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Abstract. In this article we investigate the use of statistical
methods for wildfire risk assessment in the Mediterranean
Basin using three meteorological covariates, the 2m tem-
perature anomaly, the 10 m wind speed and the January—
June rainfall occurrence anomaly. We focus on two remotely
sensed characteristic fire variables, the burnt area (BA) and
the fire radiative power (FRP), which are good proxies for
fire size and intensity respectively. Using the fire data we de-
termine an adequate parametric distribution function which
fits best the logarithm of BA and FRP. We reconstruct the
conditional density function of both variables with respect to
the chosen meteorological covariates. These conditional den-
sity functions for the size and intensity of a single event give
information on fire risk and can be used for the estimation of
conditional probabilities of exceeding certain thresholds. By
analysing these probabilities we find two fire risk regimes
different from each other at the 90% confidence level: a
“background” summer fire risk regime and an “extreme” ad-
ditional fire risk regime, which corresponds to higher proba-
bility of occurrence of larger fire size or intensity associated
with specific weather conditions. Such a statistical approach
may be the ground for a future fire risk alert system.

Keywords. Meteorology and
ics (synoptic-scale meteorology)

atmospheric  dynam-

1 Introduction

In order to better manage fire risk, several methods have been
investigated. Among the first are the fire risk indices, such as
the Canadian Fire Weather Index (Van Wagner, 1974, 1987,
Van Wagner and Pickett, 1985). This index relates to the ex-
pected intensity of the fire line, expressed in energy output
rate per unit length of fire front. It is currently used as a fire
risk indicator by the European Forest Fire Information Sys-
tem (EFFIS) of the Joint Research Center (JRC) of the Euro-
pean Commission. The Haines Index (Haines et al., 1983) is
another indicator of dangerous fire development that focuses
on atmospheric stability. It can be used in conjunction with
the Canadian Fire Weather Index but is deemed less infor-
mative. These indices are empirically calibrated for predict-
ing whether the atmospheric and hydrological conditions are
prone to fire development. However, one of their main draw-
backs is that they lack temporal contrast: they identify cor-
rectly fire-prone seasons but fail to provide short-term vari-
ability in fire risk (e.g., San-Miguel-Ayanz et al., 2013, Figs.
7, 8, 12 and 15). Other approaches exist, based on different
criteria of fire risk. Using probabilistic cellular automata fire
propagation models, simulations of multiple starting points
can lead to risk maps than can be helpful for fire suppression
forces deployment (Russo et al., 2014). The main weak point
of this method is the lack of strong validation for the calibra-
tion of the propagation model. More in-depth simulations,
using fully physical models such as FIRETEC (Linn et al.,
2002), can provide accurate predictions of the propagation of
a fire. This method can be very demanding computation-wise

Published by Copernicus Publications on behalf of the European Geosciences Union.

