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Abstract

Background: The reconstruction of reliable graphical models from observational data is important in bioinformatics
and other computational fields applying network reconstruction methods to large, yet finite datasets. The main
network reconstruction approaches are either based on Bayesian scores, which enable the ranking of alternative
Bayesian networks, or rely on the identification of structural independencies, which correspond to missing edges in
the underlying network. Bayesian inference methods typically require heuristic search strategies, such as hill-climbing
algorithms, to sample the super-exponential space of possible networks. By contrast, constraint-based methods, such
as the PC and IC algorithms, are expected to run in polynomial time on sparse underlying graphs, provided that a
correct list of conditional independencies is available. Yet, in practice, conditional independencies need to be
ascertained from the available observational data, based on adjustable statistical significance levels, and are not
robust to sampling noise from finite datasets.

Results: We propose a more robust approach to reconstruct graphical models from finite datasets. It combines
constraint-based and Bayesian approaches to infer structural independencies based on the ranking of their most likely
contributing nodes. In a nutshell, this local optimization scheme and corresponding 3off2 algorithm iteratively “take
off” the most likely conditional 3-point information from the 2-point (mutual) information between each pair of
nodes. Conditional independencies are thus derived by progressively collecting the most significant indirect
contributions to all pairwise mutual information. The resulting network skeleton is then partially directed by orienting
and propagating edge directions, based on the sign and magnitude of the conditional 3-point information of
unshielded triples. The approach is shown to outperform both constraint-based and Bayesian inference methods on a
range of benchmark networks. The 3off2 approach is then applied to the reconstruction of the hematopoiesis
regulation network based on recent single cell expression data and is found to retrieve more experimentally
ascertained regulations between transcription factors than with other available methods.

Conclusions: The novel information-theoretic approach and corresponding 3off2 algorithm combine
constraint-based and Bayesian inference methods to reliably reconstruct graphical models, despite inherent sampling
noise in finite datasets. In particular, experimentally verified interactions as well as novel predicted regulations are
established on the hematopoiesis regulatory networks based on single cell expression data.

Keywords: Network reconstruction, Hybrid inference method, Information theory, Hematopoiesis

*Correspondence: herve.isambert@curie.fr
1Institut Curie, PSL Research University, CNRS, UMR168, 26 rue d’Ulm, 75005
Paris, France
2Sorbonne Universités, UPMCUniv Paris 06, 4, Place Jussieu, 75005 Paris, France

© 2016 Affeldt et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0856-x-x&domain=pdf
mailto: herve.isambert@curie.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Affeldt et al. BMC Bioinformatics 2016, 17(Suppl 2):12 Page 150 of 202

Background
Two types of reconstruction method for directed net-
works have been developed and applied to a variety of
experimental datasets. These methods are either based on
Bayesian scores [1, 2] or rely on the identification of struc-
tural independencies, which correspond to missing edges
in the underlying network [3, 4].
Bayesian inference approaches have the advantage of

allowing for quantitative comparisons between alternative
networks through their Bayesian scores but they are
limited to rather small causal graphs due to the super-
exponential space of possible directed graphs to sample
[1, 5, 6]. Hence, Bayesian inference methods typically
require either suitable prior restrictions on the structures
[7, 8] or heuristic search strategies such as hill-climbing
algorithms [9–11].
By contrast, structure learning algorithms based on

the identification of structural constraints typically run
in polynomial time on sparse underlying graphs. These
so-called constraint-based approaches, such as the PC
[12] and IC [13] algorithms, do not score and compare
alternative networks. Instead they aim at ascertaining
conditional independencies between variables to directly
infer the Markov equivalent class of all causal graphs
compatible with the available observational data. Yet,
these methods are not robust to sampling noise in finite
datasets as early errors in removing edges from the com-
plete graph typically trigger the accumulation of com-
pensatory errors later on in the pruning process. This
cascading effect makes the constraint-based approaches
sensitive to the adjustable significance level α, required
for the conditional independence tests. In addition, tra-
ditional constraint-based methods are not robust to the
order in which the conditional independence tests are
processed, which prompted recent algorithmic improve-
ments intending to achieve order-independence [14].
In this paper, we report a novel network reconstruc-

tion method, which exploits the best of these two types
of structure learning approaches. It combines constraint-
based and Bayesian frameworks to reliably reconstruct
graphical models despite inherent sampling noise in
finite observational datasets. To this end, we have devel-
oped a robust information-theoretic method to con-
fidently ascertain structural independencies in causal
graphs based on the ranking of their most likely con-
tributing nodes. Conditional independencies are derived
using an iterative search approach that identifies the
most significant indirect contributions to all pairwise
mutual information between variables. This local opti-
mization algorithm, outlined below, amounts to iteratively
subtracting the most likely conditional 3-point infor-
mation from 2-point information between each pair of
nodes. The resulting network skeleton is then partially
directed by orienting and propagating edge directions,

based on the sign and magnitude of the conditional 3-
point information of unshielded triples. Identifying struc-
tural independencies within such a maximum likelihood
framework circumvents the need for adjustable signifi-
cance levels and is found to be more robust to sampling
noise from finite observational data, even when com-
pared to constraint-based methods intending to resolve
the order-dependence on the variables [14].

Constraint-based methods
Constraint-based approaches, such as the PC [12] and
IC [13] algorithms, infer causal graphs from observa-
tional data, by searching for conditional independencies
among variables. Under the Markov and Faithfulness
assumptions, these algorithms return a Complete Par-
tially Directed Acyclic Graph (CPDAG) that represents
the Markov equivalent class of the underlying causal
structure [3, 4]. They proceed in three steps detailed in
Algorithm 1:

Algorithm 1: Constraint-based network reconstruc-
tion
In: observational data of variables V; an ordering
order(V) on the variables; a significance level α
Out: CPDAG C
0. Initiation
Start with a complete undirected graph G
Let � = 0
1. Iteration
repeat

while ∃ xy link with |adj(G, x)\{y}| � � do
while xy ⊂ adj(G) and ∃{ui} ⊆ adj(G, x)\{y},
not yet considered with |{ui}| = � do

if Indep(x; y|{ui}) at significance level α
then

xy link is non-essential and removed
separation set of xy: Sepxy = {ui}

end
end

end
Set � = � + 1

until ∀x ∈ G, |adj(G, x)| � �;
2. Orientation
forall the unshielded triples do

R0: {x − z − y & x −/ y & z /∈ Sepxy} ⇒ {x → z ← y}
end
3. Propagation
repeat

R1: {x → z − y & x −/ y} ⇒ {z → y}
R2: {x → y → z & x − z} ⇒ {x → z}
R3: {x − y → z & x − t → z & y −/ t} ⇒ {x → z}

until no further orientation can be propagated;
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• 1) inferring unnecessary edges and associated
separation sets to obtain an undirected skeleton.

