the simulations have been performed in Abaqus CAE using the

S4R shell elements within a fully nonlinear regime; starting from a mesh created
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over the stress-free configuration we apply the clamping condition and, after

convergence, we find the first stable configuration. To check the bistability,

suitable displacement fields are imposed and released to check the convergence

near other shapes; to this aim, the pictorial information coming from the reduced

model is of fundamental importance. For each minimum found, say m
FE , the

associated elastic energy E(mFE) is computed.

Figure 9: Clamped stable configurations for the pseudo-conical shell P: as pre-
dicted by Abaqus (black dots) and the 3dofs reduced model (solid mesh).

For the pseudo-conical shell P, despite P being close to the boundary of

the bistability region in Fig. 4a, the numerical simulations have confirmed the

existence of two stable equilibria after the application of the clamping con-

dition; in Fig. 9 the resulting shapes are compared. The elastic energy of

these configurations are respectively E(mFE
1

) = 0.72 × Ê(m1) = 0.35 Nm, and

E(mFE
2

) = 0.53× Ê(m2) = 0.37 Nm.

Also for the pseudo-conical shell Q we have confirmed the existence of two

clamped stable equilibria. The resulting shapes are compared in Fig. 10 and

respectively have elastic energies E(mFE
1

) = 0.63 × Ê(m1) = 0.3 Nm, and

E(mFE
2

) = 0.84 × Ê(m2) = 1.0 Nm. We can remark the relevant agreement

between the second stable equilibrium shapes (Fig.10 right).

Figure 10: Clamped stable configurations for the pseudo-conical shell Q: as
predicted by Abaqus (black dots) and the 3dofs reduced model (solid mesh).

In conclusion, the reduced model, having only 3 dofs against the 104 dofs

used in Abaqus, systematically overestimates, within a 50% error, the ener-

getic content of the stable configurations. Similarly the results regarding the

minimum energy actuation paths and the transitional shapes between equilib-
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ria should be taken only as coarse indications and, if needed, validated with

more refined analyses. However, the reduced model (23) seems able to cor-

rectly estimate the existence of multiple stable configurations in the space of

design parameters and to describe their shapes with sufficient approximation.

Preliminary experimental evidences, not yet published, in the construction of

prototypes of bistable pseudo-conical shells have confirmed the effectiveness of

the reduced model predictions for design purposes.

5. Concluding remarks

We have reported on the problem of designing shells that are multi-stable un-

der clamped boundary conditions. This aim has been successfully achieved tun-

ing the curvatures of shells that are, in their stress-free configurations, pseudo-

conical. We have found two compact disjoint regions in the plane of curvatures

where these shells exhibit a bistable behavior: the resulting stable configura-

tions and elastic energy profiles do depend on the actual value of the design

curvatures (h1, h2) in Fig. 1. Two relevant examples, one for each region, have

been also numerically validated by Abaqus.

Despite only considering a special case of boundary conditions (clamping

only one side of the shell) and a special case of the stress-free configuration

(characterized by only three design parameters), the same methods apply to

more complex situations: to this aim the ansatz (14), used for deducing an ef-

fective reduced nonlinear model of the shell, should be accordingly reformulated.

Figure 11: Tuning of the material parameters to enhance the energy gap.

In particular one could envisage both a more refined optimization of the

stress-free configuration (by introducing additional design parameters) and an

optimization of the material characteristics. For the latter we remark that the

orthotropic nature of the material, cfr. (6), has not been exploited as the case
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β = 1, corresponding to equal Young moduli in x and y directions, has only

been considered. However by a suitable tuning of the material parameters one

could clearly alter both the energy gap and the energy values in the minima.

In Fig. 11 the energy profile relative to the shell P is shown by a solid curve

together with energy profile obtained for β = 1.015 (dashed curve). Even such

a small variation allows for a larger energy gap between m1 and m2 increasing

the stability margin of the stable configuration m2.

In conclusion, the results reported here could be considered a preliminary

step toward the effective design of engineering morphing shell structures, but

much more remains to be done.

Acknowledgments

The authors acknowledge the financial support of Project ANR-13- JS09-

0009 (Agence Nationale de la Recherche, 2014).

References

[1] S Aimmanee and M W Hyer. Analysis of the manufactured shape of rectan-

gular thunder-type actuators. Smart Materials and Structures, 13(6):1389,

2004.

[2] P G Ciarlet. A justification of the von Kármán equations. Archive for
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