AnGeo Communicates



1496 C. Hernandez et al.: Statistical modelling of wildfire size and intensity

and requires a precise knowledge of the initial and bound-
ary conditions. Using a probabilistic framework, a prelim-
inary risk assessment study was conducted (Preisler et al.,
2004). The aim of the study was to reconstruct the prob-
abilities of fire occurrence and large fire propagation using
meteorological and geographical covariates. The results, al-
though encouraging, gave only mitigated quality in the esti-
mation of monthly fire occurrence. Modelling accumulated
seasonal burnt area time series using meteorological predic-
tors gave satisfying results, with adjusted R? of 68 % for the
July—August time period and northwestern region of Iberia
(Sousa et al., 2015). Besides fire size or fire occurrence, an-
other important factor of risk regarding wildfires is the in-
tensity of the fire front. The propagation of particularly in-
tense wildfires is indeed very hard to control and can trigger
very severe pollution episodes. However large data sets do
not exist for this quantity, so we focus instead on the fire
radiative power (FRP), a remotely-sensed variable strongly
linked with the fire intensity. The general framework of this
study is the estimation of fire size and intensity of individual
fires in the Mediterranean Basin using parametric statistical
methods. Several studies focusing on the estimation of fire
size exist, proposing to derive this quantity based on meteo-
rological and geographical covariates. Their authors mainly
use statistical learning techniques in order to give a quan-
titative or qualitative insight on fire size (Alonso-Betanzos
et al., 2003; Cortez and Morais, 2007; Sakr et al., 2011). In
some cases this analysis is extrapolated to future weather in
the context of climate change (Amatulli et al., 2013). How-
ever one can reproach to these studies their lack of perfor-
mance. An examination of Cortez and Morais (2007) lead
to the observation that the estimation of fire size done by
the best tested method was only very marginally better than
the mean of the observations. For fire intensity no studies
of this kind were conducted. Our approach will be to pro-
vide parametric estimations of both single-event fire size and
intensity distribution functions conditionally to weather co-
variates. We take a multi-timescale approach for the choice of
our weather covariates, with seasonal and immediate weather
information. Using these conditional distribution estimations
we can then compute probabilities that a given fire grows
particularly large or becomes very intense. Because of our
methodology, these probabilities would be both sensitive to
seasonal trends and immediate weather. These estimations
would be much more informative than a conditional mean of
fire size of intensity with respect to weather. In Sect. 2 we de-
scribe the data we use. After presenting our fire variables, we
show our weather covariates and explain their relevance. In
Sect. 3 we find an adequate parametric distribution to model
fire size and intensity of individual events. Using this result,
we develop in Sect. 4 a methodology of fire risk assessment
that focuses on the use of probabilities of large and/or intense
wildfires.
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2 Data
2.1 Fire variables

The detection of fires is performed using the fire prod-
ucts from MODIS (Moderate Resolution Imaging Spectro-
radiometer), an instrument carried on board of the Aqua
and Terra polar heliosynchronous orbiting satellites. The
recorded fire variables are the burnt area (BA) and the fire ra-
diative power (FRP) which can be seen as a proxy of the fire
intensity. We focus on the Mediterranean Basin. We there-
fore select the fires occurring within the box [35, 50° N] and
[—10, 50° E]. We keep only individual wildfire events oc-
curring during the months of July and August in order to
focus on the core of the fire season in the study area (Gan-
teaume et al., 2013). However summer is not the only sea-
son when fires occur. For example in Northern Iberia and
Galicia the month of September also exhibits strong fire ac-
tivity (e.g. Pereira et al., 2005, Fig. 2). Winter and early
spring fires can also occur in Portugal and the Balkans (e.g.
Moriondo et al., 2006, Table 1). However, we focus our anal-
ysis on the summer period to avoid seasonal changes in the
driving factors, especially at the scale of the Mediterranean
basin. Such a generalization of our approach is left for fu-
ture work. There are 5821 and 4840 wildfires in our two BA
data sets and 24 273 wildfires in our FRP data set. The FRP