• 2) orienting unshielded triples as v-structures if their
middle node is not in the separation set (R0).

• 3) propagating as many orientations as possible
following propagation rules (R1−3), which prevents
the orientation of additional v-structures (R3) and
directed cycles (R2−3) [15].

However, as previously stated, the sensitivity of the
constraint-based methods to the adjustable significance
level α used for the conditional independence tests
and to the order in which the variables are processed
(step 1) favors the accumulation of errors when the search
procedure relies on finite observational data.
In this paper, we aim at improving constraint-based

methods, Algorithm 1, by uncovering the most reli-
able conditional independencies supported by the (finite)
available data, based on a quantitative information theo-
retic framework.

Maximum likelihoodmethods
The maximum likelihood LG is related to the cross
entropy H(G,D) = − ∑

{xi} p({xi}) log(q({xi})) between
the “true” probability distribution p({xi}) from the data
D and the approximate probability distribution q({xi}) =∏

i p(xi|{Paxi}) generated by the Bayesian network G with
specific parent nodes {Paxi} for each node xi, leading
to [16],

LG = e−NH(G,D) = e−N
∑

i H(xi|
{
Paxi

}
) (1)

where
∑

i H(xi|{Paxi}) is the (conditional) entropy of the
underlying causal graph. This enables to score and com-
pare alternative models through their maximum likeli-
hood ratio as,

LG′

LG
= e−N

∑
i

(
H

(
xi|

{
Pa′

xi

})
−H(xi|

{
Paxi

}
)
)

(2)

Note, in particular, that the significance level of the
Maximum likelihood approach is set by the number N of
independent observational data points, as detailed in the
Methods Section below.

Methods
Information theoretic framework
Inferring isolated v-structures vs non-v-structures from
3-point and 2-point information
Applying the previous likelihood definition, Eq. 1, to iso-
lated v-structures (Fig. 1a) and Markov equivalent non-v-
structures (Fig. 1b–d), one obtains,

Lv(xy) = e−N[H(z|x,y)+H(x)+H(y)]

= e−N[H(x,y,z)+I(x;y)] (3)

where I(x; y) = H(x)+H(y)−H(x, y) is the 2-pointmutual
information between x and y, and,

Lnv(xy) = e−N[H(x|z)+H(y|z)+H(z)]

= e−N[H(x,y,z)+I(x;y|z)] (4)

where I(x; y|z) = H(x|z)+H(y|z)−H(x, y|z) is the condi-
tional mutual information between x and y given z. Hence,
one obtains the likelihood ratio,

Lv(xy)
Lnv(xy)

= e−N[I(x;y)−I(x;y|z)] = e−NI(x;y;z) (5)

where we introduced the 3-point information function,
I(x; y; z) = I(x; y) − I(x; y|z), which is in fact invariant
upon permutations between x, y and z, as seen in terms of
entropy functions,

I(x; y; z) = H(x) + H(y) + H(z) − H(x, y)
− H(x, z) − H(y, z) + H(x, y, z) (6)

As long recognized in the field [17, 18], 3-point infor-
mation, I(x; y; z), can be positive or negative (if I(x; y) <

I(x; y|z)), unlike 2-point mutual information, which are
always positive, I(x; y) � 0.
More precisely, Eq. 5 demonstrates that the sign and

magnitude of 3-point information provide a quantitative
estimate of the relative likelihoods of isolated v-structures
versus non-v-structures, which are in fact independent of
their actual non-connected bases xy, xz or yz,

Lv(xy)
Lnv(xy)

= Lv(xz)
Lnv(xz)

= Lv(yz)
Lnv(yz)

= e−NI(x;y;z) (7)

Hence, a significantly negative 3-point information,
I(x; y; z) < 0, implies that a v-structure is more likely than
a non-v-structure given the observed correlation data.
Conversely, a significantly positive 3-point information,
I(x; y; z) > 0, implies that a non-v-structuremodel is more
likely than a v-structure model.
Yet, as noted above, 3-point information, I(x; y; z), being

symmetric by construction, it cannot indicate how to ori-
ent v-structures or non-v-structures over the xyz triple.
To this end, it is however straightforward to show that
the most likely base (xy, xz or yz) of the local v-structure
or non-v-structure corresponds to the pair with lowest
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Fig. 1 Inference of v-structures versus non-v-structures by 3-point information from observational data. a Isolated v-structures are predicted for
I(x; y; z)<0, and (b–d) isolated non-v-structures for I(x; y; z)>0. e Generalized v-structures are predicted for I(x; y; z|{ui})<0 and (f–h) generalized
non-v-structures for I(x; y; z|{ui})>0. In addition, as I(x; y; z|{ui}) are invariant upon xyz permutations, the global orientation of v-structures and
non-v-structures also requires to find the most likely base of the xyz triple. Choosing the base xy with the lowest conditional mutual information, i.e.,
I(x; y|{ui}) = minxyz (I(s; t|{ui})), is found to be consistent with the Data Processing Inequality expected for (generalized) non-v-structures in the
limit of infinite dataset, see main text. In practice, given a finite dataset, the inference of (generalized) v-structures versus non-v-structures can be
obtained by replacing 3-point and 2-point information terms I(x; y|{ui}) and I(x; y; z|{ui}) by shifted equivalents, I′(x; y|{ui}) and I′(x; y; z|{ui}),
including finite size corrections, see text (Eqs. 23 & 24)

mutual information, e.g., I(x; y) = minxyz
(
I(s; t)

)
, as

shown by the likelihood ratios,

Lv(xy)
Lv(st)

= Lnv(xy)
Lnv(st)

= e−NI(x;y)

e−NI(s;t) (8)

Note, in particular, that choosing the base with the
lowest mutual information is consistent with the Data
Processing Inequality expected for non-v-structures,
Fig. 1b–d.
Hence, combining 3-point and 2-point information

allows to determine the likelihood and the base of
isolated v-structures versus non-v-structures. But how to
extend such simple results to identify local v-structures

and non-v-structures embedded within an entire
graph G?

Inferring embedded v-structures vs non-v-structures from
conditional 3-point and 2-point information
To go from isolated to embedded v-structures and non-
v-structures within a DAG G, we will consider the
Markov equivalent CPDAG of G and introduce gener-
alized v-structures and non-v-structures, Fig. 1e–h. We
will demonstrate that their relative likelihood, given the
available observational data, can be estimated from the
sign and magnitude of a conditional 3-point information,
I(x; y; z|{ui}), Eq. 11. This will extend our initial result valid
for isolated v-structures and non-v-structures, Eq. 7.