is retrieved by using measured radiance of the 4 and 11 um
channels at nadir. Other spectral bands are used for assess-
ing cloud masking, glint, bright surface and other sources
of false alarms and disturbances. FRP is provided at 1km
resolution by the MOD14 product. BA is retrieved from the
observed changes in land cover. Indeed, the albedo is modi-
fied by the deposition of charcoal and ash, the loss of vegeta-
tion and the change in fuel bed characteristics. Albedo alter-
ation produces changes in surface reflectance which are pro-
cessed to produce daily burnt area at a 500 m resolution in
the MDC64A1 product (Giglio et al., 2010). Only the frac-
tion of the detected burning pixel covered by vegetation is
burned following Turquety et al. (2014). The FRP and BA
products are then regridded at 10 km resolution which was
chosen to be a good trade-off in order to keep detailed enough
information on the fire location and facilitate the comparison
with the ERA-Interim meteorological data. We use the first
10years (2003-2012) of MODIS data. It should be noted
that there are important uncertainties on the date of begin-
ning of wildfires taken individually. The incertitude can be
as large as 5days and is caused by several factors such as
cloud cover impairment of remote sensing and lack of de-
tection of wildfires at the beginning of their development.
As we deal with statistics on a large number of such wild-
fires, the uncertainty is reduced. Additionally, since the time
period of study is mostly cloud-free, the uncertainty on the
day of detection should be low (Giglio et al., 2010). This
is confirmed by the strong link between fire and synoptic
weather dynamics observed using the same methods in Her-
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nandez et al. (2015b). In the following sections we will call
these BA and FRP data sets BA;; and FRP respectively. We
also use the EFFIS Rapid Damage Assessment system, pro-
vided by the JRC of the European Commission (European
Commission, 2010). This set is built using 250 m MODIS
images. A first step of automated classification is used to iso-
late fire events and a post-processing using human visualiza-
tion of the burnt scar is performed. A cross-analysis using
the active fire MODIS product, land-cover data sets as well
as fire event news collected in the EFFIS News module is fi-
nally done to ensure a low number of misclassifications (http:
[[forest.jrc.ec.europa.eu/effis/). The system records burnt ar-
eas of approximately 40 ha and larger (Sedano et al., 2013).
It also contains smaller wildfires, but is less complete below
this 40 ha threshold. The JRC provided the data for the 2006—
2012 time period. We call this BA data set BAg in the follow-
ing. A 3-D (latitude, longitude and time) connected compo-
nent algorithm is used to determine what are the distinct fire
events in the BA,, data set. This algorithm aggregates the
adjacent fire spots into larger fire events. The main interest
of this method is that it allows for the detection of wildfires
larger than 10000 ha which are those expected to be most
influenced by weather conditions (e.g. Pereira et al., 2005).
The main weakness is that it does not take into account cloud
cover impairment of remote sensing. Indeed an absence of
detection of 1 day between two detections could be caused by
clouds. Another problem is that two independent fire events
taking place close to one another (less than 20 km of distance
and less than a day between the end of the first event and
the beginning of the second) are considered the same by this
method. “Megafire” events, such as those defined by San-
Miguel-Ayanz et al. (2013), could also be grouped in clusters
with this method of analysis. The processing of the BAg data
set is simpler. The data set provides the shape and time of be-
ginning of all detected wildfires. We take as location the cen-
troid of this shape. Detection of smaller wildfires being quite
hard with remote-sensing techniques, we choose to eliminate
<25 ha wildfires from our burnt area data sets. They corre-
spond to wildfires burning less than one pixel in the BAy,
data set and the authors have doubts about the completeness
of the BA data sets below this value. In the following sec-
tions it should therefore be stressed that the obtained results
only hold for such wildfires. Our fire data sources and pre-
processing methods are identical to that of Hernandez et al.
(2015a, b). After these preprocessing steps we retain 5821
observations for the BA, data set, 4840 for the BA g data set
and 24 273 wildfires for the FRP data set.