Affeldt et al. BMC Bioinformatics 2016, 17(Suppl 2):12 Page 153 of 202

Let’s consider a pair of non-neighbor nodes x, y with a
set of upstream nodes {ui}n, where each node ui has at
least one direct connection to x (ui → x) or y (ui → y)
or to another upstream node uj ∈ {ui}n (ui → uj) or only
undirected links to these nodes (ui − x, ui − y or ui − uj).
Thus, given x, y and a set of upstream nodes {ui}n, any
additional node z can either be:

• i) at the apex of a generalized v-structure, if all
existing connections between x, y, {ui}n and z are
directed and point towards z, Fig. 1e, or else,

• ii) z has at least one undirected link with x, y or one
of the upstream nodes ui (z − x, z − y or z − ui) or at
least one directed link pointing towards these nodes
(z → x, z → y or z → ui), Fig. 1f–h. In such a case, z
might contribute to the mutual information I(x; y)
and should be included in the set of upstream nodes
{ui}n, thereby defining a generalized non-v-structure,
Figs. 1f–h.

Then, similarly to the case of an isolated v-structure
(Eq. 3), the maximum likelihoodLv(xy) of a generalized v-
structure pointing towards z from a base xywith upstream
nodes {ui}n can be expressed as,

Lv(xy) = e−N[H(z|x,y,{ui})+H(x|{ui})+H(y|{ui})+H({ui})]

= e−N[H(x,y,z,{ui})+I(x;y|{ui})] (9)

where I(x; y|{ui}) is the conditional mutual information
between x and y given {ui}, I(x; y|{ui}) = H(x|{ui}) +
H(y|{ui}) − H(x, y|{ui}) − H({ui}).
Likewise, the maximum likelihood Lnv(xy) of a general-

ized non-v-structure of base xywith upstream nodes {ui}n
and z can be expressed as,

Lnv(xy) = e−N[H(x|z,{ui})+H(y|z,{ui})+H(z,{ui})]

= e−N[H(x,y,z,{ui})+I(x;y|z,{ui})] (10)

where I(x; y|z, {ui}) = H(x|z, {ui})+H(y|z, {ui})−H(x, y|z,
{ui}) − H(z, {ui}) is the conditional mutual information
between x and y given z and {ui}. Hence,

Lv(xy)
Lnv(xy)

= e−NI(x;y;z|{ui}) (11)

where we introduced the conditional 3-point information,
I(x; y; z|{ui}) = I(x; y|{ui}) − I(x; y|z, {ui}).
Hence, a significantly negative conditional 3-point

information, I(x; y; z|{ui}) < 0, implies that a gen-
eralized v-structure is more likely than a generalized
non-v-structure given the available observational data.
Conversely, a significantly positive conditional 3-point
information, I(x; y; z|{ui}) > 0, implies that a generalized

non-v-structure model is more likely than a generalized
v-structure model.
Yet, as the conditional 3-point information,

I(x; y; z|{ui}), is in fact invariant upon permutations
between x, y and z, it cannot indicate how to orient
embedded v-structures or non-v-structures over the xyz
triple, as already noted in the case of isolated v-structures
and non-v-structures, above.
However, the most likely base (xy, xz or yz) of the

embedded v-structure or non-v-structure corresponds
to the least correlated pair conditioned on {ui}, e.g.,
I(x; y|{ui}) = minxyz

(
I(s; t|{ui})

)
, as shown with the fol-

lowing likelihood ratios,

Lv(xy)
Lv(st)

= Lnv(xy)
Lnv(st)

= e−NI(x;y|{ui})

e−NI(s;t|{ui}) (12)

Note, in particular, that choosing the base with the low-
est conditional mutual information, e.g., I(x; y|{ui}) =
minxyz

(
I(s; t|{ui})

)
, is consistent with the Data Processing

Inequality expected for the generalized non-v-structure
of Fig. 1f–h, I(x; y) � min

(
I(x; z, {ui}), I(z, {ui}; y)

)
, as

shown below for I(x; y) and I(x; z, {ui}), by subtracting
I(x; y; z|{ui}) on each side of the inequality I(x; y|{ui}) �
I(x; z|{ui}), leading to,

I(x; y|z, {ui}) � I(x; z|{ui}, y)
� I(x; z|{ui}, y) + I(x; {ui}|y)
� I(x; z, {ui}|y)

I(x; y) � I(x; z, {ui}) (13)

where we have used the chain rule, I(x; z, {ui}|y) =
I(x; z|{ui}, y) + I(x; {ui}|y), before adding I(x; y; z, {ui}) on
each side of the inequality. The corresponding inequality
holds between I(x; y) and I(z, {ui}; y), implying the Data
Processing Inequality.

Finite size corrections ofmaximum likelihood
Maximum likelihood ratios, such as Eq. 2, suggest that
1/N sets the significance level of the maximum likelihood
approach, as H(G,D) − H(G′,D) � 1/N should imply a
significant improvement of the underlying model G ′ over
G. In practice, however, there are O(log(N)/N) correc-
tions coming from the proper normalization of maximum
likelihoods (see Appendix),

LG = e−N
∑

i H(xi|
{
Paxi

}
)

Z(G,D)
(14)

The model G can then be compared to the alternative
model G\x→y with one missing edge x → y using the
maximum likelihood ratio,

LG\x→y

LG
= e−NI(x;y|{Pay}\x) Z(G,D)

Z(G\x→y,D)
(15)

where I(x; y|{Pay}\x) = H(y|{Pay}\x) − H(y|{Pay}).
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Then, following the rationale of constraint-based
approaches, Eq. 15 can be reformulated by replacing the
parent nodes {Pay}\x with an unknown separation set
{ui} to be learnt simultaneously with the missing edge
candidate xy,

LG\xy|{ui}
LG

= e−NI(x;y|{ui})+kx;y|{ui} (16)

kx;y|{ui} = log
(
Z(G,D)/Z(G\xy|{ui},D)

)
(17)

where the factor kx;y|{ui} > 0 tends to limit the com-
plexity of the models by favoring fewer edges. Namely,
the condition, I(x; y|{ui}) < kx;y|{ui}/N , implies that sim-
pler models compatible with the structural independency,
x ⊥⊥ y|{ui}, are more likely than model G, given the finite
available dataset. This replaces the ‘perfect’ conditional
independency condition, I(x; y|{ui}) = 0, valid in the limit
of an infinite dataset, N → ∞. A common complex-
ity criteria in model selection is the Bayesian Information
Criteria (BIC) or Minimal Description Length (MDL)
criteria [19, 20],

k
MDL

x;y|{ui} = 1
2
(rx − 1)(ry − 1)