2.2 Meteorological covariates

Our weather database was built upon the ERA-Interim re-
analysis of the European Center for Medium-range Weather
Forecast (ECMWEF) (Dee et al., 2011). The horizontal reso-
lution of the reanalysis does not allow the derivation of the
small-scale weather conditions in the immediate vicinity of
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the fire. To link the weather data to the fire data, we take
the ERA-Interim grid point nearest from the detected fire
event. We then associate to this event the weather recorded
at 12:00 UTC the day of first detection. We extract the fol-
lowing meteorological covariates:

— AT (in K): the 2 m air temperature anomaly, the differ-
ence between the 12:00 UTC 2 m air temperature and its
climatological daily mean;

— WSig (in ms~1): the 10 m wind speed;

— ANprecip (in days): the anomaly with respect to the cli-
matology of the number of days when precipitations
> 0.5mm occur during the January-June time period
preceding of the year of the fire.

A Nprecip is mostly impacted by spring drought occurrence
but positive winter precipitation anomaly has also been
linked to the 2003 Portugal megafire event (Trigo et al.,
2006). However, as shown in Vautard et al. (2007) and Sté-
fanon et al. (2012a), anomalies of precipitation during spring
are favourable to summer heatwave conditions. Stéfanon
et al. (2012b) have also shown that deficit of precipitation
during spring, can trigger early vegetation growth, provid-
ing abundant fire fuels in summer. Positive winter precipita-
tion anomalies may amplify this mechanism. Our choice of
covariates was done to retain a broad range of timescales.
We go from the hourly to daily timescales (AT>, WS1g) to
seasonal timescales (A Nprecip). We also settled on covariates
with proven impact on wildfire activity. Wind speed acceler-
ates the propagation of the fire (Rothermel, 1972) in the di-
rection of the wind and blocks back propagation. The temper-
ature anomaly ATy is an indicator of heatwave occurrence.
Pereira et al. (2005) showed that in Portugal wildfires of-
ten co-occurred with synoptic blockings and heatwaves. In
Sardinia, Cardil et al. (2014) showed that large fire occur-
rence, daily burnt area and daily number of fires were higher
on high temperature days. Hernandez et al. (2015a, b) fur-
ther this work by showing that heatwaves and surface wind
control wildfire size and duration strongly. Dimitrakopoulos
et al. (2011) emphasized the link between drought and wild-
fire activity (wildfire occurrence and area burnt) in Greece.
We chose ANprecip as an indicator of drought occurrence
preceding the wildfire. Low values of A Nprecip indicate both
low precipitation amount and low overall cloudiness in the
January-June time period. Intuitively, we could say that more
arid preceding seasons could lead to lower values of soil and
fuel moisture during summer. Zampieri et al. (2009) showed
that this quantity is linked to drought occurrence in summer.
Additionally Vautard et al. (2007) and Stéfanon et al. (2012b)
showed that summer heatwave occurrences were also im-
pacted by rainfall deficit in previous months.

Our first attempt at linking fire and weather data used re-
gression techniques to forecast the conditional mean. This
approach failed, with maximum R2 of 0.10 and 0.05 for

Ann. Geophys., 33, 1495-1506, 2015
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Figure 1. Evolution of 5th (blue), 25th (green), 50th (red), 75th (cyan) and 95th (purple) quantiles of BA (data set BA; and BAg) and
FRP (FRP data set) with AT, WS1g and A Nprecip- Top row corresponds to BA,,, middle to BAg and bottom to FRP. The red shaded area

corresponds to 90 % confidence intervals for the 95th quantile.

the FRP and BA data sets respectively using artificial neu-
ral networks. We therefore chose to focus our analysis on the
variability of the distributions of BA and FRP with respect
to weather, and at first on the variations of the quantiles of
these distributions. Figure 1 shows the variations of the 5th,
25th, 50th, 75th and 95th quantiles of BA and FRP for data
sets BA s, BAg and FRP with respect to the selected covari-
ates. The methodology consists in splitting the data sets into
seven subsets containing an equal number of points. This al-
lows comparable uncertainties for each subset. The number
of bins was chosen as a trade-off between the smoothness
of the curve and the significance of the curve fluctuations.
These statistics were bootstrapped 1000 times, allowing an
accurate estimation of each quantile and of the associated
confidence intervals. First, we can see that these variations
depend heavily on the selected quantile. In particular the 5th
quantile seems roughly constant whereas the 95th is more
variable. BA and FRP show strong responses to AT, with
general growth of fire size and radiative power. For the BAg
and FRP data sets, BA and FRP are growing functions of
WSip. This is not seen for the BA,, data set. However Her-
nandez et al. (2015b) show that by conditioning on AT sig-
nificant variations of BA and FRP can be observed at the 70
and 90 % confidence levels respectively. We observe that BA
and FRP decrease with increasing A Nprecip. In the following
we use ATy, WSyg and A Nprecip to reconstruct the condi-
tional distribution functions of BA and FRP.

Ann. Geophys., 33, 1495-1506, 2015

3 BA and FRP distributions

Figure 1 shows that the variability of BA and FRP is very
high, and a proper way to build a risk metric would be to
compute probabilities of large fire size or large intensity us-
ing these variations. A way of doing so would be to model
the conditional distributions of BA and FRP with respect to
weather. To achieve this goal we want to find a parametric
distribution which fits these variables well. In this section we
proceed to this task independently of the weather covariates
in order to provide good models for the distributions of BA
and FRP. The meteorological covariates will be reintegrated
at the beginning of Sect. 4.

As BA and FRP have very skewed distributions it be-
comes easier to study their logarithm. We therefore from this
point onward only discuss the modelling of logi0(BA) and
log10(FRP). We also subtract a threshold to each variable
(log10(25) for the BA data sets and log1o(4) for the FRP data
set), so as the data starts approximately at 0 and is always
non-negative.

The parametric forms that are tested for the distributions
of the transformed fire variables are the following:

— the Exponential distribution,
[ B)=pe™, x eRY;

— the Normal distribution,
x-w?

e 202
o+ 21

, xeR;

fsp,o)=
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Table 1. AD2R values for all different distributions and for all data sets. The AD2R values for the chosen distributions are in bold.
Criterion Dataset Normal Exponential Cauchy Gamma Logistic Log-Normal GEV
BA 190 370 394 20.0 58.3 103  20.3
AD2R BAE 514 648 355 23.6 16.5 835 345
FRP 674 4951 1626 15.2 121 124 17.8
— the Cauchy distribution, ting method. The AD2R criterion is defined as follows:
f(x; x0,a) = 5 , x €R; A 2
( (x —xo) ) ADRR(F) = [ (20) ~ F) weodr,
mwal 1+
a with W(x) = (1 — F(x)) 2 1)
T with F,, being the empirical, step-wise cumulative density
~ the Gamma dls/tgrollbutlo_nl, g N function of the data to fit and F the cumulative density func-
fxsa, )= T’ ¢ 7% €RT; tion for which the AD2R criterion is calculated. The choice
of the function W gives more weight to the quality of the fit
for the right tail of the distribution. If F(x) and F, (x) were
— the Logistic distribution, to have different asymptotic behaviours for large values of x
ATH the AD2R criterion would be very large. The minimization
FQps) = e S L eR: of the AD2R criterion then has the theoretical advantage of
o X =\’ ' making a better fitting of the distribution for larger values of
slite s the selected variable. All the AD2R values found for each
distribution and data set are available in Table 1. Computa-
tions were done in R (R Core Team, 2013) using the “fitdis-
trplus” package (Delignette-Muller and Dutang, 2015). We
— the Log-Normal distribution, see that for the BA data sets there are two distributions se-
_ (logx — 11)? lected, Gamma and GEV. We will continue using only the
flxpm,o)= 202 , x e Rt; GEV distribution since the difference seen for the BA), data

e
xo 21

— the Generalized extreme value (GEV) distribution,
1 x— —l-1
fGip0.8) =—[1+§ (—“)]
o o

N

xeR, x > u—o/t, & > 0.

Here f denotes the corresponding probability density
function.

If Y is a random variable, the truncated exponential distri-
bution for logY correspond to the truncated pareto distribu-
tion for Y. As the Truncated Pareto distribution was shown
alongside with the Tapered Pareto distribution to be a good
fit for the distribution of BA (Schoenberg et al., 2003), we in-
cluded the exponential distribution in our possible forms for
log10(BA/25) and logio(FRP/4).

We fitted all these distributions for each data set (BAy,,
BAr and FRP) using the minimization of the AD2R
goodness-of-fit criterion (Anderson and Darling, 1954) as fit-
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set between these two distribution is very small (AD2R val-
ues of 20.3 for the GEV distribution and 20.0 for the Gamma
distribution), whereas for the BAg data set the difference is
much larger (AD2R values of 3.45 for the GEV distribution
and 23.6 for the Gamma distribution). For FRP the Gamma
distribution is selected. Surprisingly the Exponential distri-
bution fits the BA data sets poorly. This could be due to the
absence of the <25 ha wildfires in our BA,, and BAg data
sets, whereas they are taken into account in Schoenberg et al.
(2003).

Figure 2 shows the normalized histograms and modelled
densities of BA and FRP with accompanying QQ-plots for
all considered data sets. The QQ-plots were computed using
the car package (Fox and Weisberg, 2011). For values of BA
smaller than 40 ha, the QQ-plots depart from the 95 %-level
confidence intervals. Conversely, the QQ-plots are within the
confidence intervals for larger values. The distribution fits
better the BAg data set than the BA,. It may be due to the
methodology of construction of this data set, which consid-
ers burned only the fraction of the burning MCD64A1 pix-
els of surface 25 ha covered by vegetation. A preference for
multiples of 25 ha arises and it is detrimental for the accu-
racy on the distribution tails of BA, and especially the lower
percentiles. However, the fit is still accurate enough for our
purpose. As only the largest wildfires are controlled by the