∏
i
rui logN (18)

where rx, ry and rui are the number of levels of the cor-
responding variables. The MDL complexity, Eq. 18, is
simply related to the normalisation constant of the distri-
bution reached in the asymptotic limit of a large dataset
N → ∞ (Laplace approximation). However, this limit
distribution is only reached for very large datasets in
practice.
Alternatively, the normalisation of the maximum likeli-

hood can also be done over all possible datasets including
the same number of data points to yield a (universal)
Normalized Maximum Likelihood (NML) criteria [21, 22]
and its decomposable [23, 24] and xy-symmetric version,
kNML

x;y|{ui}, defined in the Appendix.
Then, incrementing the separation set of xy from {ui} to

{ui} + z leads to the following likelihood ratio,

LG\xy|{ui},z
LG\xy|{ui}

= eNI(x;y;z|{ui})+kx;y;z|{ui} (19)

with I(x; y; z|{ui}) = I(x; y|{ui}) − I(x; y|{ui}, z) and where
we introduced a 3-point conditional complexity, kx;y;z|{ui},
defined similarly as the difference between the 2-point
conditional complexities,

kx;y;z|{ui} = kx;y|{ui},z − kx;y|{ui} (20)

However, unlike 3-point information, I(x; y; z|{ui}), 3-
point complexities are always positive, kx;y;z|{ui} > 0, pro-
vided that there are at least two levels for each implicated
node � ∈ x, y, z, {ui}, i.e. r� � 2.

Hence, we can define the shifted 2-point and 3-point
information in Eqs. 16 & 19 for finite datasets as,

I ′(x; y|{ui}) = I(x; y|{ui}) − kx;y|{ui}
N

(21)

I ′(x; y; z|{ui}) = I(x; y; z|{ui}) + kx;y;z|{ui}
N

(22)

This leads to the following maximum likelihood ratios
equivalent to Eqs. 11 & 12 for v-structure over non-v-
structure and between alternative bases,

Lv(xy)
Lnv(xy)

= e−NI′(x;y;z|{ui}) (23)

Lv(xy)
Lv(st)

= Lnv(xy)
Lnv(st)

= e−NI′(x;y|{ui})

e−NI′(s;t|{ui}) (24)

Hence, given a finite dataset, a significantly nega-
tive conditional 3-point information, corresponding to
I ′(x; y; z|{ui}) < 0, implies that a v-structure x → z ← y
is more likely than a non-v-structure provided that the
structural independency, x ⊥⊥ y|{ui}, is also confidently
established as, I ′(x; y|{ui}) < 0. By contrast, a significantly
positive conditional 3-point information corresponds to
I ′(x; y; z|{ui}) > 0 and implies that a non-v-structure
model is more likely than a v-structure model, given the
available observational data.

Probability estimate of indirect contributions tomutual
information
The previous results enable us to estimate the prob-
ability of a node z to contribute to the conditional
mutual information I(x; y|{ui}), by combining the prob-
ability, Pnv(xyz|{ui}), that the triple xyz is a generalized
non-v-structure conditioned on {ui} and the probability,
Pb(xy|{ui}), that its base is xy, where,

Pnv(xyz|{ui}) = Lnv(xy)
Lnv(xy) + Lv(xy)

(25)

Pb(xy|{ui}) = Lnv(xy)
Lnv(xy) + Lnv(xz) + Lnv(yz)

(26)

that is, using Eqs. 23 & 24 including finite size corrections
of the maximum likelihoods,

Pnv(xyz|{ui}) = 1
1 + e−NI′(x;y;z|{ui}) (27)

Pb(xy|{ui}) = 1

1 + e−NI′(x;z|{ui})
e−NI′(x;y|{ui}) + e−NI′(y;z|{ui})

e−NI′(x;y|{ui})
(28)

Then, various alternatives to combine Pnv(xyz|{ui}) and
Pb(xy|{ui}) exist to estimate the overall probability that
the additional node z indirectly contributes to I(x; y|{ui}).
One possibility is to choose the lower bound Slb(z; xy|{ui})
of Pnv(xyz|{ui}) and Pb(xy|{ui}), since both conditions
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need to be fulfilled to warrant that z indeed contributes to
I(x; y|{ui}),

Slb(z; xy|{ui}) = min
[
Pnv(xyz|{ui}),Pb(xy|{ui})

]
(29)

The pair of nodes xy with the most likely contribution
from a third node z can then be ordered according to their
rank R(xy; z|{ui}) defined as,

R(xy; z|{ui}) = max
z

(
Slb(z; xy|{ui})

)
(30)

and z can be iteratively added to the set of contribut-
ing nodes (i.e. {ui} ← {ui} + z) of the top link xy =
argmaxxyR(xy; z|{ui}) to progressively recover the most
significant indirect contributions to all pairwise mutual
information in a causal graph, as outlined below.

Robust inference of conditional independencies using the
3off2 scheme
The previous results can be used to provide a robust
inference method to identify conditional independen-
cies and, hence, reconstruct the skeleton of underlying
causal graphs from finite available observational data. The
approach follows the spirit of constraint-based methods,
such as the PC or IC algorithms, but recovers condi-
tional independencies following an evolving ranking of the
network edges, R(xy; z|{ui}), defined in Eq. 30.
All in all, this amounts to perform a generic decom-

position for each mutual information term, I(x; y), by
introducing a succession of node candidates, u1,u2, . . . ,
un, that are likely to contribute to the overall mutual
information between the pair x and y, as,

I(x; y) = I(x; y;u1) + I(x; y|u1)
= I(x; y;u1) + I(x; y;u2|u1) + . . .

. . . + I(x; y;un|{ui}n−1) + I(x; y|{ui}n) (31)

or equivalently between the shifted 2-point and 3-
point information terms including finite size corrections
(Eq. 22),

I ′(x; y) = I ′(x; y;u1) + I ′(x; y;u2|u1) + . . .

+ I ′(x; y;un|{ui}n−1) + I ′(x; y|{ui}n) (32)

Hence, given a significant mutual information between
x and y, I ′(x; y) > 0, we will search for possible structural
independencies, i.e. I ′(x; y|{ui}n) < 0, by iteratively “tak-
ing off ” conditional 3-point information terms from the
initial 2-point (mutual) information, I ′(x; y), as

I ′(x; y|{ui}n) = I ′(x; y) − I ′(x; y;u1) − I ′(x; y;u2|u1)
− . . . − I ′(x; y;un|{ui}n−1) (33)

and similarly with non-shifted 2-point and 3-point infor-
mation,

I(x; y|{ui}n) = I(x; y) − I(x; y;u1) − I(x; y;u2|u1)
− . . . − I(x; y;un|{ui}n−1) (34)

3off2 algorithm
The 3off2 scheme can be used to devise a two-step
algorithm (see Algorithm 2), inspired by constraint-
based approaches, to first reconstruct network skeleton
(Algorithm 2, step 1) before combining orientation and
propagation of edges in a single step based on likelihood
ratios (Algorithm 2, step 2).

Reconstruction of network skeleton
The 3off2 scheme will first be applied to iteratively
remove edges with maximum positive contributions,
I ′(x; y;uk|{ui}k−1) > 0, corresponding to the most
likely generalized non-v-structures (Eq. 23), while min-
imizing simultaneously the remaining 2-point informa-
tion, I ′(x; y|{ui}k) (Eq. 24), consistently with the data
processing inequality. Such 3off2 scheme (Algorithm 2,
step 1) will therefore progressively lower the condi-
tional 2-point information terms, I ′(x; y) > · · · >

I ′(x; y|{ui}k−1) > I ′(x; y|{ui}k) and might ultimately
result in the removal of the corresponding edge, xy, but
only when a structural independency is actually found,
i.e. I ′(x; y|{ui}n) < 0, as in constraint-based algorithms
for a given significance level α. Yet, the skeleton obtained
with the 3off2 scoring approach is expected to be more
robust to finite observational data than the skeleton
obtained with PC or IC algorithms, as the former results
only from statistically significant 3-point contributions,
I ′(x; y;uk|{ui}k−1) > 0, based on their quantitative 3off2
ranks, R(xy;uk|{ui}k−1).
The best results on benchmark networks using these

quantitative 3off2 ranks are obtained with the NML score
(see Results and discussion Section below). The MDL
score leads to equivalent results, as expected, in the limit
of very large datasets (see Appendix). However, with
smaller datasets, the most reliable results with the MDL
score are obtained using non-shifted instead of shifted 2-
point and 3-point information terms in the 3off2 rank
of individual edges, Eq. 30. This is because the MDL
complexity tends to underestimate the importance of
edges between nodes with many levels (see Appendix).
For finite datasets, it easily leads to spurious conditional
independencies, I ′(x; y|{ui}) < 0, when using shifted 2-
point and 3-point information, Eq. 33, whereas using
non-shifted information in the 3off2 ranks (Eq. 30) tends
to limit the number of false negatives as early errors
in {ui} can only increase I(x; y|{ui}) � 0, in the end,
in Eq. 34.

Orientation of network skeleton
The skeleton and the separation sets resulting from the
3off2 iteration step (Algorithm 2, step 1) can then be
used to orient the edges and to propagate orientations
to the unshielded triples. However, while the constraint-
based methods distinguish the v-structures orientation
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step (Algorithm 1, step 2) from the propagation proce-
dure (Algorithm 1, step 3), the 3off2 algorithm inter-
twines these two steps based on the respective likelihood
scores of individual v-structures and non-v-structures
(Algorithm 2, step 2).
As stated earlier, the magnitude and sign of the condi-

tional 3-point information, I(x; y; z|{ui}) (or equivalently
the shifted 3-point information, Eq. 23), indicate if a
non v-structure is more likely than a v-structure. Hence,
all the unshielded triples can be ranked by the absolute
value of their conditional 3-point information, that is, in
decreasing order of their likelihood of being either a v-
structure or a non-v-structure. As detailed in the step
2 of Algorithm 2, the most likely v-structure is used to
set the first orientations, following R0 orientation rule.
The possible propagations are then performed, following
R1 propagation rule, starting from the unshielded triple
having the most positive conditional 3-point information.
The following most likely v-structure is considered when
no further propagation is possible on unshielded triples
with greater absolute 3-point information. If conflicting
orientations arise (such as a → b ← c & b → c ← d),
the less likely v-structure and its possible propagations
are ignored.
Note that we only implement the R0 and R1 propagation

rules, which are applied in decreasing order of likelihood.
In particular, we do not consider propagation rules R2
and R3 which are not associated to likelihood scores but
enforce the hypothesis of acyclic constraint.
As for the 3off2 skeleton reconstruction, the orienta-

tion/propagation step of 3off2 allows for a robust dis-
covery of orientations from finite observational data as
it relies on a quantitative framework of likelihood ratios
taken in decreasing order of their statistical significance.
During this step, 3off2 recovers and propagates as many
orientations as possible in an iterative procedure following
the decreasing ranks of the unshielded triples based on the
absolute value of their conditional 3-point information,
|I ′(x; y; z|{ui})|.

Results and discussion
Tests on benchmark graphs
We have tested the 3off2 network reconstruction
approach to learn benchmark causal graphs containing
20 to 70 nodes, Figs. 2, 3, 4, 5 and 6. The results are
evaluated against other methods in terms of Precision
(or positive predictive value), Prec = TP/(TP + FP),
Recall or Sensitivity (true positive rate), Rec = TP/(TP +
FN), as well as F-score = 2 × Prec × Rec/(Prec +
Rec) for increasing sample size N=10 to 50,000 data
points.
We also define additional Precision, Recall and F-

scores taking into account the edge orientations of the

Algorithm 2: 3off2 Network Reconstruction
In: finite observational dataset of size N ;

complexity kx;y|{ui}
Out: (partially) oriented graph G
0. Initiation
Start with complete undirected graph G
forall the links xy do

if I(x; y)<kx;y|∅/N i.e. I ′(x; y)<0 then
xy link is non-essential and removed
separation set of xy: Sepxy = ∅

else
find themost contributing node z neighbor
of x or y and compute 3off2 rank, R(xy; z|∅)

end
end
1. Iteration
while ∃ xy link with R(xy; z|{ui}) > 1/2 do

for top link xy with highest rank R(xy; z|{ui}) do
expand contributing set {ui} ← {ui} + z
if I(x; y|{ui})<kx;y|{ui}/N i.e. I ′(x; y|{ui})<0
then

xy link is non-essential and removed
separation set of xy: Sepxy = {ui}

else
find next most contributing node z
neighbor of x or y and compute new 3off2
rank of xy: R(xy; z|{ui})

end
sort the 3off2 rank list R(xy; z|{ui})

end
end
2. Orientation / Propagation
Sort list of unshielded triples, Lc = {〈x, z, y〉x � y},
in decreasing order of |I ′(x; y; z|{ui})|
repeat