Ann. Geophys., 33, 1495-1506, 2015




1500 C. Hernandez et al.: Statistical modelling of wildfire size and intensity

QQ-plots
(b) BAm

Densities

(a) BAm

Density
Obseryations

Variable GEYV quantiles

3 (c) BAg

Density
Observations

Variable GEYV quantiles

(e) FRP

Observations

T T T 1
0 25 30

Variable

Gamma quantiles

Figure 2. Normalized histograms, modelled densities (a, c, €) and
QQ-plots (b, d, f) for the GEV and Gamma distributions for the
BA and FRP data sets respectively. The fitting method used is the
AD2R criterion minimization. On the densities panels the normal-
ized histograms are in black and the modelled distribution in red.
The dashed green lines on the QQ-plots are the 95% confidence
envelopes.

weather conditions (Hernandez et al., 2015a), having an ac-
curate fit of the high values of BA and FRP is enough for
our modelling framework. Caution should therefore be taken
when trying to interpret these distributions for low values of
BA. For FRP, the QQ-plot remains within the 95 %-level con-
fidence intervals for all values. Besides the AD2R criterion,
Fig. 2 shows that the GEV and Gamma models fit the data
accurately and can be considered suited for our model. In
the following, we will take the strong hypothesis that the
observations coming from the BA and FRP data sets have
respectively GEV and Gamma distributions conditionally to
the weather. This hypothesis was tested on large subsets of
the data sets corresponding to particularly favourable or un-

Ann. Geophys., 33, 1495-1506, 2015

favourable weather conditions. We take as favourable condi-
tions AT, > 5 K and WS1o > 6ms~! and as unfavourable
conditions AT> < 0 and WS1g < 3ms—1. We find that the
hypothesis holds well for the BAg and FRP data sets, but that
there are more discrepancies with the BA,, data set, which is
coherent with the deviations seen in Fig. 2. This hypothesis
is used to obtain the conditional distribution of BA and FRP
with respect to AT>, WS;1o and A Nprecip-

4 Fire risk assessment using meteorological covariates
4.1 Methodology

The general framework of our methodology is the paramet-
ric estimation of the conditional probability density function
of BA or FRP with respect to AT, WS1o and A Nprecip-
In other words we seek fyx(y) = fr(y|X =x) with y the
fire variable, X the meteorological covariates and x a spe-
cific value taken by the covariates. We made the hypothe-
sis in the previous section that fiog,,(BA/25) ~ GEV(1, 0, §)
and fiog,,(FRP/4) ~ Gamma(e, B) for all subsets of our data
sets. Therefore to approximate the values of the parameters
of these distributions we need to compute the distribution of
y near the point X = x. To do so we choose to retain the 10 %
of our data sets nearest of the point X = x and to estimate the
parameters of the distribution by minimizing the AD2R cri-
terion. The fraction of nearest neighbours was chosen to be
sufficient to estimate a distribution function. The calculation
of these nearest neighbours was done in R using the FNN
package (Beygelzimer et al., 2013). It must be noted that due
to the curse of dimensionality taking a larger number of co-
variates would lead to a very large inaccuracy on x (Hastie
etal., 2009, pp. 22-23). In order to tackle this issue we select
only three covariates for our density estimation. The choice
of these covariates was done using Fig. 1. We wish to retain
covariates that cover a broad range of temporal variability
and for which BA and FRP exhibit strong significant variabil-
ity. We therefore choose to take X = (AT2, WS10, A Nprecip)
for all data sets. For computation purposes we choose not to
estimate fy|x at each possible value of x. Instead we take the
values of x corresponding to the 1st to 9th deciles of each of
its components. This makes 9% = 729 values of x for which
each conditional distribution parameters are estimated. In or-
der to obtain asymptotic confidence intervals for our esti-
mates of the conditional distribution parameters and of the
probability of large or intense events we perform 500 boot-
strap estimations of these parameters using the determined
nearest neighbours. Bootstrap estimation was done using the
bootstrap R package (Leisch and Tibshirani, 2014).