Take 〈x, z, y〉x � y ∈ Lc with highest |I ′(x; y; z|{ui})|
on which R0 or R1 orientation rule can be applied
if I ′(x; y; z|{ui}) < 0 then

if 〈x, z, y〉x � y has no diverging orientation, apply
R0 : {x−∗z ∗−y & x� y & z /∈Sepxy}⇒{x→z←y}

else
if〈x, z, y〉x/−y has one converging orientation, apply
R1 : {x → z − y & x� y} ⇒ {z → y}

end
Apply new orientation(s) to all other 〈x′, z′, y′〉x′ � y′ ∈ Lc

until no additional orientation can be obtained;

predicted networks against the corresponding CPDAG
of the benchmark networks. This amounts to label as
false positives, all true positive edges of the skeleton
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Fig. 2 CHILD network. [20 nodes, 25 links, 230 parameters, Average degree 2.5, Maximum in-degree 2]. Precision, Recall and F-score for skeletons
(dashed lines) and CPDAGs (solid lines). The results are given for Aracne (black), PC (blue), Bayesian Hill-Climbing (green) and 3off2 (red)

with different orientation/non-orientation status as the
CPDAG reference, TPmisorient, leading to the orientation-
dependent definitions TP′ = TP − TPmisorient and
FP′ = FP + TPmisorient with the corresponding CPDAG
Precision, Recall and F-scores taking into account edge
orientations.
The alternative inference methods used for com-

parison with 3off2 are the PC algorithm [12] imple-
mented in the pcalg package [25, 26] and Bayesian
inference using the hill-climbing heuristics implemented
in the bnlearn package [27]. In addition, we also
compare the skeleton of 3off2 to the unoriented out-
put of Aracne [28], an information-based inference
approach, which iteratively prunes links with the weak-
est mutual information based on the Data Processing
Inequality. We have used the Aracne implementation of
the minet package [29]. For each sample size, 3off2,
Aracne, PC and the Bayesian inference methods have
been tested on 50 replicates. Figures 2, 3, 4, 5 and 6
give the average results over these multiple replicates
when comparing the CPDAG (solid lines) of the recon-
structed network (or its skeleton, dashed lined) to the
CPDAG (or the skeleton) of the benchmark network.

For each method, the plots presented in Figs. 2, 3, 4,
5 and 6 are those obtained for the parameters that give
overall the best results over the five reconstructed bench-
mark networks (see Additional file 1, Figures S1-S20). In
particular, we used the stable implementation of the PC
algorithm, as well as the majority rule for the orienta-
tion and propagation steps [14]. PC’s results are shown
on Figs. 2, 3, 4, 5 and 6 for α = 0.1. Decreasing α tends
to improve the skeleton Precision at the expense of the
skeleton Recall, leading in fact to worse skeleton F-scores
for finite datasets, e.g. N � 1000 (see Additional file 1,
Figures S1-S5). The same trend is observed for CPDAG
F-scores taking into account edge orientations, with best
CPDAG scores at small sample sizes, obtained for larger α,
e.g. N � 1000. Aracne threshold parameters for minimum
difference in mutual information is set to ε = 0, as small
positive values typically worsen F-scores (see Additional
file 1, Figures S6-S10). Bayesian inference are obtained
using BIC/MDL scores and hill-climbing heuristics with
100 random restarts [9] (see Additional file 1, Figures S11-
S15). Finally, the best 3off2 network reconstructions are
obtained using NML scores with shifted 2-point and 3-
point information terms in the rank of individual edges,
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Fig. 3 ALARM network. [37 nodes, 46 links, 509 parameters, Average degree 2.49, Maximum in-degree 4]. Precision, Recall and F-score for skeletons
(dashed lines) and CPDAGs (solid lines). The results are given for Aracne (black), PC (blue), Bayesian Hill-Climbing (green) and 3off2 (red)

see Methods. Using MDL scores, instead, leads to equiva-
lent results, as expected, in the limit of very large datasets
(see Appendix). However, with smaller datasets, the most
reliable results with MDL scores are obtained using non-
shifted instead of shifted 2-point and 3-point information
terms in the 3off2 rank of individual edges, as discussed in
Methods (see Additional file 1, Figures S16-S20).
All in all, we found that the 3off2 inference approach

typically reaches better or equivalent F-scores for all
dataset sizes as compared to all other tested methods,
i.e.Aracne, PC and Bayesian inference, as well as theMax-
Min Hill-Climbing (MMHC) hybrid method [30] (see
Additional file 1, Figures S21-S25). This is clearly observed
both on the skeletons (Figs. 2, 3, 4, 5 and 6 dashed lines)
and even more clearly when taking the predictions of ori-
entations into account (Figures 2, 3, 4, 5 and 6 solid lines).

Applications to the hematopoiesis regulation network
The reconstruction or reverse-engineering of real regu-
latory networks from actual expression data has already
been performed on a number of biological systems
(see e.g. [28, 31–33]). Here, we apply the 3off2 approach
on a real biological dataset related to hematopoiesis.
Transcription factors play a central role in hematopoiesis,

from which derive the blood cell lineages. As suggested
in previous studies, changes in the regulatory interac-
tions among transcription factors [34] or their overex-
pression [35] might be involved in the development of
T-acute lymphoblastic leukaemia (T-ALL). The key role
of the hematopoiesis and the potentially serious con-
sequences of its disregulations emphasize the need to
accurately establish the complex interactions between the
transcription factors involved in this critical biological
process.
The dataset we have used for this analysis [36] consists

of the single cell expressions of 18 transcription factors,
known for their role in hematopoiesis. Five hundred
ninety seven single cells representing 5 different types
of hematopoietic progenitors have been included in the
analysis (N = 597). We reconstructed the correspond-
ing network with the 3off2 inference method, Fig. 7,
and four other available approaches, namely, PC [12]
implemented in the pcalg package [25, 26], Bayesian
inference using hill-climbing heuristics as well as the
Max-Min Hill-Climbing (MMHC) hybrid method [30],
both implemented in the bnlearn package [27], and,
finally, Aracne [28] implemented in the minet package
[29] (Table 1 and Additional file 1: Table S1).
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Fig. 4 INSURANCE network. [27 nodes, 52 links, 984 parameters, Average degree 3.85, Maximum in-degree 3]. Precision, Recall and F-score for
skeletons (dashed lines) and CPDAGs (solid lines). The results are given for Aracne (black), PC (blue), Bayesian Hill-Climbing (green) and 3off2 (red)

3off2 uncovers all 11 interactions for which specific
experimental evidence has been reported in the literature
(Fig. 7, red links: known activations; blue links: known
repressions) as well as 30 additional links (Fig. 7, grey
links: unknown regulatory interactions). By contrast, ran-
domization of the actual data across samples for each
TF leads to only 5.25 spurious interactions on average
between the 18 TFs, instead of the 41 inferred edges
from the actual data, and 1.62 spurious interactions on
average, instead of the 16 interactions predicted among
the 10 TFs involved in known regulatory interactions,
Fig. 7. This suggests that around 10–13 % of the pre-
dicted edgesmight be spurious, due to inevitable sampling
noise in the finite dataset. In particular, the 3off2 infer-
ence approach successfully recovers the relationships of
the regulatory triad between Gata2, Gfi1b and Gfi1 as
described in [36] and reports correct orientations for the
edges involving Gata2 (Gfi1b and Gfi1 crossregulate in
fact one another [36], Table 1). The network reconstructed
by 3off2 also correctly infers the regulations of PU.1 by
Gfi1 [37], Gfi1 by Lyl1 [38], Meis1 by Ldb1 [39], and the
regulations of Lyl1 by Ldb1 [39] and Erg [40]. Finally, the
interactions (Gata2−SCL) [40], (Gfi1b−Meis1) [41] and
(Gata1−Gata2) [42] are correctly inferred, however, with

opposite directions as reported in the literature. Yet, over-
all 3off2 outperformsmost of the other methods tested for
the reconstruction of the hematopoietic regulatory sub-
network (Table 1 and Additional file 1: Table S1). Only the
Bayesian hill-climbing method using a BDe score leads to
comparable results by retrieving 10 out of 11 interactions
and correctly orienting 8 of them. These encouraging
results from the 3off2 reconstruction method on exper-
imentally proven regulatory interactions (red edges in
Fig. 7) could motivate further investigations on novel reg-
ulatory interactions awaiting to be tested for their possible
role in hematopoiesis (e.g. grey edges in Fig. 7).

Conclusions
In this paper, we propose to improve constraint-based
network reconstruction methods by identifying structural
independencies through a robust quantitative score-based
scheme limiting the accumulation of early FN errors and
subsequent FP compensatory errors. In brief, 3off2 relies
on information theoretic scores to progressively uncover
the best supported conditional independencies, by itera-
tively “taking off” the most likely indirect contributions
of conditional 3-point information from every 2-point
(mutual) information of the causal graph.
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Fig. 5 BARLEY network. [48 nodes, 84 links, 114,005 parameters, Average degree 3.5, Maximum in-degree 4]. Precision, Recall and F-score for
skeletons (dashed lines) and CPDAGs (solidlines). The results are given for Aracne (black), PC (blue), Bayesian Hill-Climbing (green) and 3off2 (red)

Earlier hybrid methods have also attempted to improve
network reconstruction by combining the concepts of
constraint-based approaches with the robustness of
Bayesian scores [30, 43–45]. In particular [43], have pro-
posed to exploit an intrinsic weakness of the PC algo-
rithm, its sensitivity to the order in which conditional
independencies are tested on finite data, to rank these
different order-dependent PC predictions with Bayesian
scores. More recently [30], have also combined constraint-
based and Bayesian approaches by first identifying both
parents and children of each node of the underlying
graphical model and then performing a greedy Bayesian
hill-climbing search restricted to the identified parents
and children of each node. This Max-Min Hill-Climbing
(MMHC) approach tends to have a high precision in terms
of skeleton but a more limited sensibility, leading over-
all to lower skeleton and CPDAG F-scores than 3off2
and Bayesian hill climbing methods on the same bench-
mark networks, Figures S21-S25. Interestingly, however,
the MMHC approach is among the fastest network recon-
struction approaches, Figure S26, allowing for scalability
to large network sizes [30].
The 3off2 algorithm is expected to run in poly-

nomial time on typical sparse causal networks with

low in-degree, just like constraint-based algorithms.
However, in practice and despite the additional com-
putation of conditional 2-point and 3-point infor-
mation terms, we found that the 3off2 algorithm
runs typically faster than constraint-based algorithms
for large enough samples, by avoiding the cascading
accumulation of errors that inflate the combinato-
rial search of conditional independencies in tradi-
tional constraint-based approaches. Instead, we found
that 3off2 running time displays a similar trend as
Bayesian hill-climbing heuristic methods, Figs. 2, 3, 4, 5
and 6.
All in all, the main computational bottleneck of the

present 3off2 scheme pertains to the identification of the
best contributing nodes at each iteration. In the future,
it could be interesting to investigate whether a more
stochastic version of this 3off2method, based on choosing
one significant conditional 3-point information instead of
the best one, might simultaneously accelerate the network
reconstruction and circumvent possible locally trapped
suboptimal predictions through stochastic resampling.
Finally, another perspective for practical applications

will be to include the possibility of latent variables and
bidirected edges in reconstructed networks.
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Fig. 6 HEPAR II network. [70 nodes, 123 links, 1,453 parameters, Average degree 3.51, Maximum in-degree 6]. Precision, Recall and F-score for
skeletons (dashed lines) and CPDAGs (solid lines). The results are given for Aracne (black), PC (blue), Bayesian Hill-Climbing (green) and 3off2 (red)

Appendix
Complexity of graphical models
The complexity kG,D of a graphical model is related to
the normalization constant Z(G,D) of its maximum like-
lihood as kG,D = logZ(G,D),

LG = e−NH(G,D)

Z(G,D)
= e−NH(G,D)−kG,D (35)

For Bayesian networks with decomposable entropy,
i.e. H(G,D) = ∑

i H(xi|{Paxi}), it is convenient to use
decomposable complexities, kG,D = ∑

i kxi|
{
Paxi

},

LG = e
−N

∑
i H(xi|

{
Paxi

}
)−∑

i kxi|{Paxi} (36)

such that the comparison between alternative models G
and G\x→y (i.e. G with one missing edge x → y) leads to a
simple local increment of the score,

LG\x→y

LG
= e

−NI(x;y|{Pay}\x)+�ky|{Pay}\x (37)

I(x; y|{Pay}\x) = H(y|{Pay}\x) − H(y|{Pay}) � 0 (38)
�ky|{Pay}\x = ky|{Pay} − ky|{Pay}\x � 0 (39)

A common complexity criteria in model selection is the
Bayesian Information Criteria (BIC) or Minimal Descrip-
tion Length (MDL) criteria [19, 20],

k
MDL

y|{Pay} = 1
2
(ry − 1)

Pay∏
j
rj logN (40)

�k
MDL

y|{Pay}\x = 1
2
(rx − 1)(ry − 1)

Pay\x∏
j

rj logN (41)

where rx, ry and rj are the number of levels of each vari-
able, x, y and j. The MDL complexity, Eq. 40, is sim-
ply related to the normalisation constant reached in the
asymptotic limit of a large dataset N → ∞ (Laplace
approximation). The MDL complexity can also be derived
from the Stirling approximation on the Bayesian measure
[46, 47]. Yet, in practice, this limit distribution is only
reached for very large datasets, as some of the least-likely
(ry − 1)

∏
j rj combinations of states of variables are in

fact rarely (if ever) sampled in typical finite datasets. As
a result, the MDL complexity criteria tends to underes-
timate the relevance of edges connecting variables with
many levels, ri, leading to the removal of false negative
edges.
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Fig. 7 Hematopoietic subnetwork reconstructed by 3off2. The dataset [36] concerns 18 transcription factors, 597 single cells, 5 different
hematopoietic progenitor types. Red and blue edges correspond to experimentally proven activations and repressions, respectively as reported in
the literature (Table 1), while grey links indicate regulatory interactions for which no clear evidence has been established so far. Thinner arrows
underline 3off2misorientations