4.2 Results

Figures 3, 4 and 5 show the estimated probability contours
of particularly large or intense fire events computed from
our method. These events are defined by the wildfire ex-

www.ann-geophys.net/33/1495/2015/
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Table 2. Mean values of the standard deviations calculated from the
nearest neighbours search (AT, WS1g and A Nprecip)-

Dataset AT, (K) WSig(ms™)  ANprecip (days)
BA 141 0.74 4.4
BAL 122 0.83 3.9
FRP 117 0.74 4.4

ceeding the 2000 ha or 200 MW thresholds in BA or FRP
respectively. These thresholds correspond approximately to
the 95th quantiles of each variable. The values of each class
0f A Nprecip corresponds to the mean of the A Nprecip Of each
decile. Each panel displays the mean distribution of the cor-
responding A Nprecip Class. The uncertainty of the distribution
can be inferred from Table 2 which displays the average stan-
dard deviation of each covariate. The probability of large BA
occurring is a growing function of AT (Figs. 3 and 4). The
two modes of higher BA commented and analysed in Her-
nandez et al. (2015b) are visible in Fig. 3. There is a clear
significant increase in large BA probabilities with increasing
AT, and WSy for low values of A Nprecip. The role of WSy
is significantly damped when A Nprecip rises (wetter January—
June time period) and AT> becomes the main driving fac-
tor for the BA,, data set (Fig. 3). Accounting for the con-
fidence intervals of the estimated probabilities (not shown)
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shows that WS1g has no explanatory value in the pattern of
the probability at the 90 % confidence level. The variations
between the minima and maxima of the estimated probabili-
ties are significant at the 90 % confidence level. However the
two modes are hard to distinguish statistically because of the
low number of points in our BA data sets (5821 for BA,, and
4840 for BAg). The difference of results between the BAy,
and BAEg probabilities is due to the BAg data set spanning
over the 2006-2012 time period, therefore missing the 2003
and 2005 megafire events which are present in the BA,, data
set (San-Miguel-Ayanz et al., 2013). Regarding fire intensity,
FRP is a growing function of WS1p, AT, and a decreasing
function of A Nprecip, Which is significant at the 90 % confi-
dence level. The variability linked to AT» and WSy is dis-
cussed in Hernandez et al. (2015a) and found back on this
figure. Because we use a meteorological covariate depend-
ing on past weather (A Nprecip), a seasonal preconditioning
of high fire risk can be assessed. When a drought occurs in
the past months (A Nprecip < —7 days) the highest probabil-
ities of large BA can be found for high values of both AT
and WS1g (Fig. 3). For higher values of the past months pre-
cipitation anomaly (A Nprecip > 7 days), the highest risk cor-
responds to heatwaves, with high AT, and low WSp. This
difference could be exploited to adapt fire mitigation strate-
gies and take into account seasonal weather information. The
absence of the 2003 and 2005 megafire events (San-Miguel-
Ayanz et al., 2013) limits the number of observations used
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to derive the parameters of the distributions, therefore ex-
plaining the absence of significant discrimination between
situations of spring drought and the others in the BAg data
(Fig. 4).

Let us illustrate the information provided by our method
by focusing on the 2003 megafire event in Portugal. We take
the largest wildfire event of the BA,, data set (262520 ha
BA, 731 MW FRP). It is recorded at [—7.65° E, 40° N] and
the considered weather is that of the [—7.50° E, 39.75° N]
ERA-Interim grid point. Figure 6 shows the time evolution
of the probability of large BA and FRP with the correspond-
ing 90 % confidence intervals. Two black lines show the be-
ginning and the end of the fire event. During the wildfire
the probability of large BA peaks to 7%, whereas it stays
at about 3% (BAy,) or 2% (BAEg) the rest of the time. The
probability of large FRP behaves the same way, going from
3% to more than 6 %. The variations of these estimated prob-
abilities are significant at the 90% confidence level. The
“background” probability refers to the background fire risk
of large or intense fire events during summer. We also see
a secondary peak before the fire event, even though no fire
occurred. Our method can be used to identify time periods
when fire risk is especially high. When a fire occurs during
one of these “extreme” periods, the fire event has high odds
of being catastrophic.

Regarding the uncertainties of the method the mean stan-
dard deviation of the meteorological covariates have been
calculated (Table 2). They stem from our nearest neighbours
approach. The uncertainties on the meteorological features
are fairly small and, with the exception of ANprecip, fall
within measurement error. Figure 7 shows the normalized
histograms of the estimated probabilities and of the confi-
dence intervals lengths for all July—August time periods ev-
erywhere a fire is detected. We also quantify the mean and
standard deviation of the “background” and “extreme” fire
risk regimes. To do this, the densities of the estimated proba-
bilities are fitted with a mixture of two Gaussians, represent-
ing the “background” and “extreme” fire risk regimes. The
model can be written as follows:

(07
PDF(x; 1,01, 2,02, 00) =
M1,01, U2,02 01\/5
x—p)?  l-a
X exp{— }+
P 202 0221
(x — u2)?
xexp{—————1} (2
202

For BAg data set, the distinction between “background”
and “extreme” is more difficult than for BA,; due to the ab-
sence of major megafires in the data set (2003 and 2005).
Otherwise, the mean probability that a fire exceeds 2000 ha
is around 4 % for “background” summer fire risk conditions
with a standard deviation of 0.5% and increases to 5% in
extreme weather conditions favourable to larger fires. A sim-
ilar behaviour is found for fire intensity with an even more
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distinguishable two-mode distribution. The mean probabil-
ity that a fire exceeds 200 MW is around 2.4 % for “back-
ground” summer fire risk conditions with a standard devia-
tion of 0.3% and increases to 3.6 % in extreme weather con-
ditions favourable to intense fires. The 90 %-level confidence
interval lengths remain large for the BA data sets, with typ-
ical values of 2 and 1.8 % for the BA,; and BAEg data sets
respectively. For the FRP data set these lengths are smaller
because of the larger number of data points, with a mean
value of approximately 1 %.

5 Conclusions

Statistical modelling of burnt area (BA) and fire radiative
power (FRP) was investigated in this article. Using max-
imum goodness-of-fit techniques the density functions of
log1p(BA) and log1o(FRP) were found to be well represented
by GEV and Gamma distributions respectively. Using the hy-
pothesis that this result holds for the conditional distribution
of the fire variables with respect to meteorological covariates,
a methodology for its estimation with three weather param-
eters was designed. Surface wind speed, 2 m air temperature
anomaly and rainfall occurrence anomaly in January-June
were selected to fit BA and FRP. The statistical model proved
to be efficient in associating large fire risk with previous fire
events, and so with rather low uncertainties. Such a model
would be useful for the design of a data-driven wildfire alert
system in the Mediterranean Basin taking into account sea-
sonal trends and weather forecasts.

— Our model allows to discriminate accurately jumps be-
tween “background” summer fire risk regime and an
“extreme” additional fire risk regime, corresponding to
higher probability of occurrence of larger fire size or in-
tensity associated with specific weather conditions;

— our model provides information for both the fire size
and the fire intensity;

— our model provides an estimation of the probability of
risk to exceed given values of fire size and fire intensity
each time meteorological forcing data are available, that
is typically on an hourly to 6-hourly basis;

— our model includes enhanced fire risk preconditioning
by precipitation occurrence anomaly during the preced-
ing months.

However, this work must be seen as a first step towards fire
risk forecasting and a thorough analysis is required to assess
the model performance in forecast mode. In this study we
use parametric distributions as they provide a simple frame-
work to model fire risk with a limited number of coefficients,
which can be of interest for the implementation of a fire risk
forecast system. Non-parametric estimations of the condi-
tional distributions of the fire variables with respect to the
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meteorological covariates could be performed (Brunel et al.,
2010). This would lead to longer computation times but prob-
ably more accurate estimations of the conditional distribu-
tions and associated probabilities. More complete data sets
for BA would allow a better estimation of the conditional
distribution for this particular variable and help further re-
duce the uncertainties. Finally, in order to improve fire risk
forecasting meteorological driving factors of fire size and in-
tensity can be used to reconstruct a conditional distribution
function of either variable. Such a method provides much
more information than commonly used fire risk indicators
(e.g. the Canadian Fire Weather Index) as one gets the distri-
bution of all possible fire sizes and intensities given the mete-
orological covariates rather than an estimation of the fire in-
tensity alone. The method also allows a multi-timescale anal-
ysis of the fire risk level as it accounts for preconditioning
build-up by past months drought and the instantaneous wind
speed and temperature anomaly with respect to the daily cli-
matology. It thus produces a contrasted day-to-day probabil-
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ity of large fire size and intensity which can be combined into
a single fire risk indicator.
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