To avoid such biases with finite datasets, the normal-
isation of the maximum likelihood can be done over
all possible datasets with the same number N of data
points. This corresponds to the (universal) Normalized
Maximum Likelihood (NML) criteria [21–24],

LG = e−NH(G,D)∑
|D′|=N e−NH(G,D′) = e−NH(G,D)−kNML

G,D (42)

We introduce here the factorized version of the NML cri-
teria [23, 24] which corresponds to a decomposable NML
score, kNML

G,D = ∑
xi k

NML

xi|{Paxi }, defined as,

k
NML

y|{Pay} =
qy∑
j
log CryNyj

(43)

�k
NML

y|{Pay}\x =
qy∑
j
log CryNyj

−
qy/rx∑
j′

log CryNyj′ (44)

where Nyj is the number of data points corresponding to
the jth state of the parents of y, {Pay}, and Nyj′ the number
of data points corresponding to the j′th state of the parents
of y, excluding x, {Pay}\x. Hence, the factorizedNML score
for each node xi corresponds to a separate normalisation

for each state j = 1, . . . , qi of its parents and involving
exactly Nij data points of the finite dataset,

LG = e−N
∑

i H(xi|{Paxi })−
∑

i
∑qi

j logCri
Nij (45)

= e
N

∑
i
∑qi

j
∑ri

k
Nijk
N log

(
Nijk
Nij

)
−∑

i
∑qi

j logCri
Nij (46)

=
∏
i

qi∏
j

∏ri
k

(Nijk
Nij

)Nijk

CriNij

(47)

where Nijk corresponds to the number of data points for
which the ith node is in its kth state and its parents in their
jth state, withNij = ∑ri

k Nijk . The universal normalization
constant Crn is then obtained by averaging over all possi-
ble partitions of the n data points into a maximum of r
subsets, �1 + �2 + · · · + �r = n with �k � 0,

Crn =
∑

�1+�2+···+�r=n

n!
�1! �2! · · · �r !

r∏
k=1

(
�k
n

)�k
(48)

which can in fact be computed in linear-time using the
following recursion [23],

Crn = Cr−1
n + n

r − 2
Cr−2
n (49)
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Table 1 Interactions reconstructed by 3off2 and alternative methods for a subnetwork of hematopoiesis regulation. → indicates a
successfully recovered interaction including its direction as reported in the literature (see References).� corresponds to a successfully
recovered interaction, however, with an opposite direction as reported in the literature. � stipulates that no direct regulatory
interaction has been inferred, while corresponds to an undirected link. Note in particular that Aracne does not infer edge direction.
See Additional file 1: Table S1 for supplementary statistics

11 known Regulatory 3off2 PC PC MMHC MMHC Bayes hc Bayes hc Aracne

interactions References NML α=10−1 α=10−2 BDe BIC BDe BIC ε = 0

Gata2 → Gfi1b [36] → � � � → � �
Gfi1 → Gata2 [36] → → → � → �

Gfi1b� Gfi1 [36] � � � � � �

Gfi1 → PU.1 [37] → → � � � → →
Lyl1 → Gfi1 [38] → � � � � → �

Ldb1 → Meis1 [39] → � � � � � � �
Ldb1 → Lyl1 [39] → � � � � � � �
Erg → Lyl1 [40] → � → → → �

Gata2 → Scl [40] � → → → → →
Gfi1b → Meis1 [41] � � → → → →
Gata1 → Gata2 [42] � � → → → →
Correct edges (out of 11) (→/�/ ) 11 9 7 6 6 10 8 8

- Correct orientations (→) 7 3 0 5 4 8 4 0

- Mis/non-orientations (�/ ) 4 6 7 1 2 2 4 8

Missing links (� ) 0 2 4 5 5 1 3 3

with Cr0 = 1 for all r, C1n = 1 for all n and applying the
general formula Eq. 48 for r = 2,

C2n =
n∑

h=0

(
n
h

) (
h
n

)h (
n − h
n

)n−h
(50)

or its Szpankowski approximation for large n (needed for
n > 1000 in practice) [48–50],

C2n =
√
nπ

2

(
1 + 2

3

√
2
nπ

+ 1
12n

+ O
(

1
n3/2

))
(51)

�
√
nπ

2
exp

(√
8

9nπ
+ 3π − 16

36nπ

)
(52)

Then, following the rationale of constraint-based
approaches, we can reformulate the likelihood ratio of
Eq. 37 by replacing the parent nodes {Pay}\x in the
conditional mutual information, I(x; y|{Pay}\x), with an
unknown separation set {ui} to be learnt simultaneously
with the missing edge candidate xy,

LG\xy|{ui}
LG

= e−NI(x;y|{ui})+kx;y|{ui} (53)

where we have also transformed the asymmetric parent-
dependent complexity difference, �ky|{Pay}\x , into a {ui}-
dependent complexity term, kx;y|{ui}, with the same
xy-symmetry as I(x; y|{ui}),

k
MDL

x;y|{ui} = 1
2
(rx − 1)(ry − 1)

∏
i
rui logN (54)

k
NML

x;y|{ui} = 1
2

{ui}∑
j′

( rx∑
kx

log CryNkxj′
− log CryNj′

+
ry∑
ky

log CrxNkyj′
− log CrxNj′

)
(55)

Note, in particular, that the MDL complexity term in
Eq. 54 is readily obtained from Eq. 41 due to the Markov
equivalence of the MDL score, corresponding to its xy-
symmetry whenever {Pay}\x = {Pax}\y. By contrast, the
factorized NML score, Eq. 43, is not a Markov-equivalent
score (although its non-factorized version, Eq. 42, is
Markov equivalent by definition). To circumvent this
non-equivalence of factorized NML score, we propose
to recover the expected xy-symmetry of kNML

x;y|{ui} through
the simple xy-symmetrization of Eq. 44, leading to
Eq. 55.
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Additional file

Additional file 1: Complementary evaluations for the 3off2 inference
approach and comparisons with alternative reconstruction methods
and parameters values. In this additional file, the results of the 3off2
inference approach are evaluated against other methods in terms of
Precision (or positive predictive value), Prec = TP/(TP + FP), Recall or
Sensitivity (true positive rate), Rec = TP/(TP + FN), as well as
F-score = 2 × Prec × Rec/(Prec + Rec) and execution time when
comparing the CPDAG of the reconstructed network (or its skeleton) to the
CPDAG (or the skeleton) of the benchmark network. The alternative
methods are the PC algorithm, the Bayesian inference method using the
hill-climbing heuristics, the Max-Min Hill-Climbing (MMHC) hybrid method
and the Aracne inference approach. (PDF 528 KB)
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